
Package ‘rmapzen’
October 17, 2023

Type Package

Title Client for 'Mapzen' and Related Map APIs

Version 0.5.1

Maintainer Tarak Shah <tarak.shah@gmail.com>

Description Provides an interface to 'Mapzen'-based APIs (including
geocode.earth, Nextzen, and NYC GeoSearch) for geographic search
and geocoding, isochrone calculation, and vector data to draw map tiles.
See <https://www.mapzen.com/documentation/> for more information. The original
Mapzen has gone out of business, but 'rmapzen' can be set up to work with
any provider who implements the Mapzen API.

License MIT + file LICENSE

LazyData TRUE

Depends R (>= 2.10)

Imports tibble, httr, jsonlite, ISOcodes, dplyr, assertthat,
geojsonio, tidyr, purrr, digest, sf (>= 1.0.0), utils

RoxygenNote 7.2.3

Suggests testthat, covr, knitr, rmarkdown, rlang

URL https://tarakc02.github.io/rmapzen/

BugReports https://github.com/tarakc02/rmapzen/issues

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Author Tarak Shah [aut, cre],
Daniel Possenriede [ctb]

Repository CRAN

Date/Publication 2023-10-17 17:00:02 UTC

1

https://www.mapzen.com/documentation/
https://tarakc02.github.io/rmapzen/
https://github.com/tarakc02/rmapzen/issues

2 rmapzen-package

R topics documented:
rmapzen-package . 2
as_sf . 4
ca_tiles . 4
costing_models . 5
mapzen_references . 6
marina_walks . 7
marina_walks_polygons . 7
mz_autocomplete . 8
mz_bbox . 9
mz_check_usage . 10
mz_contours . 11
mz_coordinates . 11
mz_date_time . 12
mz_geocode . 12
mz_geocode_structured . 13
mz_isochrone . 14
mz_location . 15
mz_place . 16
mz_provider . 17
mz_set_host . 17
mz_structured_search . 18
mz_tile_coordinates . 19
mz_vector_tiles . 20
oakland_public . 22

Index 23

rmapzen-package rmapzen: A client application for the ’Mapzen’ API.

Description

The rmapzen package provides interfaces to the Search <https://github.com/pelias/documentation/>,
Isochrone <https://valhalla.readthedocs.io/en/latest/>, and Vector Tile <https://tilezen.readthedocs.io/en/latest/>
services from ’Mapzen’, via the following functions:

Search

All functionality described in <https://github.com/pelias/documentation/> are supported:

• mz_search

• mz_reverse_geocode

• mz_autocomplete

• mz_place

• mz_structured_search

rmapzen-package 3

Additionally, mz_geocode is useful for a common application of search, that of just obtaining lati-
tude and longitude for a given address or place.

Isochrone

Isochrones are the areas reachable from a given location within a specified period of time. Mapzen’s
Isochrone service can calculate isochrones for driving, walking, cycling, or multimodal forms of
transport:

• mz_isochrone

• mz_costing: for constructing "costing models" that describe method of transport along with
speed and other options relevant to the calculation of the isochrone

• mz_costing_options: for selecting specific options when constructing a costing model

Vector Tiles

• mz_vector_tiles: Request one or more adjacent tiles. Multiple map tiles will be stitched
together before being returned as a single object.

• mz_tile_coordinates: When using mz_vector_tiles, you must specify the geographic
area for which you want tile data. One way to do so is using the x, y, z tile naming system (see
<https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames>).

• mz_rect: Alternatively, you can specify the lower left and top-right points of a bounding box,
which will automatically be converted to tile-coordinates when you use mz_vector_tiles

• mz_bbox: This is a generic function which will return the bounding box of any Mapzen object.
In this way, you can request vector tiles for a region defined as the bounding box of an existing
object.

Data types and conversion

Objects returned by rmapzen can be converted to simple features (sf) via the generic function
as_sf. Search and Isochrone objects can additionally be converted to ordinary data.frames via
as.data.frame.

Author(s)

Maintainer: Tarak Shah <tarak.shah@gmail.com>

Other contributors:

• Daniel Possenriede [contributor]

See Also

• <https://tarakc02.github.io/rmapzen/> contains detailed examples

• <https://www.mapzen.com/documentation/> ’Mapzen’ documentation

4 ca_tiles

as_sf Coerce a Mapzen response to a simple features object

Description

Coerces responses to class sf. See vignette("sf1", package = "sf") for more information about
Simple Features for R.

Usage

as_sf(geo, ...)

S3 method for class 'geo_list'
as_sf(geo, ...)

S3 method for class 'mapzen_vector_layer'
as_sf(geo, ...)

Arguments

geo The object to be converted

... not currently used

ca_tiles Vector tiles the contain California

Description

Vector tiles the contain California

Usage

ca_tiles

Format

An object of class mapzen_vector_tiles (inherits from list) of length 9.

Source

Mapzen, OpenStreetMap contributors, Who’s On First, Natural Earth, and openstreetmapdata.com

costing_models 5

costing_models Costing model constructors and helpers

Description

Mapzen’s Isochrone service (mz_isochrone) as well as other mobility services (currently not imple-
mented in this package, read more at https://valhalla.readthedocs.io/en/latest/) require
users to specify a "costing model." See https://valhalla.readthedocs.io/en/latest/ for de-
tails. These can be difficult to construct correctly, so the objects mz_costing and mz_costing_options
exist to make that process less error-prone and more convenient.

Usage

mz_costing

mz_costing_options

Format

An object of class list of length 4.

An object of class list of length 4.

See Also

mz_isochrone

Examples

creates a pedestrian costing model with walking speed of 2 km/hr
that also avoids alleys.
non-multimodal costing models will accept 0 or more options from the
appropriate list.
mz_costing$pedestrian(

mz_costing_options$pedestrian$walking_speed(2.0),
mz_costing_options$pedestrian$alley_factor(0)

)

creates a multimodal costing model that favors buses over rails, and
has a slower than default walking speed
(note multimodal has named arguments requiring list inputs)
mz_costing$multimodal(

transit = list(
mz_costing_options$transit$use_bus(1.0),
mz_costing_options$transit$use_rail(5)

),
pedestrian = list(

mz_costing_options$pedestrian$walking_speed(4.1)
)

)

https://valhalla.readthedocs.io/en/latest/
https://valhalla.readthedocs.io/en/latest/

6 mapzen_references

mapzen_references Reference lists

Description

Lists of sources, layers, and countries, as they are expected to appear in the mz_search functions.
These data objects are provided as a convenience, to be able to quickly and easily look up acceptable
values for the optional arguments of search functions. Object names match the argument names for
which they are appropriate. So mz_sources provide acceptable arguments for the source argument
in mz_search, mz_layers for the layer argument, and mz_countries for the boundary.country
argument. Mapzen’s documentation (https://github.com/pelias/documentation/) explains
more about each of these arguments.

Usage

mz_sources

mz_layers

mz_countries

Format

An object of class list of length 8.

An object of class list of length 13.

An object of class list of length 747.

Examples

Not run:
look for YMCAs in Jamaica:
Note that boundary.country is supplied via ISO3166 code,
but mz_countries will look up the code
mz_search("YMCA",

boundary.country = mz_countries$Jamaica,
layers = c(mz_layers$venue, mz_layers$address))

End(Not run)

https://github.com/pelias/documentation/

marina_walks 7

marina_walks Pedestrian isochrones from the Berkeley Marina for 10 and 15 minutes

Description

Isochrone results from Mapzen as of January 8, 2017. The location for the isochrones is the Berke-
ley Marina, lat 37.86613, lon -122.3151

Usage

marina_walks

Format

An object of class mapzen_isochrone_list (inherits from geo_list) of length 3.

Source

Mapzen, OpenStreetMap, British Oceanographic Data Centre, NASA, USGS, and Transitland.

marina_walks_polygons Pedestrian isochrones from the Berkeley Marina for 10 and 15 min-
utes, as polygons

Description

Polygon Isochrone results (using polygons = TRUE) from Mapzen as of January 10, 2017. The
location for the isochrones is the Berkeley Marina, lat 37.86613, lon -122.3151, and the contours
are 10 and 15 minutes for a pedestrian costing model.

Usage

marina_walks_polygons

Format

An object of class mapzen_isochrone_list (inherits from geo_list) of length 3.

Source

Mapzen, OpenStreetMap, British Oceanographic Data Centre, NASA, USGS, and Transitland.

8 mz_autocomplete

mz_autocomplete Mapzen search API

Description

Functions to access the various endpoints from the Mapzen Search API. For more details, see
https://github.com/pelias/documentation/. If your data is already split up by street, city,
state, zip, etc., then you might find mz_structured_search to be more precise. All arguments be-
sides text (point in the case of mz_reverse_geocode) are optional. If you have parsed addresses
(e.g. for geocoding), use mz_structured_search

Usage

mz_autocomplete(
text,
boundary.country = NULL,
boundary.rect = NULL,
focus.point = NULL,
sources = NULL,
layers = NULL,
api_key = NULL

)

mz_reverse_geocode(
point,
size = NULL,
layers = NULL,
sources = NULL,
boundary.country = NULL,
api_key = NULL

)

mz_search(
text,
size = 10,
boundary.country = NULL,
boundary.rect = NULL,
boundary.circle = NULL,
focus.point = NULL,
sources = NULL,
layers = NULL,
api_key = NULL

)

Arguments

text Search string

https://github.com/pelias/documentation/

mz_bbox 9

boundary.country

ISO-3166 country code to narrow the search. See mz_countries

boundary.rect 4 corners that define a box to narrow the search. Can be the result of mz_bbox.
Should have named elements with names "min_lon", "min_lat", "max_lon",
"max_lat" – can be created using mz_rect.

focus.point A point to "focus" the search. Can be created with mz_location or mz_geocode,
otherwise should have names "lat" and "lon"

sources The originating source of the data (to filter/narrow search results). See mz_sources

layers Which layers (types of places) to search. See https://github.com/pelias/
documentation/ for definitions, and use mz_layers for convenience

api_key Your Mapzen API key. The default is to look for the key within the provider
information that was set up with ‘mz_set_host‘.

point For reverse geocoding, the location to reverse geocode. Can be created with
mz_location or mz_geocode, otherwise should have names "lat" and "lon"

size Number of search results requested
boundary.circle

A circle to narrow the search. Should have named elements with names "lon",
"lat", and "radius"

See Also

mz_place, mz_structured_search, mz_countries, mz_sources, mz_layers

Examples

Not run:
hard rock cafes in sweden:
mz_search("Hard Rock Cafe", boundary.country = "SE")

autocompletions when the user types in "Union Square"
prioritizing San Francisco results first:
mz_autocomplete("Union Square",

focus.point = mz_geocode("San Francisco, CA"))

End(Not run)

mz_bbox Get the bounding box

Description

Returns the bottom left and top right corners of the box that contains a mapzen object (mz_geo_list,
mz_isochrone_list, or mapzen_vector_tiles). In the case of mz_rect, creates such a box from
the specified coordinates. The returned value can be used directly as the boundary.rect parameter
for search functions, as well as converted to x, y, zoom coordinates to use with mz_vector_tiles.

https://github.com/pelias/documentation/
https://github.com/pelias/documentation/

10 mz_check_usage

Usage

mz_bbox(geo)

S3 method for class 'mapzen_geo_list'
mz_bbox(geo)

S3 method for class 'mapzen_isochrone_list'
mz_bbox(geo)

mz_rect(min_lon, min_lat, max_lon, max_lat)

Arguments

geo A mapzen geo list or isochrone list
min_lon, min_lat, max_lon, max_lat

The bottom left and top right corners, expressed as latitude and longitude, of a
rectangle.

Value

A single-row tibble with columns min_lon, min_lat, max_lon, max_lat.

Examples

mz_rect(min_lon = -122.2856, min_lat = 37.73742, max_lon = -122.1749, max_lat = 37.84632)
mz_bbox(oakland_public)

mz_check_usage Check usage statistics

Description

Prints out remaining queries for various time periods. rmapzen manages rate limiting for the per-
second limits, but does not keep track of the daily limits.

Usage

mz_check_usage()

Details

This function is populated from the headers of responses to various API requests. If no queries have
been made, or if the only queries so far have hit cache servers, then no information will be available.

mz_contours 11

mz_contours Create an mz_contours object

Description

Contours are given as inputs to mz_isochrone. This function makes it convenient to construct them.

Usage

mz_contours(times, colors = NULL)

Arguments

times Times in minutes for the contour. Up to a maximum of 4 numbers.

colors Colors for the contours. By default, a palette will be constructed from the Col-
orbrewer 4-class oranges palette.

mz_coordinates Extract a data frame of coordinates from a mapzen_geo_list

Description

Extract a data frame of coordinates from a mapzen_geo_list

Usage

mz_coordinates(geo)

S3 method for class 'mapzen_geo_list'
mz_coordinates(geo)

Arguments

geo A mapzen geo list

Value

A tibble, with columns lon and lat.

Examples

mz_coordinates(oakland_public)

12 mz_geocode

mz_date_time Create mz_date_time objects

Description

Mobility services (such as mz_isochrone) take, optionally, a date_time argument that specifies the
date and time along with type (departure/arrival). This function constructs the appropriate objects
to use as date_time arguments.

Usage

mz_date_time(date_time, type = "departure")

Arguments

date_time A POSIXt date-time object

type "departure" or "arrival"

mz_geocode Geocode an address or other location

Description

This is a convenience function that calls mz_search to retrieve latitude and longitude.

Usage

mz_geocode(location, ...)

Arguments

location An address or other suitably specific search string

... Additional arguments passed on to mz_search

Value

A tibble, with the parsed address used to retrieve the geocode, lat/lon, and the confidence (between
0 and 1)

See Also

mz_search, mz_reverse_geocode

mz_geocode_structured 13

Examples

Not run:
mz_geocode("1600 Pennsylvania Ave., Washington DC")

can also be a landmark
mz_geocode("Statue of Liberty, New York")

End(Not run)

mz_geocode_structured Geocode a structured address

Description

mz_geocode allows you to search using an unstructured string of text, but if your address data has
more structure (eg separate columns for address, city, state, zip), then using the structured search
service may provide more precision. For more information, see https://github.com/pelias/
documentation/. Note that all of the arguments are optional, but at least one of them must be
non-NULL. Furthermore, postalcode can not be used by itself.

Usage

mz_geocode_structured(
address = NULL,
neighbourhood = NULL,
borough = NULL,
locality = NULL,
county = NULL,
region = NULL,
postalcode = NULL,
country = NULL,
...

)

Arguments

address Can be a numbered street address or just the name of the street
neighbourhood Neighborhood name (eg "Notting Hill" in London)
borough eg "Manhattan"
locality The city (eg "Oakland")
county The county
region States in the case of US/Canada, or state-like administrative division in other

countries
postalcode AKA the zip code. Can not be used alone, must have at least one other argument
country The country - Can be the full name or the abbreviation from mz_countries

... Arguments passed on to mz_structured_search

https://github.com/pelias/documentation/
https://github.com/pelias/documentation/

14 mz_isochrone

Value

A tibble, with the parsed address used to retrieve the geocode, lat/lon, and the confidence (between
0 and 1)

See Also

mz_geocode, mz_structured_search

mz_isochrone Retrieve isochrones

Description

From https://valhalla.readthedocs.io/en/latest/: "An isochrone is a line that connects
points of equal travel time about a given location, from the Greek roots of ’iso’ for equal and
’chrone’ for time. The Mapzen Isochrone service computes areas that are reachable within specified
time intervals from a location, and returns the reachable regions as contours of polygons or lines
that you can display on a map."

Usage

mz_isochrone(
locations,
costing_model,
contours,
date_time = NULL,
polygons = NULL,
denoise = NULL,
generalize = NULL,
id = "my-iso",
api_key = NULL

)

Arguments

locations An mz_location, or something that can be coerced to an mz_location, as the
departure point for the isochrone. This can be the result of mz_geocode. Despite
the argument name, the isochrone service currently can only accept a single
location

costing_model The costing model, see mz_costing

contours Up to 4 contours, see mz_contours

date_time The local date and time at the location, and whether it is the departure or arrival
time. See mz_date_time

polygons Whether to return polygons (TRUE) or linestrings (FALSE, default)

https://valhalla.readthedocs.io/en/latest/

mz_location 15

denoise A value between 0 and 1 (default 1) to remove smaller contours. A value of 1
will only return the largest contour for a given time value. A value of 0.5 drops
any contours that are less than half the area of the largest contour.

generalize Tolerance in meters for the Douglas-Peucker generalization.

id A descriptive identifier, the response will contain the id as an element.

api_key Your Mapzen API key. The default is to look for the key within the provider
information that was set up with ‘mz_set_host‘.

Value

A mapzen_isochrone_list, which can be converted to sf using as_sf.

See Also

mz_costing

Examples

Not run:
mz_isochrone(

mz_location(lat = 37.87416, lon = -122.2544),
costing_model = mz_costing$auto(),
contours = mz_contours(c(10, 20, 30))

)

departure point can be specified as a geocode result
mz_isochrone(

mz_geocode("UC Berkeley"),
costing_model = mz_costing$pedestrian(),
contours = mz_contours(c(10, 20, 30))

)

End(Not run)

mz_location Create/extract lat/lon location information

Description

mz_location constructs a new mz_location object, which can be used with functions such as
mz_isochrone or mz_reverse_geocode. as.mz_location coerces eligible objects to mz_locations.

16 mz_place

Usage

mz_location(lat, lon)

as.mz_location(x, ...)

Default S3 method:
as.mz_location(x, ...)

S3 method for class 'mz_geocode_result'
as.mz_location(x, ...)

Arguments

lat Latitude

lon Longitude

x An object that has location information

... Not currently used

See Also

mz_isochrone For using the Mapzen isochrone service mz_contours, mz_costing, and mz_costing_options
for other argument constructors

mz_place Get details on a place

Description

Search functions (e.g. mz_search) return identification numbers, or gids. Use mz_place to re-
trieve more details about the place. See https://github.com/pelias/documentation/ for de-
tails. This function is generic, and can take a character vector of IDs, or a mapzen_geo_list as
returned by mz_search and friends.

Usage

mz_place(ids, ..., api_key = NULL)

S3 method for class 'character'
mz_place(ids, ..., api_key = NULL)

S3 method for class 'mapzen_geo_list'
mz_place(ids, ..., gid = "gid", api_key = NULL)

https://github.com/pelias/documentation/

mz_provider 17

Arguments

ids A character vector of gids (see details), or a mapzen_geo_list

... Arguments passed on to methods

api_key Your Mapzen API key. The default is to look for the key within the provider
information that was set up with ‘mz_set_host‘.

gid The name of the gid field to use. Search results may include, in addition to
the gid for the search result itself (the default), the gids for the country, region,
county, locality and neighborhood.

mz_provider Configure provider information

Description

rmapzen works with most implementations of PELIAS. This function defines the base URL for a
particular API provider, and can be used to provider the provider argument to mz_set_host.

Usage

mz_provider(hostname, path = NULL, key = NULL, scheme = "https")

Arguments

hostname The hostname in the API URL, for instance www.example.com

path Specific path that all API requests must include, e.g. "v1"

key API key for this provider, if required

scheme The scheme for the URL, should always be "https"

See Also

mz_set_host

mz_set_host Set up a host provider for a PELIAS service

Description

rmapzen works with most implementations of PELIAS. Use this function to set up the basic in-
formation required to connect to a particular provider. Provider-specific setup functions include
information to set up known providers.

18 mz_structured_search

Usage

mz_set_host(which, provider)

mz_get_host(which)

mz_set_search_host_geocode.earth(key = Sys.getenv("GEOCODE.EARTH_KEY"))

mz_set_search_host_nyc_geosearch()

mz_set_tile_host_nextzen(key = Sys.getenv("NEXTZEN_KEY"))

Arguments

which One of "search", "matrix", or "tile"

provider A provider, created using mz_provider

key API key

See Also

mz_provider

mz_structured_search Structured search

Description

mz_search allows you to search using an unstructured string of text, but if your address data has
more structure (eg separate columns for address, city, state, zip), then using the structured search
service may provide more precision. For more information, see https://github.com/pelias/
documentation. Note that all of the arguments are optional, but at least one of them must be
non-NULL. Furthermore, postalcode can not be used by itself.

Usage

mz_structured_search(
address = NULL,
neighbourhood = NULL,
borough = NULL,
locality = NULL,
county = NULL,
region = NULL,
postalcode = NULL,
country = NULL,
api_key = NULL,
...

)

https://github.com/pelias/documentation
https://github.com/pelias/documentation

mz_tile_coordinates 19

Arguments

address Can be a numbered street address or just the name of the street

neighbourhood Neighborhood name (eg "Notting Hill" in London)

borough eg "Manhattan"

locality The city (eg "Oakland")

county The county

region States in the case of US/Canada, or state-like administrative division in other
countries

postalcode AKA the zip code. Can not be used alone, must have at least one other argument

country The country - Can be the full name or the abbreviation from mz_countries

api_key Your Mapzen API key. The default is to look for the key within the provider
information that was set up with ‘mz_set_host‘.

... Any of the parameters, other than "text", that appear in mz_search, can appear
here, for example size, boundary.country, etc.

See Also

mz_search

mz_tile_coordinates Specify tile coordinates

Description

mz_vector_tiles requires tile coordinates or some other specification of the region that is to be
drawn. mz_vector_tiles will automatically convert its inputs to vector tiles, so you generally
won’t need to use this function directly.

Usage

mz_tile_coordinates(x, y, z)

as.mz_tile_coordinates(obj, ...)

S3 method for class 'mz_tile_coordinates'
as.mz_tile_coordinates(obj, ...)

S3 method for class 'mz_bbox'
as.mz_tile_coordinates(obj, ..., z = NULL, height = NULL, width = NULL)

S3 method for class 'mz_location'
as.mz_tile_coordinates(obj, ..., z = 15L)

S3 method for class 'mz_geocode_result'
as.mz_tile_coordinates(obj, ..., z = 15L)

20 mz_vector_tiles

Arguments

x integer vector of x-coordinates

y integer vector of y-coordinates

z integer between 0 and 19 specifying the zoom level

obj An object that can be converted to tile coordinates

... Other arguments passed on to methods

height Height in pixels

width Width in pixels

See Also

mz_vector_tiles, mz_bbox

Examples

mz_tile_coordinates(19293, 24641, 16)

can specify multiple contiguous tiles:
mz_tile_coordinates(19293:19294, 24641:24642, 16)

a rectangular bounding box can be converted to tile coordinates:
as.mz_tile_coordinates(mz_rect(min_lon = -122.2856,

min_lat = 37.73742,
max_lon = -122.1749,
max_lat = 37.84632))

zoom level is calculated based on desired pixel dimensions of the map:
as.mz_tile_coordinates(mz_rect(min_lon = -122.2856,

min_lat = 37.73742,
max_lon = -122.1749,
max_lat = 37.84632), height = 750, width = 1000)

a bounding box can also be calculated:
as.mz_tile_coordinates(mz_bbox(oakland_public))

mz_vector_tiles Request vector tile data

Description

From https://tilezen.readthedocs.io/en/latest/: "Vector tiles are square-shaped collec-
tions of geographic data that contain the map feature geometry, such as lines and points."

Usage

mz_vector_tiles(tile_coordinates, ..., Origin = NULL)

https://tilezen.readthedocs.io/en/latest/

mz_vector_tiles 21

Arguments

tile_coordinates

an mz_tile_coordinates object, or something that can be coerced to one (in-
cluding the output of mz_bbox)

... Arguments passed on to as.mz_tile_coordinates.

Origin optional, specify Origin URL in request header

Details

Multiple tiles are stitched together and returned as one object. Individual layers can be converted to
sf or sp, making it possible to draw each layer with custom styles.

Value

A list of tile layers (such as "water", "buildings", "roads", etc.). Each layer is an object of class
mapzen_vector_layer, which can be converted to sf using as_sf

See Also

mz_tile_coordinates

Examples

Not run:
vector tile at x = 19293, y = 24641, and zoom level 16
mz_vector_tiles(mz_tile_coordinates(19293, 24641, 16))

multiple contiguous tiles will be stitched together
this returns the result of stitching together 4 tiles
mz_vector_tiles(mz_tile_coordinates(19293:19294, 24641:24642, 16))

can also use a bounding box:
mz_vector_tiles(mz_rect(min_lon = -122.2856,

min_lat = 37.73742,
max_lon = -122.1749,
max_lat = 37.84632))

mz_bbox returns a bounding box for any Mapzen object
mz_vector_tiles(mz_bbox(oakland_public))

bounding boxes are automatically converted to tile coordinates,
with the zoom level based on the desired size in pixels of the final map
mz_vector_tiles(mz_bbox(oakland_public), height = 750, width = 1000)

End(Not run)

22 oakland_public

oakland_public 25 search results for "Oakland Public library branch"

Description

Contains the search results from Mapzen’s search service for the query "Oakland public library
branch" as of January 8, 2017.

Usage

oakland_public

Format

A mapzen_geo_list with 25 locations

Source

Mapzen, OpenStreetMap, OpenAddresses, GeoNames, WhosOnFirst, see https://www.mapzen.
com/rights/

https://www.mapzen.com/rights/
https://www.mapzen.com/rights/

Index

∗ datasets
ca_tiles, 4
costing_models, 5
mapzen_references, 6
marina_walks, 7
marina_walks_polygons, 7
oakland_public, 22

as.mz_location (mz_location), 15
as.mz_tile_coordinates, 21
as.mz_tile_coordinates

(mz_tile_coordinates), 19
as_sf, 3, 4, 15, 21

ca_tiles, 4
costing_models, 5

mapzen_references, 6
marina_walks, 7
marina_walks_polygons, 7
mz_autocomplete, 2, 8
mz_bbox, 3, 9, 9, 20, 21
mz_check_usage, 10
mz_contours, 11, 14, 16
mz_coordinates, 11
mz_costing, 3, 14–16
mz_costing (costing_models), 5
mz_costing_options, 3, 16
mz_costing_options (costing_models), 5
mz_countries, 6, 9, 13, 19
mz_countries (mapzen_references), 6
mz_date_time, 12, 14
mz_geocode, 3, 9, 12, 13, 14
mz_geocode_structured, 13
mz_get_host (mz_set_host), 17
mz_isochrone, 3, 5, 11, 14, 15, 16
mz_layers, 9
mz_layers (mapzen_references), 6
mz_location, 9, 14, 15
mz_place, 2, 9, 16

mz_provider, 17, 18
mz_rect, 3, 9
mz_rect (mz_bbox), 9
mz_reverse_geocode, 2, 12, 15
mz_reverse_geocode (mz_autocomplete), 8
mz_search, 2, 6, 12, 16, 18, 19
mz_search (mz_autocomplete), 8
mz_set_host, 17, 17
mz_set_search_host_geocode.earth

(mz_set_host), 17
mz_set_search_host_nyc_geosearch

(mz_set_host), 17
mz_set_tile_host_nextzen (mz_set_host),

17
mz_sources, 9
mz_sources (mapzen_references), 6
mz_structured_search, 2, 8, 9, 13, 14, 18
mz_tile_coordinates, 3, 19, 21
mz_vector_tiles, 3, 9, 19, 20, 20

oakland_public, 22

rmapzen (rmapzen-package), 2
rmapzen-package, 2

search, 9
search (mz_autocomplete), 8

23

	rmapzen-package
	as_sf
	ca_tiles
	costing_models
	mapzen_references
	marina_walks
	marina_walks_polygons
	mz_autocomplete
	mz_bbox
	mz_check_usage
	mz_contours
	mz_coordinates
	mz_date_time
	mz_geocode
	mz_geocode_structured
	mz_isochrone
	mz_location
	mz_place
	mz_provider
	mz_set_host
	mz_structured_search
	mz_tile_coordinates
	mz_vector_tiles
	oakland_public
	Index

