
Package ‘pcFactorStan’
September 13, 2023

Title Stan Models for the Paired Comparison Factor Model

Version 1.5.4

Description Provides convenience functions and pre-programmed
Stan models related to the paired comparison factor model. Its purpose
is to make fitting paired comparison data using Stan easy. This
package is described in Pritikin (2020) <doi:10.1016/j.heliyon.2020.e04821>.

License GPL (>= 3)

URL https://github.com/jpritikin/pcFactorStan

BugReports https://github.com/jpritikin/pcFactorStan/issues

Depends R (>= 3.4), methods, Rcpp (>= 0.12.0)

Imports rstan (>= 2.26.0), rstantools (>= 2.1.1), reshape2, mvtnorm,
igraph, loo, lifecycle

Suggests knitr, rmarkdown, testthat, shiny, ggplot2, covr, qgraph,
Matrix

LinkingTo Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0), RcppParallel (>=
5.0.2), StanHeaders (>= 2.26.0), BH (>= 1.66.0), rstan (>=
2.26.0)

VignetteBuilder knitr

RdMacros lifecycle

Encoding UTF-8

LazyData true

NeedsCompilation yes

RoxygenNote 7.2.3

SystemRequirements GNU make

Author Joshua N. Pritikin [aut, cre] (<https://orcid.org/0000-0002-9862-5484>),
Daniel C. Furr [ctb],
Trustees of Columbia University [cph]

Maintainer Joshua N. Pritikin <jpritikin@pobox.com>

Repository CRAN

Date/Publication 2023-09-13 17:40:02 UTC

1

https://doi.org/10.1016/j.heliyon.2020.e04821
https://github.com/jpritikin/pcFactorStan
https://github.com/jpritikin/pcFactorStan/issues
https://orcid.org/0000-0002-9862-5484

2 pcFactorStan-package

R topics documented:

pcFactorStan-package . 2
calibrateItems . 3
cmp_probs . 4
filterGraph . 5
findModel . 6
generateCovItems . 7
generateFactorItems . 8
generateItem . 10
generateSingleFactorItems . 11
itemModelExplorer . 12
normalizeData . 13
outlierTable . 14
parDistributionCustom . 15
parInterval . 16
pcStan . 17
phyActFlowPropensity . 17
prepCleanData . 18
prepData . 19
prepFactorModel . 20
prepSingleFactorModel . 21
responseCurve . 22
roundRobinGraph . 23
toLoo . 24
twoLevelGraph . 25
unfactor . 25
withoutIndex . 26

Index 27

pcFactorStan-package Stan Models for the Pairwise Comparison Factor Model

Description

pcFactorStan makes it easy to fit the paired comparison factor model using rstan.

A user will generally want to use prepData and pcStan to fit a model.

The package includes a number of Stan models (see findModel for a list) and an example dataset
phyActFlowPropensity.

After gaining some experience with the pre-defined models, we anticipate that users may write their
own Stan models and fit them with stan, for which pcStan is a wrapper.

calibrateItems 3

calibrateItems Determine the optimal scale constant for a set of items

Description

Data are passed through filterGraph and normalizeData. Then the ‘unidim_adapt’ model is fit
to each item individually. A larger varCorrection will obtain a more accurate scale, but is also
more likely to produce an intractable model. A good compromise is between 5.0 and 9.0.

Usage

calibrateItems(
df,
iter = 2000L,
chains = 4L,
varCorrection = 5,
maxAttempts = 5L,
...

)

Arguments

df a data frame with pairs of vertices given in columns pa1 and pa2, and item
response data in other columns

iter A positive integer specifying the number of iterations for each chain (including
warmup).

chains A positive integer specifying the number of Markov chains.

varCorrection A correction factor greater than or equal to 1.0

maxAttempts How many times to try re-running a model with more iterations.

... Additional options passed to stan.

Value

A data.frame (one row per item) with the following columns:

item Name of the item

iter Number of iterations per chain

divergent Number of divergent transitions observed after warmup

treedepth Number of times the treedepth was exceeded

low_bfmi Number of chains with low E-BFMI

n_eff Minimum effective number of samples across all parameters

Rhat Maximum Rhat across all parameters

scale Median marginal posterior of scale

thetaVar Median variance of theta (latent scores)

4 cmp_probs

References

Vehtari, A., Gelman, A., Simpson, D., Carpenter, B., & Bürkner, P. C. (2019). Rank-normalization,
folding, and localization: An improved R̂ for assessing convergence of MCMC. arXiv preprint
arXiv:1903.08008.

See Also

check_hmc_diagnostics

Examples

result <- calibrateItems(phyActFlowPropensity) # takes more than 5 seconds
print(result)

cmp_probs Item response function for pairwise comparisons

Description

Use itemModelExplorer to explore the item model. In this shiny app, the discrimination param-
eter does what is customary in item response models. However, it is not difficult to show that
discrimination is a function of thresholds and scale. That is, discrimination is not an independent
parameter. In paired comparison models, discrimination and measurement error are confounded.

Usage

cmp_probs(alpha, scale, pa1, pa2, thRaw)

Arguments

alpha discrimination parameter

scale scale correction factor

pa1 first latent worth

pa2 second latent worth

thRaw vector of positive thresholds

Details

The thresholds are parameterized as the difference from the previous threshold. For example,
thresholds c(0.5, 0.6) are not at the same location but are at locations c(0.5, 1.1). Thresholds are
symmetric. If there is one threshold then the model admits three possible response outcomes (e.g.
win, tie, and lose). Responses are always stored centered with zero representing a tie. Therefore,
it is necessary to add one plus the number of thresholds to response data to index into the vector
returned by cmp_probs. For example, if our response data is (-1, 0, 1) and has one threshold then
we would add 2 (1 + 1 threshold) to obtain the indices (1, 2, 3).

filterGraph 5

Value

A vector of probabilities of observing each outcome

Math

Up until version 1.4, the item response model was based on the partial credit model (Masters,
1982). In version 1.5, the graded response model is used instead (Samejima, 1969). The advantage
of the graded response model is greater independence among threshold parameters and the ability
to compute only the parts of the model that are actually needed given particular observations. The
curves predicted by both models are similar and should obtain similar results in data analyses.

References

Samejima, F. (1969). Estimation of latent ability using a response pattern of graded scores. Psy-
chometrika Monograph Supplement, 34(4, Pt. 2), 100.

Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174. doi:
10.1007/BF02296272

Examples

Returns probabilities of
c(pa1 > pa2, pa1 = pa2, pa1 < pa2)
cmp_probs(1,1,0,1,.8)

Add another threshold for a symmtric 3 point Likert scale
cmp_probs(1,1,0,.5,c(.8, 1.6))

filterGraph Filter graph to remove vertices that are not well connected

Description

Vertices not part of the largest connected component are excluded (Hopcroft & Tarjan, 1973). Ver-
tices that have fewer than minAny edges and are not connected to minDifferent or more different
vertices are excluded. For example, vertex ‘a’ connected to vertices ‘b’ and ‘c’ will be include so
long as these vertices are part of the largest connected component.

Usage

filterGraph(df, minAny = 11L, minDifferent = 2L)

Arguments

df a data frame with pairs of vertices given in columns pa1 and pa2, and item
response data in other columns

minAny the minimum number of edges

minDifferent the minimum number of vertices

6 findModel

Details

Given that minDifferent defaults to 2, if activity A was compared to at least two other activities,
B and C, then A is retained. The rationale is that, although little may be learned about A, there
may be a transitive relationship, such as B < A < C, by which the model can infer that B < C.
Therefore, per-activity sample size is less of a concern when the graph is densely connected.

A young novice asked the wise master, "Why is 11 the default minAny instead of 10?" The master
answered, "Because 11 is a prime number."

Value

The same graph excluding some vertices.

References

Hopcroft, J., & Tarjan, R. (1973). Algorithm 447: Efficient algorithms for graph manipulation.
Communications of the ACM, 16(6), 372–378. doi:10.1145/362248.362272

Examples

df <- filterGraph(phyActFlowPropensity[,c(paste0('pa',1:2),'predict')])
head(df)

findModel Given a model name, return stanmodel object

Description

This is a convenience function to help you look up the path to an appropriate model for your data.

Usage

findModel(model = NULL)

Arguments

model the name of a model

Details

There are essentially three models: ‘unidim’, ‘covariance’, and ‘factor’. ‘unidim’ analyzes a single
item. ‘covariance’ is suitable for two or more items. Once you have vetted your items with the
‘unidim’ and ‘covariance’ models, then you can try the ‘factor’ model. For each model, there is a
‘_ll’ variation. This model includes row-wise log likelihoods suitable for feeding to loo for efficient
approximate leave-one-out cross-validation (Vehtari, Gelman, & Gabry, 2017).

There is also a special model ‘unidim_adapt’. Except for this model, the other models require a scal-
ing constant. To find an appropriate scaling constant, we recommend fitting ‘unidim_adapt’ to each

generateCovItems 7

item separately and then take the median of median point estimates to set the scale. ‘unidim_adapt’
requires a varCorrection constant. In general, a varCorrection of 2.0 or 3.0 should provide optimal
results.

Since version 1.1.0, the factor model permits an arbitrary number of factors and arbitrary factor-to-
item paths. If you were using the old factor model, you’ll need to update your code to call prepSin-
gleFactorModel. Arbitrary factor model structure should be specified using prepFactorModel. The
single factor model is called ‘factor1’ and the general factor model is called ‘factor’.

Value

An instance of S4 class stanmodel that can be passed to pcStan.

References

Vehtari A, Gelman A, Gabry J (2017). "Practical Bayesian model evaluation using leave-one-out
cross-validation and WAIC." Statistics and Computing, 27, 1413-1432. doi: 10.1007/s11222-016-
9696-4

See Also

toLoo

Examples

findModel() # shows available models
findModel('unidim')

generateCovItems Generate paired comparison data with random correlations between
items

Description

If you need access to the correlation matrix used to generate the absolute latent scores then you will
need to generate them yourself. This is not difficult. See how in the example.

Usage

generateCovItems(df, numItems, th = 0.5, name, ..., scale = 1, alpha = 1)

Arguments

df a data frame with pairs of vertices given in columns pa1 and pa2, and item
response data in other columns

numItems how many items to create

th a vector of thresholds

name a vector of item names

8 generateFactorItems

... Not used. Forces remaining arguments to be specified by name.

scale a vector of scaling constants

alpha a vector of item discriminations

Value

The given data.frame df with additional columns for each item. In addition, you can obtain the
correlation matrix used to generate the latent worths from attr(df, "cor") and and latent worths
from attr(df, "worth").

Response model

See cmp_probs for details.

See Also

Other item generators: generateFactorItems(), generateItem(), generateSingleFactorItems()

Examples

library(mvtnorm)
df <- twoLevelGraph(letters[1:10], 100)
df <- generateCovItems(df, 3)

generateCovItems essentially does the same thing as:
numItems <- 3
palist <- letters[1:10]
trueCor <- cov2cor(rWishart(1, numItems, diag(numItems))[,,1])
theta <- rmvnorm(length(palist), sigma=trueCor)
dimnames(theta) <- list(palist, paste0('i', 3 + 1:numItems))
df <- generateItem(df, theta)
attr(df, "cor")

generateFactorItems Generate paired comparison data for a factor model

Description

Generate paired comparison data given a mapping from factors to items.

Usage

generateFactorItems(
df,
path,
factorScalePrior = deprecated(),
th = 0.5,

generateFactorItems 9

name,
...,
scale = 1,
alpha = 1

)

Arguments

df a data frame with pairs of vertices given in columns pa1 and pa2, and item
response data in other columns

path a named list of item names
factorScalePrior

a named numeric vector (deprecated)

th a vector of thresholds

name a vector of item names

... Not used. Forces remaining arguments to be specified by name.

scale a vector of scaling constants

alpha a vector of item discriminations

Details

For each factor, you need to specify its name and which items it predicts. The connections from
factors to items is specified by the ‘path‘ argument. Both factors and items are specified by name
(not index).

Path proportions (factor-to-item loadings) are sampled from a logistic transformed normal distri-
bution with scale 0.6. A few attempts are made to resample path proportions if any of the item
proportions sum to more than 1.0. An exception will be raised if repeated attempts fail to produce
viable proportion assignments.

Value

The given data.frame df with additional columns for each item. In addition, you can obtain path pro-
portions (factor-to-item loadings) from attr(df, "pathProp"), the factor scores from attr(df,
"score"), and latent worths from attr(df, "worth").

Response model

See cmp_probs for details.

Backward incompatibility

The function generateFactorItems was renamed to generateSingleFactorItems (version 1.1.0)
to make space for a more flexible factor model with an arbitrary number of factors and arbitrary
factor-to-item loading pattern. If you don’t need this flexibility, you can call the old function gener-
ateSingleFactorItems.

10 generateItem

References

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2018).
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play.
Science, 362(6419), 1140-1144.

See Also

To fit a factor model: prepFactorModel

Other item generators: generateCovItems(), generateItem(), generateSingleFactorItems()

Examples

df <- twoLevelGraph(letters[1:10], 100)
df <- generateFactorItems(df, list(f1=paste0('i',1:4),

f2=paste0('i',2:4)),
c(f1=0.9, f2=0.5))

head(df)
attr(df, "pathProp")
attr(df, "score")
attr(df, "worth")

generateItem Generate paired comparison data for one or more items given absolute
latent scores

Description

To add a single item, theta should be a vector of latent scores. To add multiple items at a time,
theta should be a matrix with one item in each column. Item names can be given as the colnames
of theta.

The interpretation of theta depends on the context where the data were generated. For example, in
chess, theta represents unobserved chess skill that is partially revealed by match outcomes.

The graph can be regarded as undirected, but data are generated relative to the order of vertices
within each row. Vertices do not commute. For example, a -1 for vertices ‘a’ and ‘b’ is the same as
1 for vertices ‘b’ and ‘a’.

Usage

generateItem(df, theta, th = 0.5, name, ..., scale = 1, alpha = 1)

Arguments

df a data frame with pairs of vertices given in columns pa1 and pa2, and item
response data in other columns

theta a vector or matrix of absolute latent scores. See details below.

th a vector of thresholds

generateSingleFactorItems 11

name a vector of item names

... Not used. Forces remaining arguments to be specified by name.

scale a vector of scaling constants

alpha a vector of item discriminations

Value

The given data.frame df with additional columns for each item.

Response model

See cmp_probs for details.

See Also

Other item generators: generateCovItems(), generateFactorItems(), generateSingleFactorItems()

Examples

df <- roundRobinGraph(letters[1:5], 40)
df <- generateItem(df)

generateSingleFactorItems

Generate paired comparison data with a common factor that accounts
for some proportion of the variance

Description

Imagine that there are people that play in tournaments of more than one board game. For example,
the computer player AlphaZero (Silver et al. 2018) has trained to play chess, shogi, and Go. We
can take the tournament match outcome data and find rankings among the players for each of these
games. We may also suspect that there is a latent board game skill that accounts for some proportion
of the variance in the per-board game rankings.

Usage

generateSingleFactorItems(df, prop, th = 0.5, name, ..., scale = 1, alpha = 1)

Arguments

df a data frame with pairs of vertices given in columns pa1 and pa2, and item
response data in other columns

prop the number of items or a vector of signed proportions of variance

th a vector of thresholds

name a vector of item names

12 itemModelExplorer

... Not used. Forces remaining arguments to be specified by name.

scale a vector of scaling constants

alpha a vector of item discriminations

Value

The given data.frame df with additional columns for each item.

Response model

See cmp_probs for details.

Backward incompatibility

The function generateFactorItems was renamed to generateSingleFactorItems (version 1.1.0)
to make space for a more flexible factor model with an arbitrary number of factors and arbitrary
factor-to-item loading pattern. If you don’t need this flexibility, you can call the old function gener-
ateSingleFactorItems.

References

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., ... & Lillicrap, T. (2018).
A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play.
Science, 362(6419), 1140-1144.

See Also

Other item generators: generateCovItems(), generateFactorItems(), generateItem()

Examples

df <- twoLevelGraph(letters[1:10], 100)
df <- generateSingleFactorItems(df, 3)

itemModelExplorer A Shiny app to experiment with the item response model

Description

When data dl and fitted model fit are provided, the item parameters associated with item are
loaded for inspection.

Usage

itemModelExplorer(dl = NULL, fit = NULL, item = NULL)

normalizeData 13

Arguments

dl a data list prepared by prepData

fit a stanfit object

item name of the item to visualize

Response model

See cmp_probs for details.

Examples

itemModelExplorer() # will launch a browser in RStudio

normalizeData Normalize data according to a canonical order

Description

Pairwise comparison data are not commutative. Alice beating Bob in chess is equivalent to Bob
losing to Alice. normalizeData assigns an arbitrary order to all vertices and reorders vertices
column-wise to match, flipping signs as needed.

Usage

normalizeData(df, ..., .palist = NULL, .sortRows = TRUE)

Arguments

df a data frame with pairs of vertices given in columns pa1 and pa2, and item
response data in other columns

... Not used. Forces remaining arguments to be specified by name.

.palist a character vector giving an order to use instead of the default

.sortRows logical. Using the same order, sort rows in addition to vertex pairs.

Examples

df <- data.frame(pa1=NA, pa2=NA, i1=c(1, -1))
df[1,paste0('pa',1:2)] <- c('a','b')
df[2,paste0('pa',1:2)] <- c('b','a')
normalizeData(df)

14 outlierTable

outlierTable List observations with Pareto values larger than a given threshold

Description

The function prepCleanData compresses observations into the most efficient format for evaluation
by Stan. This function maps indices of observations back to the actual observations, filtering by the
largest Pareto k values. It is assumed that data was processed by normalizeData or is in the same
order as seen by prepCleanData.

Usage

outlierTable(data, x, threshold = 0.5)

Arguments

data a data list prepared for processing by Stan

x An object created by loo

threshold threshold is the minimum k value to include

Value

A data.frame (one row per observation) with the following columns:

pa1 Name of object 1

pa2 Name of object 2

item Name of item

pick Observed response

k Associated Pareto k value

See Also

toLoo, pareto_k_ids

Examples

palist <- letters[1:10]
df <- twoLevelGraph(palist, 300)
theta <- rnorm(length(palist))
names(theta) <- palist
df <- generateItem(df, theta, th=rep(0.5, 4))

df <- filterGraph(df)
df <- normalizeData(df)
dl <- prepCleanData(df)
dl$scale <- 1.5

parDistributionCustom 15

m1 <- pcStan("unidim_ll", dl)

loo1 <- toLoo(m1, cores=1)
ot <- outlierTable(dl, loo1, threshold=.2)
df[df$pa1==ot[1,'pa1'] & df$pa2==ot[1,'pa2'], 'i1']

parDistributionCustom Produce data suitable for plotting parameter distributions

Description

Produce data suitable for plotting parameter distributions

Usage

parDistributionCustom(
fit,
pars,
nameVec,
label = withoutIndex(pars[1]),
samples = 500

)

parDistributionFor(fit, pi, samples = 500)

Arguments

fit a stanfit object

pars a vector of parameter names

nameVec a vector of explanatory parameters names

label column name for nameVec

samples number of posterior samples

pi a data.frame returned by parInterval

Value

A data.frame with the following columns:

sample Sample index

label A name from nameVec

value A single sample of the associated parameter

See Also

Other data extractor: parInterval(), responseCurve()

16 parInterval

Examples

vignette('manual', 'pcFactorStan')

parInterval Produce data suitable for plotting parameter estimates

Description

Produce data suitable for plotting parameter estimates

Usage

parInterval(fit, pars, nameVec, label = withoutIndex(pars[1]), width = 0.8)

Arguments

fit a stanfit object

pars a vector of parameter names

nameVec a vector of explanatory parameters names

label column name for nameVec

width a width in probability units for the uncertainty interval

Value

A data.frame with the following columns:

L Lower quantile

M Median

U Upper quantile

label nameVec

See Also

Other data extractor: parDistributionCustom(), responseCurve()

Examples

vignette('manual', 'pcFactorStan')

pcStan 17

pcStan Fit a paired comparison Stan model

Description

Uses findModel to find the appropriate model and then invokes sampling.

Usage

pcStan(model, data, ...)

Arguments

model the name of a model

data a data list prepared for processing by Stan

... Additional options passed to stan.

Value

A stanfit object.

An object of S4 class stanfit.

See Also

See sampling, for which this function is a wrapper, for additional options. See prepData to create a
suitable data list. See print.stanfit for ways of getting tables summarizing parameter posteriors.

calibrateItems, outlierTable

Examples

dl <- prepData(phyActFlowPropensity[,c(1,2,3)])
dl$varCorrection <- 5.0
pcStan('unidim_adapt', data=dl) # takes more than 5 seconds

phyActFlowPropensity Physical activity flow propensity

18 prepCleanData

Description

A dataset containing paired comparisons of 87 physical activities on 16 flow-related facets. Par-
ticipants submitted two activities using free-form input. These activities were substitute into item
templates. For example, the ‘predict’ item asked, “How predictable is the action?” with response
options:

• A1 is much more predictable than A2.

• A1 is somewhat more predictable than A2.

• Both offer roughly equal predictability.

• A2 is somewhat more predictable than A1.

• A2 is much more predictable than A1.

Most items were adapted from Jackson & Eklund (2002).

Usage

phyActFlowPropensity

Format

A data.frame with one row per activity comparison and items in the columns. All item responses
are between -2 and 2. Zero indicates that both activities were judged equal on the trait.

Source

A manuscript fully describing the study is in preparation. Data are made available under the Com-
munity Data License Agreement - Sharing - Version 1.0

References

Jackson, S. A., & Eklund, R. C. (2002). Assessing flow in physical activity: The flow state
scale-2 and dispositional flow scale-2. Journal of Sport and Exercise Psychology, 24(2), 133-150.
doi:10.1123/jsep.24.2.133

prepCleanData Transforms data into a form tailored for efficient evaluation by Stan

Description

Vertex names, if not already factors, are converted to factors. The number of thresholds per item is
determined by the largest absolute response value. Missing responses are filtered out. Responses
on the same pair of vertices on the same item are grouped together. Within a vertex pair and item,
responses are ordered from negative to positive.

Usage

prepCleanData(df)

https://cdla.dev/sharing-1-0/
https://cdla.dev/sharing-1-0/

prepData 19

Arguments

df a data frame with pairs of vertices given in columns pa1 and pa2, and item
response data in other columns

Details

Note: Reordering of responses is likely unless something like normalizeData has been used with
.sortRows=TRUE.

Value

a data list suitable for passing as the data argument to pcStan or stan

See Also

Other data preppers: prepData(), prepFactorModel(), prepSingleFactorModel()

Examples

df <- prepCleanData(phyActFlowPropensity)
str(df)

prepData Transforms data into a form tailored for efficient evaluation by Stan

Description

Invokes filterGraph and normalizeData. Vertex names, if not already factors, are converted to
factors. The number of thresholds per item is determined by the largest absolute response value.
Missing responses are filtered out. Responses on the same pair of vertices on the same item are
grouped together. Within a vertex pair and item, responses are ordered from negative to positive.

Usage

prepData(df)

Arguments

df a data frame with pairs of vertices given in columns pa1 and pa2, and item
response data in other columns

Value

a data list suitable for passing as the data argument to pcStan or stan

See Also

Other data preppers: prepCleanData(), prepFactorModel(), prepSingleFactorModel()

20 prepFactorModel

Examples

df <- prepData(phyActFlowPropensity)
str(df)

prepFactorModel Specify a factor model

Description

Specify a factor model with an arbitrary number of factors and arbitrary factor-to-item structure.

Usage

prepFactorModel(
data,
path,
factorScalePrior = deprecated(),
psiScalePrior = deprecated()

)

Arguments

data a data list prepared for processing by Stan

path a named list of item names
factorScalePrior

a named numeric vector (deprecated)

psiScalePrior matrix of priors for factor correlations (deprecated)

Details

For each factor, you need to specify its name and which items it predicts. The connections from
factors to items is specified by the ‘path‘ argument. Both factors and items are specified by name
(not index).

Value

a data list suitable for passing as the data argument to pcStan or stan

See Also

To simulate data from a factor model: generateFactorItems

Other factor model: prepSingleFactorModel()

Other data preppers: prepCleanData(), prepData(), prepSingleFactorModel()

prepSingleFactorModel 21

Examples

pa <- phyActFlowPropensity[,setdiff(colnames(phyActFlowPropensity),
c('goal1','feedback1'))]

dl <- prepData(pa)
dl <- prepFactorModel(dl,

list(flow=c('complex','skill','predict',
'creative', 'novelty', 'stakes',
'present', 'reward', 'chatter',
'body'),

f2=c('waiting','control','evaluated','spont'),
rc=c('novelty', 'waiting')))

str(dl)

prepSingleFactorModel Specify a single factor model

Description

Specify a single latent factor with a path to each item.

Usage

prepSingleFactorModel(data, factorScalePrior = deprecated())

Arguments

data a data list prepared for processing by Stan
factorScalePrior

a named numeric vector (deprecated)

Value

a data list suitable for passing as the data argument to pcStan or stan

See Also

Other factor model: prepFactorModel()

Other data preppers: prepCleanData(), prepData(), prepFactorModel()

Examples

dl <- prepData(phyActFlowPropensity)
dl <- prepSingleFactorModel(dl)
str(dl)

22 responseCurve

responseCurve Produce data suitable for plotting item response curves

Description

Selects samples random draws from the posterior and evaluates the item response curve on the grid
given by seq(from,to,by). All items use the same responseNames. If you have some items with
a different number of thresholds or different response names then you can call responseCurve for
each item separately and rbind the results together.

Usage

responseCurve(
dl,
fit,
responseNames,
item = dl$nameInfo$item,
samples = 100,
from = qnorm(0.1),
to = -from,
by = 0.02

)

Arguments

dl a data list prepared by prepData

fit a stanfit object

responseNames a vector of labels for the possible responses

item a vector of item names

samples number of posterior samples

from the starting latent difference value

to the ending latent difference value

by the grid increment

Value

A data.frame with the following columns:

response Which response

worthDiff Difference in worth

item Which item

sample Which sample

prob Associated probability

responseSample A grouping index for independent item response samples

roundRobinGraph 23

Response model

See cmp_probs for details.

See Also

Other data extractor: parDistributionCustom(), parInterval()

Examples

vignette('manual', 'pcFactorStan')

roundRobinGraph Create an edge list with round-robin connectivity

Description

Create an edge list with round-robin connectivity

Usage

roundRobinGraph(name, N)

Arguments

name vector of vertex names

N number of comparisons

Value

An undirected graph represented as a data frame with each row describing an edge.

See Also

Other graph generators: twoLevelGraph()

Examples

roundRobinGraph(letters[1:5], 10)

24 toLoo

toLoo Compute approximate leave-one-out (LOO) cross-validation for
Bayesian models using Pareto smoothed importance sampling (PSIS)

Description

You must use an ‘_ll’ model variation (see findModel).

Usage

toLoo(fit, ...)

Arguments

fit a stanfit object

... Additional options passed to loo.

Value

a loo object

See Also

outlierTable, loo

Examples

palist <- letters[1:10]
df <- twoLevelGraph(palist, 300)
theta <- rnorm(length(palist))
names(theta) <- palist
df <- generateItem(df, theta, th=rep(0.5, 4))

df <- filterGraph(df)
df <- normalizeData(df)
dl <- prepCleanData(df)
dl$scale <- 1.5

m1 <- pcStan("unidim_ll", dl)

loo1 <- toLoo(m1, cores=1)
print(loo1)

twoLevelGraph 25

twoLevelGraph Create an edge list with a random two level connectivity

Description

Initially, edges are added from the first vertex to all the other vertices. Thereafter, the first vertex
is drawn from a Beta(shape1, 1.0) distribution and the second vertex is drawn from a Beta(shape2,
1.0) distribution. The idea is that the edges will tend to connect a small subset of vertices from
the top of the tree to leaf vertices. These vertex connections are similar to the pairs that you might
observe in an elimination tournament. The selected vertices are sorted so it doesn’t matter whether
shape1 > shape2 or shape1 < shape2.

Usage

twoLevelGraph(name, N, shape1 = 0.8, shape2 = 0.5)

Arguments

name vector of vertex names

N number of comparisons

shape1 beta distribution parameter for first edge

shape2 beta distribution parameter for second edge

Value

An undirected graph represented as a data frame with each row describing an edge.

See Also

Other graph generators: roundRobinGraph()

Examples

twoLevelGraph(letters[1:5], 20)

unfactor Turn a factor back into a vector of integers

Description

Factors store values as integers and use a ’levels’ attribute to map the integers to labels. This
function removes the ’factor’ class and levels attribute, leaving the vector of integers.

Usage

unfactor(f)

26 withoutIndex

Arguments

f a factor

Examples

f <- factor(letters[1:3])
print(f)
print(unfactor(f))

withoutIndex Remove the array indexing from a parameter name

Description

Remove the array indexing from a parameter name

Usage

withoutIndex(name)

Arguments

name a parameter name

Value

the name without the square bracket parameter indexing

Examples

withoutIndex("foo[1,2]")

Index

∗ data extractor
parDistributionCustom, 15
parInterval, 16
responseCurve, 22

∗ data preppers
prepCleanData, 18
prepData, 19
prepFactorModel, 20
prepSingleFactorModel, 21

∗ datasets
phyActFlowPropensity, 17

∗ factor model
prepFactorModel, 20
prepSingleFactorModel, 21

∗ graph generators
roundRobinGraph, 23
twoLevelGraph, 25

∗ item generators
generateCovItems, 7
generateFactorItems, 8
generateItem, 10
generateSingleFactorItems, 11

calibrateItems, 3, 17
check_hmc_diagnostics, 4
cmp_probs, 4, 8, 9, 11–13, 23

filterGraph, 3, 5, 19
findModel, 2, 6, 17, 24

generateCovItems, 7, 10–12
generateFactorItems, 8, 8, 9, 11, 12, 20
generateItem, 8, 10, 10, 12
generateSingleFactorItems, 8–11, 11, 12

itemModelExplorer, 4, 12

loo, 14, 24

normalizeData, 3, 13, 14, 19

outlierTable, 14, 17, 24

parDistributionCustom, 15, 16, 23
parDistributionFor

(parDistributionCustom), 15
pareto_k_ids, 14
parInterval, 15, 16, 23
pcFactorStan (pcFactorStan-package), 2
pcFactorStan-package, 2
pcStan, 2, 7, 17, 19–21
phyActFlowPropensity, 2, 17
prepCleanData, 14, 18, 19–21
prepData, 2, 13, 17, 19, 19, 20–22
prepFactorModel, 7, 10, 19, 20, 21
prepSingleFactorModel, 7, 19, 20, 21
print.stanfit, 17

responseCurve, 15, 16, 22
roundRobinGraph, 23, 25

sampling, 17
stan, 2, 3, 17, 19–21
stanfit, 13, 15–17, 22, 24
stanmodel, 7

toLoo, 7, 14, 24
twoLevelGraph, 23, 25

unfactor, 25

withoutIndex, 26

27

	pcFactorStan-package
	calibrateItems
	cmp_probs
	filterGraph
	findModel
	generateCovItems
	generateFactorItems
	generateItem
	generateSingleFactorItems
	itemModelExplorer
	normalizeData
	outlierTable
	parDistributionCustom
	parInterval
	pcStan
	phyActFlowPropensity
	prepCleanData
	prepData
	prepFactorModel
	prepSingleFactorModel
	responseCurve
	roundRobinGraph
	toLoo
	twoLevelGraph
	unfactor
	withoutIndex
	Index

