Package ‘opitools’

October 14, 2022

Type Package

Title Analyzing the Opinions in a Big Text Document
Version 1.8.0

Author Monsuru Adepeju [cre, aut],

Maintainer Monsuru Adepeju <monsuur2010@yahoo. com>

Description Designed for performing impact analysis of
opinions in a digital text document (DTD). The
package allows a user to assess the extent to which a theme
or subject within a document impacts the overall opinion
expressed in the document. The package can be applied to a wide
range of opinion-based DTD, including commentaries on social media
platforms (such as 'Facebook', "Twitter' and "Youtube'),
online products reviews, and so on.
The utility of 'opitools' was originally demonstrated
in Adepeju and Jimoh (2021) <doi: 10.31235/0sf.io/c32gh> in the
assessment of COVID-19 impacts on neighbourhood policing using
Twitter data. Further examples can be found in the vignette of
the package.

Language en-US
License GPL-3

URL https://github.com/MAnalytics/opitools

BugReports https://github.com/MAnalytics/opitools/issues/1
Depends R (>=4.0.0)

Encoding UTF-8

LazyData true

Imports ggplot2, tibble, tidytext, magrittr, dplyr, stringr, purrr,
tidyr, likert, tm, wordcloud2, forcats, cowplot

RoxygenNote 7.1.1
Suggests knitr, rmarkdown, testthat, rvest, kableExtra

VignetteBuilder knitr

https://doi.org/10.31235/osf.io/c32qh
https://github.com/MAnalytics/opitools
https://github.com/MAnalytics/opitools/issues/1

NeedsCompilation no

Repository CRAN
Date/Publication 2021-07-29 15:30:02 UTC

R topics documented:

Index

covid_theme
debate dtd
opi_impact
OPI_SCOT® . . . v v v vt e ettt e
OPI_SIM i i
osd data
policing dtd
refreshment_theme
reviews_ dtd
signage_theme
tWEEES o e e e e e
word distrib
word_imp

covid_theme

covid_theme

keywords relating to COVID-19 pandemics

Description

A list of keywords relating to the COVID-19 pandemic

Usage

covid_theme

Format

A dataframe containing one variable:

* keys: list of keywords

debate_dtd 3

debate_dtd Comments on a video of a political debate.

Description

A DTD containing individual comments on a video showing the first debate between two US pres-
idential nominees (Donald Trump and Hillary Clinton) in Sept. 2016. (Credit: NBC News).

Usage

debate_dtd

Format

A dataframe containing one variable

e text: individual text records

Details

The DTD only include the comments within the first 24hrs in which the video was posted. All
individual comments in which the names of both candidates are mentioned are filtered out.

opi_impact Statistical assessment of impacts of a specified theme from a DTD.

Description

This function assesses the impacts of a theme (or subject) on the overall opinion computed for a
DTD Different themes in a DTD can be identified by the keywords used in the DTD. These key-
words (or words) can be extracted by any analytical means available to the users, e.g. word_imp
function. The keywords must be collated and supplied this function through the theme_keys argu-
ment (see below).

Usage

opi_impact(textdoc, theme_keys=NULL, metric = 1,
fun = NULL, nsim = 99, alternative="two.sided"”,
quiet=TRUE)

Arguments

textdoc

theme_keys

metric

fun

nsim

alternative

quiet

Details

opi_impact

An n x 1 list (dataframe) of individual text records, where n is the total number
of individual records.

(a list) A one-column dataframe (of any number of length) containing a list of
keywords relating to the theme or secondary subject to be investigated. The
keywords can also be defined as a vector of characters.

(an integer) Specify the metric to utilize for the calculation of opinion score.
Default: 1. See detailed documentation in the opi_score function.

A user-defined function given that parameter metric (above) is set equal to 5.
See detailed documentation in the opi_score function.

(an integer) Number of replicas (ESD) to generate. See detailed documentation
in the opi_sim function. Default: 99.

(a character) Default: "two.sided”, indicating a two-tailed test. A user can
override this default value by specifying “less” or “greater” to run the anal-
ysis as one-tailed test when the observed score is located at the lower or upper
regions of the expectation distribution, respectively. Note: for metric=1, the
alternative parameter should be set equal to "two.sided” because the opin-
ion score is bounded by both positive and negative values. For an opinion score
bounded by positive values, such as whenmetric = 2, 3 or 4, the alternative
parameter should be set as "greater", and set as "less" otherwise. If metric pa-
rameter is set equal to 5, with a user-defined opinion score function (i.e. fun not
NULL), the user is required to determine the limits of the opinion scores, and
set the alternative argument appropriately.

(TRUE or FALSE) To suppress processing messages. Default: TRUE.

This function calculates the statistical significance value (p-value) of an opinion score by compar-
ing the observed score (from the opi_score function) with the expected scores (distribution) (from
the opi_sim function). The formula is given as p = (S.beat+1)/(S.total+1), where S_total is
the total number of replicas (nsim) specified, S.beat is number of replicas in which their expected
scores are than the observed score (See further details in Adepeju and Jimoh, 2021).

Value

Details of statistical significance of impacts of a secondary subject B on the opinion concerning the

primary subject A.

References

(1) Adepeju, M. and Jimoh, F. (2021). An Analytical Framework for Measuring Inequality in the
Public Opinions on Policing — Assessing the impacts of COVID-19 Pandemic using Twitter Data.
https://doi.org/10.31235/osf.io/c32gh

opi_score 5

Examples

Application in marketing:

#'data® -> 'reviews_dtd'
theme_keys* -> 'refreshment_theme'

#RQ2a: "Do the refreshment outlets impact customers'
#opinion of the services at the Piccadilly train station?”

##texecute function

output <- opi_impact(textdoc = reviews_dtd,
theme_keys=refreshment_theme, metric = 1,
fun = NULL, nsim = 99, alternative="two.sided",
quiet=TRUE)

#To print results
print(output)

#extracting the pvalue in order to answer RQ2a
output$pvalue

opi_score Opinion score of a digital text document (DTD)

Description

Given a DTD, this function computes the overall opinion score based on the proportion of text

records classified as expressing positive, negative or a neutral sentiment. The function first trans-

forms the text document into a tidy-format dataframe, described as the observed sentiment document (OSD)
(Adepeju and Jimoh, 2021), in which each text record is assigned a sentiment class based on the
summation of all sentiment scores expressed by the words in the text record.

Usage

opi_score(textdoc, metric = 1, fun = NULL)

Arguments
textdoc An n x 1 list (dataframe) of individual text records, where n is the total number
of individual records.
metric (an integer) Specify the metric to utilize for the calculation of opinion score.

Valid values include 1, 2, ...,5. Assuming P, N and O represent positive,
negative, and neutral record sentiments, respectively, the followings are the
details of the opinion score function represented by the numerical arguments

6 opi_score

above: 1: Polarity (percentage difference) ((P - N)/(P + N))*100, (Bound: -
100%, +100%); 2: Polarity (proportional difference) ((abs(P-N) / (P+N+
0))*100, (Bound: 0, +100%); 3: Positivity (P/ (P + N+ 0))*100, (Bound: 0,
+100%); 4: Negativity (N/ (P + N+ 0))*100, (Bound: 0, +100%) (Malshe, A.
2019; Lowe et al. 2011). 5: To pass a user-defined opinion score function (also
see the fun parameter below.

fun A user-defined function given that metric parameter (above) is set equal to 5.
For example, given a defined opinion score function myfun <- function(P, N, 0){
("some tasks to do"); return(”a value")}, the input argument of fun pa-
rameter then becomes fun = myfun. Default: NULL.

Details

An opinion score is derived from all the sentiments (i.e. positive, negative (and neutral) expressed
within a text document. We deploy a lexicon-based approach (Taboada et al. 2011) using the AFINN
lexicon (Nielsen, 2011).

Value

Returns an opi_object containing details of the opinion measures from the text document.

References

(1) Adepeju, M. and Jimoh, F. (2021). An Analytical Framework for Measuring Inequality in the
Public Opinions on Policing — Assessing the impacts of COVID-19 Pandemic using Twitter Data.
https://doi.org/10.31235/osf.io/c32gh (2) Malshe, A. (2019) Data Analytics Applications. Online
book available at: https://ashgreat.github.io/analyticsAppBook/index.html. Date accessed: 15th
December 2020. (3) Taboada, M.et al. (2011). Lexicon-based methods for sentiment analysis.
Computational linguistics, 37(2), pp.267-307. (4) Lowe, W. et al. (2011). Scaling policy prefer-
ences from coded political texts. Legislative studies quarterly, 36(1), pp.123-155. (5) Razorfish
(2009) Fluent: The Razorfish Social Influence Marketing Report. Accessed: 24th February, 2021.
(6) Nielsen, F. A. (2011), “A new ANEW: Evaluation of a word list for sentiment analysis in mi-
croblogs”, Proceedings of the ESWC2011 Workshop on "Making Sense of Microposts’: Big things
come in small packages (2011) 93-98.

Examples

Use police/pandemic posts on Twitter

Experiment with a standard metric (e.g. metric 1)

score <- opi_score(textdoc = policing_dtd, metric = 1, fun = NULL)
#print result

print(score)

#Example using a user-defined opinion score -

#a demonstration with a component of SIM opinion
#Score function (by Razorfish, 2009). The opinion
#function can be expressed as:

myfun <- function(P, N, 0){
score <- (P +0 - N)/(P + 0+ N)

opi_sim 7

return(score)

}

#Run analysis
score <- opi_score(textdoc = policing_dtd, metric = 5, fun = myfun)
#print results

print(score)
opi_sim Simulates the opinion expectation distribution of a digital text docu-
ment.
Description

This function simulates the expectation distribution of the observed opinion score (computed using
the opi_score function). The resulting tidy-format dataframe can be described as the expected sentiment document (ESD
(Adepeju and Jimoh, 2021).

Usage

opi_sim(osd_data, nsim=99, metric = 1, fun = NULL, quiet=TRUE)

Arguments

osd_data A list (dataframe). An n x 3 OSD, in which n represents the length of the text
records that have been successfully classified as expressing positive, negative
or a neutral sentiment. Column 1 of the OSD is the text record ID, column 2
shows the sentiment classes (i.e. positive, negative, or neutral), while column 3
contains two variables: present and absent indicating records that include and
records that do not include any of the specified theme keywords, respectively.

nsim (an integer) Number of replicas (ESD) to simulate. Recommended values are:
99, 999, 9999, and so on. Since the run time is proportional to the number
of replicas, a moderate number of simulation, such as 999, is recommended.
Default: 99.

metric (an integer) Specify the metric to utilize for the calculation of the opinion score.
Default: 1. See details in the documentation of opi_score function. The in-
put argument here must correspond to that of opi_score function in order to
compute a statistical significance value (p-value).

fun A user-defined function given that parameter metric is set equal to 5. See details
in the documentation of the opi_score function.

quiet (TRUE or FALSE) To suppress processing messages. Default: TRUE.

Details

Employs non-parametric randomization testing approach in order to generate the expectation distri-
bution of the observed opinion scores (see details in Adepeju and Jimoh 2021).

8 osd_data

Value

Returns a list of expected opinion scores with length equal to the number of simulation (nsim)
specified.

References

(1) Adepeju, M. and Jimoh, F. (2021). An Analytical Framework for Measuring Inequality in the
Public Opinions on Policing — Assessing the impacts of COVID-19 Pandemic using Twitter Data.
https://doi.org/10.31235/osf.io/c32gh

Examples

#Prepare an osd data from the output
#of ‘opi_score* function.

score <- opi_score(textdoc = policing_dtd,
metric = 1, fun = NULL)

#extract OSD

0SD <- score$0SD

#note that ‘0SD" is shorter in length

#than ‘policing_dtd‘, meaning that some

#text records were not classified

#Bind a fictitious indicator column

osd_data2 <- data.frame(cbind(0SD,
keywords = sample(c("present”,"absent”), nrow(0SD),
replace=TRUE, c(0.35, 0.65))))

#tgenerate expected distribution
exp_score <- opi_sim(osd_data2, nsim=99, metric = 1,
fun = NULL, quiet=TRUE)
#preview the distribution
hist(exp_score)

osd_data Observed sentiment document (OSD).

Description

A tidy-format list (dataframe) showing the resulting classification of each text record into positive,

negative or neutral sentiment. The second column of the dataframe consists of labels variables

present and absent to indicate whether any of the secondary keywords exist in a text record.
Usage

osd_data

policing_dtd 9

Format
A dataframe with the following variables:
e ID: numeric id of text record with valid resultant sentiments score and classification.

* sentiment: Containing the sentiment classes.

» keywords: Indicator to show whether a secondary keyword in present or absent in a text record.

policing_dtd Twitter posts on police/policing

Description

A text document (an DTD) containing twitter posts (for an anonymous geographical location A’)
on police/policing. The DTD also includes posts that express sentiments on policing in relation to
the COVID-19 pandemic (Secondary subject B)

Usage
policing_dtd

Format

A dataframe containing one variable

« text: individual text records

refreshment_theme Keywords relating to facilities at train stations

Description

List of words relating to refreshments that can be found at the Piccadilly Train Station (Manchester)

Usage

refreshment_theme

Format

A dataframe containing one variable:

* keys: list of keywords

10 signage_theme

reviews_dtd Customer reviews from tripadvisor website

Description

A text document (an DTD) containing the customer reviews of the Piccadilly train station (Manch-
ester) downloaded from the www.tripadvisor.co.uk’. The reviews cover from July 2016 to March
2021.

Usage

reviews_dtd

Format

A dataframe containing one variable

¢ text: individual text records

signage_theme Keywords relating to signages at train stations

Description

List of signages at the Piccadilly Train Station (Manchester)

Usage

signage_theme

Format

A dataframe containing one variable:

* keys: list of keywords

tweets 11

tweets Fake Twitter posts on police/policing 2

Description

A text document (an DTD) containing twitter posts (for an anonymous geographical location 2) on
police/policing (primary subject A). The DTD includes posts that express sentiments on policing in
relation to the COVID-19 pandemic (Secondary subject B)

Usage

tweets

Format

A dataframe with the following variables:

e text: individual text records

* group: real/arbitrary groups of text records

word_distrib Words Distribution

Description

This function examines whether the distribution of word frequencies in a text document follows the
Zipf distribution (Zipf 1934). The Zipf’s distribution is considered the ideal distribution of a perfect
natural language text.

Usage

word_distrib(textdoc)

Arguments
textdoc n x 1 list (dataframe) of individual text records, where n is the number of indi-
vidual records.
Details

The Zipf’s distribution is most easily observed by plotting the data on a log-log graph, with the
axes being log(word rank order) and log(word frequency). For a perfect natural language text,
the relationship between the word rank and the word frequency should have a negative slope with
all points falling on a straight line. Any deviation from the straight line can be considered an
imperfection attributable to the texts within the document.

12 word_imp

Value

A list of word ranks and their respective frequencies, and a plot showing the relationship between
the two variables.

References

Zipf G (1936). The Psychobiology of Language. London: Routledge; 1936.

Examples

#Get an \code{n} x 1 text document
tweets_dat <- data.frame(text=tweets[,1])
plt = word_distrib(textdoc = tweets_dat)

plt

word_imp Importance of words (terms) embedded in a text document

Description

Produces a wordcloud which represents the level of importance of each word (across different text
groups) within a text document, according to a specified measure.

Usage

word_imp(textdoc, metric= "tf",
words_to_filter=NULL)

Arguments
textdoc An n x 1 list (dataframe) of individual text records, where n is the total number
of individual records. An n x code2 dataframe can also be supplied, in which
the second column represents the labels of the pre-defined groupings of the text
records, e.g. labels of geographical areas where each text record originates. For
an n x 1 dataframe, an arbitrary grouping is automatically imposed.
metric (character) The measure for determining the level of importance of each word

within the text document. Options include 'tf"' representing term frequency
and 'tf-idf' representing term frequency inverse document frequency
(Silge & Robinson, 2016).

words_to_filter
A pre-defined vector of words (terms) to filter out from the DTD prior to high-
lighting words importance. default: NULL. This parameter helps to eliminate
non-necessary words that may be too dominant in the results.

word_imp 13

Details

The function determines the most important words across various grouping of a text document. The
measure options include the tf and tf-idf. The idea of tf is to rank words in the order of their
number of occurrences across the text document, whereas tf-idf finds words that are not used very
much, but appear across many groups in the document.

Value

Graphical representation of words importance according to a specified metric. A wordcloud is
used to represent words importance if tf is specified, while facet wrapped histogram is used if
tf-idf is specified. A wordcloud is represents each word with a size corresponding to its level of
importance. In the facet wrapped histograms words are ranked in each group (histogram) in their
order of importance.

References

Silge, J. and Robinson, D. (2016) tidytext: Text mining and analysis using tidy data principles in R.
Journal of Open Source Software, 1, 37.

Examples

#words to filter out
wf <- c("police"”,"policing")
output <- word_imp(textdoc = policing_dtd, metric= "tf",

words_to_filter= wf)

Index

+ datasets
covid_theme, 2
debate_dtd, 3
osd_data, 8
policing_dtd, 9
refreshment_theme, 9
reviews_dtd, 10
signage_theme, 10
tweets, 11

covid_theme, 2
debate_dtd, 3
opi_impact, 3
opi_score, 5
opi_sim, 7
osd_data, 8
policing_dtd, 9

refreshment_theme, 9
reviews_dtd, 10

signage_theme, 10
tweets, 11

word_distrib, 11
word_imp, 12

14

	covid_theme
	debate_dtd
	opi_impact
	opi_score
	opi_sim
	osd_data
	policing_dtd
	refreshment_theme
	reviews_dtd
	signage_theme
	tweets
	word_distrib
	word_imp
	Index

