Package 'olsrr'

November 6, 2024

Type Package

Title Tools for Building OLS Regression Models

Version 0.6.1

Description Tools designed to make it easier for users, particularly beginner/intermediate R users to build ordinary least squares regression models. Includes comprehensive regression output, heteroskedasticity tests, collinearity diagnostics, residual diagnostics, measures of influence, model fit assessment and variable selection procedures.

Depends R(>= 3.3)

Imports car, ggplot2, goftest, graphics, gridExtra, nortest, stats, utils, xplorerr

Suggests covr, descriptr, knitr, rmarkdown, testthat, vdiffr

License MIT + file LICENSE

URL https://olsrr.rsquaredacademy.com/,

https://github.com/rsquaredacademy/olsrr

BugReports https://github.com/rsquaredacademy/olsrr/issues

Encoding UTF-8

LazyData true

VignetteBuilder knitr

RoxygenNote 7.3.2

Config/testthat/edition 3

NeedsCompilation no

Author Aravind Hebbali [aut, cre]

Maintainer Aravind Hebbali <hebbali.aravind@gmail.com>

Repository CRAN

Date/Publication 2024-11-06 12:50:06 UTC

Contents

ols_aic	4
ols_apc	5
ols_coll_diag	6
ols_correlations	8
ols_fpe	9
ols_hadi	10
ols_hsp	11
ols_launch_app	12
ols_leverage	12
ols_mallows_cp	13
ols_msep	
ols_plot_added_variable	
ols_plot_comp_plus_resid	16
ols_plot_cooksd_bar	17
ols_plot_cooksd_chart	18
ols_plot_dfbetas	19
ols_plot_dffits	20
ols_plot_diagnostics	22
ols_plot_hadi	22
ols_plot_obs_fit	23
ols_plot_reg_line	24
ols_plot_resid_box	24
ols_plot_resid_fit	
ols_plot_resid_fit_spread	26
ols_plot_resid_hist	27
ols_plot_resid_lev	27
ols_plot_resid_pot	28
ols_plot_resid_qq	29
ols_plot_resid_regressor	29
ols_plot_resid_stand	30
ols_plot_resid_stud	31
ols_plot_resid_stud_fit	32
ols_plot_response	33
ols_pred_rsq	33
ols_prep_avplot_data	34
ols_prep_cdplot_data	34
ols_prep_cdplot_outliers	35
ols_prep_dfbeta_data	35
ols_prep_dfbeta_outliers	36
ols_prep_dsrvf_data	37
ols_prep_outlier_obs	37
ols_prep_regress_x	38
ols_prep_regress_y	38
ols_prep_rfsplot_fmdata	39
ols_prep_rstudlev_data	39
ols_prep_rvsrplot_data	40

ols_prep_srchart_data
ols_prep_srplot_data 41
ols_press
ols_pure_error_anova
ols_regress
ols_sbc
ols_sbic
ols_step_all_possible
ols_step_all_possible_betas
ols_step_backward_adj_r2 50
ols_step_backward_aic
ols_step_backward_p
ols_step_backward_r2 56
ols_step_backward_sbc
ols_step_backward_sbic
ols_step_best_subset
ols_step_both_adj_r2
ols_step_both_aic
ols_step_both_p
ols_step_both_r2 69
ols_step_both_sbc
ols_step_both_sbic
ols_step_forward_adj_r2 75
ols_step_forward_aic
ols_step_forward_p
ols_step_forward_r2 80
ols_step_forward_sbc
ols_step_forward_sbic
ols_test_bartlett
ols_test_breusch_pagan
ols_test_correlation
ols_test_f
ols_test_normality
ols_test_outlier
ols_test_score
rvsr_plot_shiny
stepdata
surgical

Index

ols_aic

Description

Akaike information criterion for model selection.

Usage

```
ols_aic(model, method = c("R", "STATA", "SAS"), corrected = FALSE)
```

Arguments

model	An object of class 1m.
method	A character vector; specify the method to compute AIC. Valid options include R, STATA and SAS.
corrected	Logical; if TRUE, returns corrected akaike information criterion for SAS method.

Details

AIC provides a means for model selection. Given a collection of models for the data, AIC estimates the quality of each model, relative to each of the other models. R and STATA use loglikelihood to compute AIC. SAS uses residual sum of squares. Below is the formula in each case:

R & STATA

$$AIC = -2(loglikelihood) + 2p$$

SAS

AIC = n * ln(SSE/n) + 2p

corrected

$$AIC = n * ln(SSE/n) + ((n * (n + p))/(n - p - 2))$$

where n is the sample size and p is the number of model parameters including intercept.

Value

Akaike information criterion of the model.

References

Akaike, H. (1969). "Fitting Autoregressive Models for Prediction." Annals of the Institute of Statistical Mathematics 21:243–247.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

ols_apc

See Also

```
Other model selection criteria: ols_apc(), ols_fpe(), ols_hsp(), ols_mallows_cp(), ols_msep(),
ols_sbc(), ols_sbic()
```

Examples

```
# using R computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_aic(model)
# using STATA computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_aic(model, method = 'STATA')
# using SAS computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_aic(model, method = 'SAS')
# corrected akaike information criterion
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_aic(model, method = 'SAS')
```

ols_apc

Amemiya's prediction criterion

Description

Amemiya's prediction error.

Usage

ols_apc(model)

Arguments

model An object of class 1m.

Details

Amemiya's Prediction Criterion penalizes R-squared more heavily than does adjusted R-squared for each addition degree of freedom used on the right-hand-side of the equation. The lower the better for this criterion.

$$((n+p)/(n-p))(1-(R^2))$$

where *n* is the sample size, *p* is the number of predictors including the intercept and R^2 is the coefficient of determination.

Amemiya's prediction error of the model.

References

Amemiya, T. (1976). Selection of Regressors. Technical Report 225, Stanford University, Stanford, CA.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

See Also

Other model selection criteria: ols_aic(), ols_fpe(), ols_hsp(), ols_mallows_cp(), ols_msep(), ols_sbc(), ols_sbic()

Examples

model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_apc(model)</pre>

ols_coll_diag Collinearity diagnostics

Description

Variance inflation factor, tolerance, eigenvalues and condition indices.

Usage

```
ols_coll_diag(model)
```

```
ols_vif_tol(model)
```

ols_eigen_cindex(model)

Arguments

model An object of class 1m.

Details

Collinearity implies two variables are near perfect linear combinations of one another. Multicollinearity involves more than two variables. In the presence of multicollinearity, regression estimates are unstable and have high standard errors.

Tolerance

Percent of variance in the predictor that cannot be accounted for by other predictors.

Steps to calculate tolerance:

- Regress the kth predictor on rest of the predictors in the model.
- Compute R^2 the coefficient of determination from the regression in the above step.
- $Tolerance = 1 R^2$

Variance Inflation Factor

Variance inflation factors measure the inflation in the variances of the parameter estimates due to collinearities that exist among the predictors. It is a measure of how much the variance of the estimated regression coefficient β_k is inflated by the existence of correlation among the predictor variables in the model. A VIF of 1 means that there is no correlation among the kth predictor and the remaining predictor variables, and hence the variance of β_k is not inflated at all. The general rule of thumb is that VIFs exceeding 4 warrant further investigation, while VIFs exceeding 10 are signs of serious multicollinearity requiring correction.

Steps to calculate VIF:

- Regress the kth predictor on rest of the predictors in the model.
- Compute R^2 the coefficient of determination from the regression in the above step.
- $Tolerance = 1/1 R^2 = 1/Tolerance$

Condition Index

Most multivariate statistical approaches involve decomposing a correlation matrix into linear combinations of variables. The linear combinations are chosen so that the first combination has the largest possible variance (subject to some restrictions), the second combination has the next largest variance, subject to being uncorrelated with the first, the third has the largest possible variance, subject to being uncorrelated with the first and second, and so forth. The variance of each of these linear combinations is called an eigenvalue. Collinearity is spotted by finding 2 or more variables that have large proportions of variance (.50 or more) that correspond to large condition indices. A rule of thumb is to label as large those condition indices in the range of 30 or larger.

Value

ols_coll_diag returns an object of class "ols_coll_diag". An object of class "ols_coll_diag" is a list containing the following components:

vif_t	tolerance and variance inflation factors
eig_cindex	eigen values and condition index

References

Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. New York: John Wiley & Sons.

Examples

```
# model
model <- lm(mpg ~ disp + hp + wt + drat, data = mtcars)
# vif and tolerance
ols_vif_tol(model)
```

eigenvalues and condition indices
ols_eigen_cindex(model)

collinearity diagnostics
ols_coll_diag(model)

ols_correlations Part and partial correlations

Description

Zero-order, part and partial correlations.

Usage

ols_correlations(model)

Arguments

model An object of class 1m.

Details

ols_correlations() returns the relative importance of independent variables in determining response variable. How much each variable uniquely contributes to rsquare over and above that which can be accounted for by the other predictors? Zero order correlation is the Pearson correlation coefficient between the dependent variable and the independent variables. Part correlations indicates how much rsquare will decrease if that variable is removed from the model and partial correlations indicates amount of variance in response variable, which is not estimated by the other independent variables in the model, but is estimated by the specific variable.

Value

ols_correlations returns an object of class "ols_correlations". An object of class "ols_correlations" is a data frame containing the following components:

Zero-order	zero order correlations
Partial	partial correlations
Part	part correlations

References

Morrison, D. F. 1976. Multivariate statistical methods. New York: McGraw-Hill.

ols_fpe

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_correlations(model)</pre>
```

ols_fpe

Final prediction error

Description

Estimated mean square error of prediction.

Usage

ols_fpe(model)

Arguments

model An object of class 1m.

Details

Computes the estimated mean square error of prediction for each model selected assuming that the values of the regressors are fixed and that the model is correct.

MSE((n+p)/n)

where MSE = SSE/(n-p), n is the sample size and p is the number of predictors including the intercept

Value

Final prediction error of the model.

References

Akaike, H. (1969). "Fitting Autoregressive Models for Prediction." Annals of the Institute of Statistical Mathematics 21:243–247.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

See Also

Other model selection criteria: ols_aic(), ols_apc(), ols_hsp(), ols_mallows_cp(), ols_msep(), ols_sbc(), ols_sbic()

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_fpe(model)</pre>
```

ols_hadi

Hadi's influence measure

Description

Measure of influence based on the fact that influential observations in either the response variable or in the predictors or both.

Usage

ols_hadi(model)

Arguments

model An object of class 1m.

Value

Hadi's measure of the model.

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

See Also

Other influence measures: ols_leverage(), ols_pred_rsq(), ols_press()

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_hadi(model)</pre>
```

ols_hsp

Description

Average prediction mean squared error.

Usage

ols_hsp(model)

Arguments

model An object of class 1m.

Details

Hocking's Sp criterion is an adjustment of the residual sum of Squares. Minimize this criterion.

$$MSE/(n-p-1)$$

where MSE = SSE/(n - p), n is the sample size and p is the number of predictors including the intercept

Value

Hocking's Sp of the model.

References

Hocking, R. R. (1976). "The Analysis and Selection of Variables in a Linear Regression." Biometrics 32:1–50.

See Also

Other model selection criteria: ols_aic(), ols_apc(), ols_fpe(), ols_mallows_cp(), ols_msep(), ols_sbc(), ols_sbic()

Examples

model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_hsp(model)</pre>

ols_launch_app Launch shiny app

Description

Launches shiny app for interactive model building.

Usage

ols_launch_app()

Examples

Not run:
ols_launch_app()

End(Not run)

ols_leverage Leverage

Description

The leverage of an observation is based on how much the observation's value on the predictor variable differs from the mean of the predictor variable. The greater an observation's leverage, the more potential it has to be an influential observation.

Usage

ols_leverage(model)

Arguments

model An object of class 1m.

Value

Leverage of the model.

References

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

See Also

Other influence measures: ols_hadi(), ols_pred_rsq(), ols_press()

ols_mallows_cp

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_leverage(model)</pre>
```

ols_mallows_cp Mallow's Cp

Description

Mallow's Cp.

Usage

ols_mallows_cp(model, fullmodel)

Arguments

model	An object of class 1m.
fullmodel	An object of class 1m.

Details

Mallows' Cp statistic estimates the size of the bias that is introduced into the predicted responses by having an underspecified model. Use Mallows' Cp to choose between multiple regression models. Look for models where Mallows' Cp is small and close to the number of predictors in the model plus the constant (p).

Value

Mallow's Cp of the model.

References

Hocking, R. R. (1976). "The Analysis and Selection of Variables in a Linear Regression." Biometrics 32:1–50.

Mallows, C. L. (1973). "Some Comments on Cp." Technometrics 15:661-675.

See Also

Other model selection criteria: ols_aic(), ols_apc(), ols_fpe(), ols_hsp(), ols_msep(), ols_sbc(), ols_sbic()

Examples

```
full_model <- lm(mpg ~ ., data = mtcars)
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_mallows_cp(model, full_model)</pre>
```

ols_msep

Description

Estimated error of prediction, assuming multivariate normality.

Usage

```
ols_msep(model)
```

Arguments

model An object of class 1m.

Details

Computes the estimated mean square error of prediction assuming that both independent and dependent variables are multivariate normal.

$$MSE(n+1)(n-2)/n(n-p-1)$$

where MSE = SSE/(n - p), n is the sample size and p is the number of predictors including the intercept

Value

Estimated error of prediction of the model.

References

Stein, C. (1960). "Multiple Regression." In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, edited by I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, and H. B. Mann, 264–305. Stanford, CA: Stanford University Press.

Darlington, R. B. (1968). "Multiple Regression in Psychological Research and Practice." Psychological Bulletin 69:161–182.

See Also

Other model selection criteria: ols_aic(), ols_apc(), ols_fpe(), ols_hsp(), ols_mallows_cp(), ols_sbc(), ols_sbic()

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_msep(model)</pre>
```

ols_plot_added_variable

Added variable plots

Description

Added variable plot provides information about the marginal importance of a predictor variable, given the other predictor variables already in the model. It shows the marginal importance of the variable in reducing the residual variability.

Usage

```
ols_plot_added_variable(model, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Details

The added variable plot was introduced by Mosteller and Tukey (1977). It enables us to visualize the regression coefficient of a new variable being considered to be included in a model. The plot can be constructed for each predictor variable.

Let us assume we want to test the effect of adding/removing variable X from a model. Let the response variable of the model be Y

Steps to construct an added variable plot:

- Regress Y on all variables other than X and store the residuals (Y residuals).
- Regress *X* on all the other variables included in the model (*X* residuals).
- Construct a scatter plot of *Y* residuals and *X* residuals.

What do the *Y* and *X* residuals represent? The *Y* residuals represent the part of **Y** not explained by all the variables other than X. The *X* residuals represent the part of **X** not explained by other variables. The slope of the line fitted to the points in the added variable plot is equal to the regression coefficient when **Y** is regressed on all variables including **X**.

A strong linear relationship in the added variable plot indicates the increased importance of the contribution of X to the model already containing the other predictors.

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

See Also

```
ols_plot_resid_regressor(), ols_plot_comp_plus_resid()
```

Examples

model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_added_variable(model)</pre>

ols_plot_comp_plus_resid

Residual plus component plot

Description

The residual plus component plot indicates whether any non-linearity is present in the relationship between response and predictor variables and can suggest possible transformations for linearizing the data.

Usage

ols_plot_comp_plus_resid(model, print_plot = TRUE)

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

See Also

ols_plot_added_variable(), ols_plot_resid_regressor()

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_comp_plus_resid(model)</pre>
```

Description

Bar Plot of cook's distance to detect observations that strongly influence fitted values of the model.

Usage

```
ols_plot_cooksd_bar(model, type = 1, threshold = NULL, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
type	An integer between 1 and 5 selecting one of the 5 methods for computing the threshold.
threshold	Threshold for detecting outliers.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Details

Cook's distance was introduced by American statistician R Dennis Cook in 1977. It is used to identify influential data points. It depends on both the residual and leverage i.e it takes it account both the x value and y value of the observation.

Steps to compute Cook's distance:

- Delete observations one at a time.
- Refit the regression model on remaining n-1 observations
- examine how much all of the fitted values change when the ith observation is deleted.

A data point having a large cook's d indicates that the data point strongly influences the fitted values. There are several methods/formulas to compute the threshold used for detecting or classifying observations as outliers and we list them below.

- Type 1:4/n
- **Type 2** : 4 / (n k 1)
- **Type 3** : ~1
- **Type 4** : 1 / (n k 1)
- Type 5 : 3 * mean(Vector of cook's distance values)

where **n** and **k** stand for

- **n**: Number of observations
- k: Number of predictors

Value

ols_plot_cooksd_bar returns a list containing the following components:

outliers	a data.frame with observation number and cooks distance that exceed threshold
threshold	threshold for classifying an observation as an outlier

See Also

ols_plot_cooksd_chart()

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_cooksd_bar(model)
ols_plot_cooksd_bar(model, type = 4)
ols_plot_cooksd_bar(model, threshold = 0.2)</pre>
```

ols_plot_cooksd_chart Cooks'D chart

Description

Chart of cook's distance to detect observations that strongly influence fitted values of the model.

Usage

```
ols_plot_cooksd_chart(model, type = 1, threshold = NULL, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
type	An integer between 1 and 5 selecting one of the 6 methods for computing the threshold.
threshold	Threshold for detecting outliers.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Details

Cook's distance was introduced by American statistician R Dennis Cook in 1977. It is used to identify influential data points. It depends on both the residual and leverage i.e it takes it account both the x value and y value of the observation.

Steps to compute Cook's distance:

- Delete observations one at a time.
- Refit the regression model on remaining n-1 observations

ols_plot_dfbetas

• exmine how much all of the fitted values change when the ith observation is deleted.

A data point having a large cook's d indicates that the data point strongly influences the fitted values. There are several methods/formulas to compute the threshold used for detecting or classifying observations as outliers and we list them below.

- **Type 1** : 4 / n
- **Type 2** : 4 / (n k 1)
- **Type 3** : ~1
- **Type 4** : 1 / (n k 1)
- **Type 5** : 3 * mean(Vector of cook's distance values)

where **n** and **k** stand for

- n: Number of observations
- k: Number of predictors

Value

ols_plot_cooksd_chart returns a list containing the following components:

outliers	a data.frame with observation number and cooks distance that exceed threshold
threshold	threshold for classifying an observation as an outlier

See Also

ols_plot_cooksd_bar()

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_cooksd_chart(model)
ols_plot_cooksd_chart(model, type = 4)
ols_plot_cooksd_chart(model, threshold = 0.2)</pre>
```

ols_plot_dfbetas DFBETAs panel

Description

Panel of plots to detect influential observations using DFBETAs.

Usage

```
ols_plot_dfbetas(model, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Details

DFBETA measures the difference in each parameter estimate with and without the influential point. There is a DFBETA for each data point i.e if there are n observations and k variables, there will be n * k DFBETAs. In general, large values of DFBETAS indicate observations that are influential in estimating a given parameter. Belsley, Kuh, and Welsch recommend 2 as a general cutoff value to indicate influential observations and $2/\sqrt{(n)}$ as a size-adjusted cutoff.

Value

list; ols_plot_dfbetas returns a list of data.frame (for intercept and each predictor) with the observation number and DFBETA of observations that exceed the threshold for classifying an observation as an outlier/influential observation.

References

Belsley, David A.; Kuh, Edwin; Welsh, Roy E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity.

Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons. pp. ISBN 0-471-05856-4.

See Also

ols_plot_dffits()

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_dfbetas(model)</pre>
```

ols_plot_dffits DFFITS plot

Description

Plot for detecting influential observations using DFFITs.

Usage

```
ols_plot_dffits(model, size_adj_threshold = TRUE, print_plot = TRUE)
```

ols_plot_dffits

Arguments

model	An object of class 1m.
size_adj_threshold	
	logical; if TRUE (the default), size adjusted threshold is used to determine influential observations.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Details

DFFIT - difference in fits, is used to identify influential data points. It quantifies the number of standard deviations that the fitted value changes when the ith data point is omitted.

Steps to compute DFFITs:

- Delete observations one at a time.
- Refit the regression model on remaining n-1 observations
- examine how much all of the fitted values change when the ith observation is deleted.

An observation is deemed influential if the absolute value of its DFFITS value is greater than:

$$2\sqrt{((p+1)/(n-p-1))}$$

A size-adjusted cutoff recommended by Belsley, Kuh, and Welsch is

$$2\sqrt{(p/n)}$$

and is used by default in olsrr.

where n is the number of observations and p is the number of predictors including intercept.

Value

ols_plot_dffits returns a list containing the following components:

outliers	a data.frame with observation number and DFFITs that exceed threshold
threshold	threshold for classifying an observation as an outlier

References

Belsley, David A.; Kuh, Edwin; Welsh, Roy E. (1980). Regression Diagnostics: Identifying Influential Data and Sources of Collinearity.

Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons. ISBN 0-471-05856-4.

See Also

ols_plot_dfbetas()

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_dffits(model)
ols_plot_dffits(model, size_adj_threshold = FALSE)</pre>
```

ols_plot_diagnostics Diagnostics panel

Description

Panel of plots for regression diagnostics.

Usage

```
ols_plot_diagnostics(model, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Examples

model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_diagnostics(model)</pre>

ols_plot_hadi Hadi plot

Description

Hadi's measure of influence based on the fact that influential observations can be present in either the response variable or in the predictors or both. The plot is used to detect influential observations based on Hadi's measure.

Usage

ols_plot_hadi(model, print_plot = TRUE)

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

ols_plot_obs_fit

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

See Also

ols_plot_resid_pot()

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_hadi(model)</pre>
```

ols_plot_obs_fit Observed vs fitted values plot

Description

Plot of observed vs fitted values to assess the fit of the model.

Usage

```
ols_plot_obs_fit(model, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Details

Ideally, all your points should be close to a regressed diagonal line. Draw such a diagonal line within your graph and check out where the points lie. If your model had a high R Square, all the points would be close to this diagonal line. The lower the R Square, the weaker the Goodness of fit of your model, the more foggy or dispersed your points are from this diagonal line.

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_obs_fit(model)</pre>
```

ols_plot_reg_line Simple linear regression line

Description

Plot to demonstrate that the regression line always passes through mean of the response and predictor variables.

Usage

```
ols_plot_reg_line(response, predictor, print_plot = TRUE)
```

Arguments

response	Response variable.
predictor	Predictor variable.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Examples

ols_plot_reg_line(mtcars\$mpg, mtcars\$disp)

ols_plot_resid_box Residual box plot

Description

Box plot of residuals to examine if residuals are normally distributed.

Usage

```
ols_plot_resid_box(model, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

See Also

Other residual diagnostics: ols_plot_resid_fit(), ols_plot_resid_hist(), ols_plot_resid_qq(), ols_test_correlation(), ols_test_normality()

ols_plot_resid_fit

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_box(model)</pre>
```

ols_plot_resid_fit Residual vs fitted plot

Description

Scatter plot of residuals on the y axis and fitted values on the x axis to detect non-linearity, unequal error variances, and outliers.

Usage

ols_plot_resid_fit(model, print_plot = TRUE)

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Details

Characteristics of a well behaved residual vs fitted plot:

- The residuals spread randomly around the 0 line indicating that the relationship is linear.
- The residuals form an approximate horizontal band around the 0 line indicating homogeneity of error variance.
- No one residual is visibly away from the random pattern of the residuals indicating that there are no outliers.

See Also

```
Other residual diagnostics: ols_plot_resid_box(), ols_plot_resid_hist(), ols_plot_resid_qq(),
ols_test_correlation(), ols_test_normality()
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_fit(model)</pre>
```

```
ols_plot_resid_fit_spread
```

Residual fit spread plot

Description

Plot to detect non-linearity, influential observations and outliers.

Usage

```
ols_plot_resid_fit_spread(model, print_plot = TRUE)
ols_plot_fm(model, print_plot = TRUE)
```

```
ols_plot_resid_spread(model, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Details

Consists of side-by-side quantile plots of the centered fit and the residuals. It shows how much variation in the data is explained by the fit and how much remains in the residuals. For inappropriate models, the spread of the residuals in such a plot is often greater than the spread of the centered fit.

References

Cleveland, W. S. (1993). Visualizing Data. Summit, NJ: Hobart Press.

Examples

```
# model
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
# residual fit spread plot
ols_plot_resid_fit_spread(model)
# fit mean plot
ols_plot_fm(model)
# residual spread plot
ols_plot_resid_spread(model)
```

Description

Histogram of residuals for detecting violation of normality assumption.

Usage

```
ols_plot_resid_hist(model, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

See Also

```
Other residual diagnostics: ols_plot_resid_box(), ols_plot_resid_fit(), ols_plot_resid_qq(),
ols_test_correlation(), ols_test_normality()
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_hist(model)</pre>
```

ols_plot_resid_lev Studentized residuals vs leverage plot

Description

Graph for detecting outliers and/or observations with high leverage.

Usage

```
ols_plot_resid_lev(model, threshold = NULL, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
threshold	Threshold for detecting outliers. Default is 2.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

See Also

```
ols_plot_resid_stud_fit(), ols_plot_resid_lev()
```

Examples

```
model <- lm(read ~ write + math + science, data = hsb)
ols_plot_resid_lev(model)
ols_plot_resid_lev(model, threshold = 3)</pre>
```

ols_plot_resid_pot Potential residual plot

Description

Plot to aid in classifying unusual observations as high-leverage points, outliers, or a combination of both.

Usage

```
ols_plot_resid_pot(model, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

See Also

```
ols_plot_hadi()
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_pot(model)</pre>
```

ols_plot_resid_qq Residual QQ plot

Description

Graph for detecting violation of normality assumption.

Usage

```
ols_plot_resid_qq(model, print_plot = TRUE)
```

Arguments

modelAn object of class 1m.print_plotlogical; if TRUE, prints the plot else returns a plot object.

See Also

```
Other residual diagnostics: ols_plot_resid_box(), ols_plot_resid_fit(), ols_plot_resid_hist(), ols_test_correlation(), ols_test_normality()
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_qq(model)</pre>
```

ols_plot_resid_regressor

Residual vs regressor plot

Description

Graph to determine whether we should add a new predictor to the model already containing other predictors. The residuals from the model is regressed on the new predictor and if the plot shows non random pattern, you should consider adding the new predictor to the model.

Usage

ols_plot_resid_regressor(model, variable, print_plot = TRUE)

Arguments

model	An object of class 1m.
variable	New predictor to be added to the model.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

See Also

```
ols_plot_added_variable(), ols_plot_comp_plus_resid()
```

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_regressor(model, 'drat')</pre>
```

ols_plot_resid_stand Standardized residual chart

Description

Chart for identifying outliers.

Usage

```
ols_plot_resid_stand(model, threshold = NULL, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
threshold	Threshold for detecting outliers. Default is 2.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Details

Standardized residual (internally studentized) is the residual divided by estimated standard deviation.

Value

ols_plot_resid_stand returns a list containing the following components:

outliers a data.frame with observation number and standardized resiudals that exceed threshold

for classifying an observation as an outlier

threshold threshold for classifying an observation as an outlier

See Also

ols_plot_resid_stud()

ols_plot_resid_stud

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_stand(model)
ols_plot_resid_stand(model, threshold = 3)</pre>
```

ols_plot_resid_stud Studentized residual plot

Description

Graph for identifying outliers.

Usage

```
ols_plot_resid_stud(model, threshold = NULL, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
threshold	Threshold for detecting outliers. Default is 3.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Details

Studentized deleted residuals (or externally studentized residuals) is the deleted residual divided by its estimated standard deviation. Studentized residuals are going to be more effective for detecting outlying Y observations than standardized residuals. If an observation has an externally studentized residual that is larger than 3 (in absolute value) we can call it an outlier.

Value

ols_plot_resid_stud returns a list containing the following components:

outliers a data.frame with observation number and studentized residuals that exceed threshold

for classifying an observation as an outlier

threshold threshold for classifying an observation as an outlier

See Also

ols_plot_resid_stand()

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_resid_stud(model)
ols_plot_resid_stud(model, threshold = 2)</pre>
```

ols_plot_resid_stud_fit

```
Deleted studentized residual vs fitted values plot
```

Description

Plot for detecting violation of assumptions about residuals such as non-linearity, constant variances and outliers. It can also be used to examine model fit.

Usage

```
ols_plot_resid_stud_fit(model, threshold = NULL, print_plot = TRUE)
```

Arguments

model	An object of class 1m.
threshold	Threshold for detecting outliers. Default is 2.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Details

Studentized deleted residuals (or externally studentized residuals) is the deleted residual divided by its estimated standard deviation. Studentized residuals are going to be more effective for detecting outlying Y observations than standardized residuals. If an observation has an externally studentized residual that is larger than 2 (in absolute value) we can call it an outlier.

Value

ols_plot_resid_stud_fit returns a list containing the following components:

outliers	a data.frame with observation number, fitted values and deleted studentized residuals that exceed the threshold for classifying observations as outliers/influential observations
threshold	threshold for classifying an observation as an outlier/influential observation

See Also

ols_plot_resid_lev(), ols_plot_resid_stand(), ols_plot_resid_stud()

ols_plot_response

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_plot_resid_stud_fit(model)
ols_plot_resid_stud_fit(model, threshold = 3)</pre>
```

ols_plot_response Response variable profile

Description

Panel of plots to explore and visualize the response variable.

Usage

ols_plot_response(model, print_plot = TRUE)

Arguments

model	An object of class 1m.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Examples

model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_plot_response(model)</pre>

ols_pred_rsq Predicted rsquare

Description

Use predicted rsquared to determine how well the model predicts responses for new observations. Larger values of predicted R2 indicate models of greater predictive ability.

Usage

ols_pred_rsq(model)

Arguments

model An object of class 1m.

Value

Predicted rsquare of the model.

See Also

Other influence measures: ols_hadi(), ols_leverage(), ols_press()

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_pred_rsq(model)</pre>
```

Description

Data for generating the added variable plots.

Usage

ols_prep_avplot_data(model)

Arguments

model

An object of class 1m.

Examples

model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_prep_avplot_data(model)</pre>

ols_prep_cdplot_data Cooks' D plot data

Description

Prepare data for cook's d bar plot.

Usage

ols_prep_cdplot_data(model, type = 1)

Arguments

model	An object of class 1m.
type	An integer between 1 and 5 selecting one of the 6 methods for computing the threshold.

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_prep_cdplot_data(model)</pre>
```

ols_prep_cdplot_outliers

Cooks' d outlier data

Description

Outlier data for cook's d bar plot.

Usage

ols_prep_cdplot_outliers(k)

Arguments

k Cooks' d bar plot data.

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
k <- ols_prep_cdplot_data(model)
ols_prep_cdplot_outliers(k)</pre>
```

ols_prep_dfbeta_data DFBETAs plot data

Description

Prepares the data for dfbetas plot.

Usage

ols_prep_dfbeta_data(d, threshold)

Arguments

d	A tibble or data.frame with dfbetas.
threshold	The threshold for outliers.

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
dfb <- dfbetas(model)
n <- nrow(dfb)
threshold <- 2 / sqrt(n)
dbetas <- dfb[, 1]
df_data <- data.frame(obs = seq_len(n), dbetas = dbetas)
ols_prep_dfbeta_data(df_data, threshold)</pre>
```

Description

Data for identifying outliers in dfbetas plot.

Usage

ols_prep_dfbeta_outliers(d)

Arguments

d A tibble or data.frame.

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
dfb <- dfbetas(model)
n <- nrow(dfb)
threshold <- 2 / sqrt(n)
dbetas <- dfb[, 1]
df_data <- data.frame(obs = seq_len(n), dbetas = dbetas)
d <- ols_prep_dfbeta_data(df_data, threshold)
ols_prep_dfbeta_outliers(d)</pre>
```
Description

Generates data for deleted studentized residual vs fitted plot.

Usage

```
ols_prep_dsrvf_data(model, threshold = NULL)
```

Arguments

model	An object of class 1m.
threshold	Threshold for detecting outliers. Default is 2.

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_prep_dsrvf_data(model)
ols_prep_dsrvf_data(model, threshold = 3)</pre>
```

ols_prep_outlier_obs Cooks' D outlier observations

Description

Identify outliers in cook's d plot.

Usage

ols_prep_outlier_obs(k)

Arguments k

Cooks' d bar plot data.

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
k <- ols_prep_cdplot_data(model)
ols_prep_outlier_obs(k)</pre>
```

ols_prep_regress_x Regress predictor on other predictors

Description

Regress a predictor in the model on all the other predictors.

Usage

```
ols_prep_regress_x(data, i)
```

Arguments

data	A data.frame.
i	A numeric vector (indicates the predictor in the model).

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
data <- ols_prep_avplot_data(model)
ols_prep_regress_x(data, 1)</pre>
```

ols_prep_regress_y Regress y on other predictors

Description

Regress y on all the predictors except the ith predictor.

Usage

ols_prep_regress_y(data, i)

Arguments

data	A data.frame.
i	A numeric vector (indicates the predictor in the model).

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
data <- ols_prep_avplot_data(model)
ols_prep_regress_y(data, 1)</pre>
```

ols_prep_rfsplot_fmdata

Residual fit spread plot data

Description

Data for generating residual fit spread plot.

Usage

ols_prep_rfsplot_fmdata(model)

ols_prep_rfsplot_rsdata(model)

Arguments

model An object of class 1m.

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_prep_rfsplot_fmdata(model)
ols_prep_rfsplot_rsdata(model)</pre>
```

ols_prep_rstudlev_data

Studentized residual vs leverage plot data

Description

Generates data for studentized resiudual vs leverage plot.

Usage

```
ols_prep_rstudlev_data(model, threshold = NULL)
```

Arguments

model	An object of class 1m.
threshold	Threshold for detecting outliers. Default is 2.

Examples

```
model <- lm(read ~ write + math + science, data = hsb)
ols_prep_rstudlev_data(model)
ols_prep_rstudlev_data(model, threshold = 3)</pre>
```

ols_prep_rvsrplot_data

Residual vs regressor plot data

Description

Data for generating residual vs regressor plot.

Usage

ols_prep_rvsrplot_data(model)

Arguments

model

An object of class 1m.

Examples

model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_prep_rvsrplot_data(model)</pre>

ols_prep_srchart_data Standardized residual chart data

Description

Generates data for standardized residual chart.

Usage

ols_prep_srchart_data(model, threshold = NULL)

Arguments

model	An object of class 1m.
threshold	Threshold for detecting outliers. Default is 2.

ols_prep_srplot_data

Examples

```
model <- lm(read ~ write + math + science, data = hsb)
ols_prep_srchart_data(model)
ols_prep_srchart_data(model, threshold = 3)</pre>
```

ols_prep_srplot_data Studentized residual plot data

Description

Generates data for studentized residual plot.

Usage

```
ols_prep_srplot_data(model, threshold = NULL)
```

Arguments

model	An object of class 1m.
threshold	Threshold for detecting outliers. Default is 3.

Examples

model <- lm(read ~ write + math + science, data = hsb)
ols_prep_srplot_data(model)</pre>

ols_press PRESS

Description

PRESS (prediction sum of squares) tells you how well the model will predict new data.

Usage

ols_press(model)

Arguments

model An object of class 1m.

Details

The prediction sum of squares (PRESS) is the sum of squares of the prediction error. Each fitted to obtain the predicted value for the ith observation. Use PRESS to assess your model's predictive ability. Usually, the smaller the PRESS value, the better the model's predictive ability.

Value

Predicted sum of squares of the model.

References

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

See Also

Other influence measures: ols_hadi(), ols_leverage(), ols_pred_rsq()

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_press(model)</pre>
```

ols_pure_error_anova Lack of fit F test

Description

Assess how much of the error in prediction is due to lack of model fit.

Usage

```
ols_pure_error_anova(model, ...)
```

Arguments

model	An object of class 1m.
	Other parameters.

Details

The residual sum of squares resulting from a regression can be decomposed into 2 components:

- · Due to lack of fit
- Due to random variation

If most of the error is due to lack of fit and not just random error, the model should be discarded and a new model must be built.

Value

ols_pure_error_anova returns an object of class "ols_pure_error_anova". An object of class "ols_pure_error_anova" is a list containing the following components:

lackoffit	lack of fit sum of squares
pure_error	pure error sum of squares
rss	regression sum of squares
ess	error sum of squares
total	total sum of squares
rms	regression mean square
ems	error mean square
lms	lack of fit mean square
pms	pure error mean square
rf	f statistic
lf	lack of fit f statistic
pr	p-value of f statistic
pl	p-value pf lack of fit f statistic
mpred	data.frame containing data for the response and predictor of the model
df_rss	regression sum of squares degrees of freedom
df_ess	error sum of squares degrees of freedom
df_lof	lack of fit degrees of freedom
df_error	pure error degrees of freedom
final	data.frame; contains computed values used for the lack of fit f test
resp	character vector; name of response variable
preds	character vector; name of predictor variable

Note

The lack of fit F test works only with simple linear regression. Moreover, it is important that the data contains repeat observations i.e. replicates for at least one of the values of the predictor x. This test generally only applies to datasets with plenty of replicates.

References

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

```
model <- lm(mpg ~ disp, data = mtcars)
ols_pure_error_anova(model)</pre>
```

ols_regress

Description

Ordinary least squares regression.

Usage

```
ols_regress(object, ...)
```

```
## S3 method for class 'lm'
ols_regress(object, ...)
```

Arguments

object	An object of class "formula" (or one that can be coerced to that class): a sym-
	bolic description of the model to be fitted or class 1m.
	Other inputs.

Value

ols_regress returns an object of class "ols_regress". An object of class "ols_regress" is a list containing the following components:

r	square root of rsquare, correlation between observed and predicted values of dependent variable
rsq	coefficient of determination or r-square
adjr	adjusted rsquare
rmse	root mean squared error
CV	coefficient of variation
mse	mean squared error
mae	mean absolute error
aic	akaike information criteria
sbc	bayesian information criteria
sbic	sawa bayesian information criteria
prsq	predicted rsquare
error_df	residual degrees of freedom
model_df	regression degrees of freedom
total_df	total degrees of freedom
ess	error sum of squares
rss	regression sum of squares

ols_regress

tss	total sum of squares
rms	regression mean square
ems	error mean square
f	f statistis
р	p-value for f
n	number of predictors including intercept
betas	betas; estimated coefficients
sbetas	standardized betas
std_errors	standard errors
tvalues	t values
pvalues	p-value of tvalues
df	degrees of freedom of betas
conf_lm	confidence intervals for coefficients
title	title for the model
dependent	character vector; name of the dependent variable
predictors	character vector; name of the predictor variables
mvars	character vector; name of the predictor variables including intercept
model	input model for ols_regress

Interaction Terms

If the model includes interaction terms, the standardized betas are computed after scaling and centering the predictors.

References

https://www.ssc.wisc.edu/~hemken/Stataworkshops/stdBeta/Getting%20Standardized%20Coefficients%20Right.pdf

Examples

ols_regress(mpg ~ disp + hp + wt, data = mtcars)

if model includes interaction terms set iterm to TRUE
ols_regress(mpg ~ disp * wt, data = mtcars, iterm = TRUE)

ols_sbc

Description

Bayesian information criterion for model selection.

Usage

ols_sbc(model, method = c("R", "STATA", "SAS"))

Arguments

model	An object of class 1m.
method	A character vector; specify the method to compute BIC. Valid options include R, STATA and SAS.

Details

SBC provides a means for model selection. Given a collection of models for the data, SBC estimates the quality of each model, relative to each of the other models. R and STATA use loglikelihood to compute SBC. SAS uses residual sum of squares. Below is the formula in each case:

R & STATA

AIC = -2(loglikelihood) + ln(n) * 2p

SAS

$$AIC = n * ln(SSE/n) + p * ln(n)$$

where n is the sample size and p is the number of model parameters including intercept.

Value

The bayesian information criterion of the model.

References

Schwarz, G. (1978). "Estimating the Dimension of a Model." Annals of Statistics 6:461-464.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

See Also

Other model selection criteria: ols_aic(), ols_apc(), ols_fpe(), ols_hsp(), ols_mallows_cp(), ols_msep(), ols_sbic()

ols_sbic

Examples

```
# using R computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbc(model)
# using STATA computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbc(model, method = 'STATA')
# using SAS computation method
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbc(model, method = 'SAS')
```

С

Sawa's bayesian information criterion

Description

Sawa's bayesian information criterion for model selection.

Usage

```
ols_sbic(model, full_model)
```

Arguments

model	An object of class 1m.
full_model	An object of class 1m.

Details

Sawa (1978) developed a model selection criterion that was derived from a Bayesian modification of the AIC criterion. Sawa's Bayesian Information Criterion (BIC) is a function of the number of observations n, the SSE, the pure error variance fitting the full model, and the number of independent variables including the intercept.

$$SBIC = n * ln(SSE/n) + 2(p+2)q - 2(q^2)$$

where $q = n(\sigma^2)/SSE$, *n* is the sample size, *p* is the number of model parameters including intercept *SSE* is the residual sum of squares.

Value

Sawa's Bayesian Information Criterion

References

Sawa, T. (1978). "Information Criteria for Discriminating among Alternative Regression Models." Econometrica 46:1273–1282.

Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980). The Theory and Practice of Econometrics. New York: John Wiley & Sons.

See Also

```
Other model selection criteria: ols_aic(), ols_apc(), ols_fpe(), ols_hsp(), ols_mallows_cp(),
ols_msep(), ols_sbc()
```

Examples

```
full_model <- lm(mpg ~ ., data = mtcars)
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_sbic(model, full_model)</pre>
```

ols_step_all_possible All possible regression

Description

Fits all regressions involving one regressor, two regressors, three regressors, and so on. It tests all possible subsets of the set of potential independent variables.

Usage

```
ols_step_all_possible(model, ...)
## Default S3 method:
ols_step_all_possible(model, max_order = NULL, ...)
## S3 method for class 'ols_step_all_possible'
plot(x, model = NA, print_plot = TRUE, ...)
```

Arguments

model	An object of class 1m.
	Other arguments.
max_order	Maximum subset order.
х	An object of class ols_step_all_possible.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_all_possible returns an object of class "ols_step_all_possible". An object of class "ols_step_all_possible" is a data frame containing the following components:

mindex	model index
n	number of predictors
predictors	predictors in the model
rsquare	rsquare of the model
adjr	adjusted rsquare of the model
rmse	root mean squared error of the model
predrsq	predicted rsquare of the model
ср	mallow's Cp
aic	akaike information criteria
sbic	sawa bayesian information criteria
sbc	schwarz bayes information criteria
msep	estimated MSE of prediction, assuming multivariate normality
fpe	final prediction error
арс	amemiya prediction criteria
hsp	hocking's Sp

References

Mendenhall William and Sinsich Terry, 2012, A Second Course in Statistics Regression Analysis (7th edition). Prentice Hall

```
model <- lm(mpg ~ disp + hp, data = mtcars)
k <- ols_step_all_possible(model)
k
# plot
plot(k)
# maximum subset
model <- lm(mpg ~ disp + hp + drat + wt + qsec, data = mtcars)
ols_step_all_possible(model, max_order = 3)</pre>
```

```
ols_step_all_possible_betas
```

All possible regression variable coefficients

Description

Returns the coefficients for each variable from each model.

Usage

```
ols_step_all_possible_betas(object, ...)
```

Arguments

object	An object of class 1m.
	Other arguments.

Value

ols_step_all_possible_betas returns a data.frame containing:

model_index	model number
predictor	predictor
beta_coef	coefficient for the predictor

Examples

```
## Not run:
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
ols_step_all_possible_betas(model)
```

End(Not run)

ols_step_backward_adj_r2

Stepwise Adjusted R-Squared backward regression

Description

Build regression model from a set of candidate predictor variables by removing predictors based on adjusted r-squared, in a stepwise manner until there is no variable left to remove any more.

Usage

```
ols_step_backward_adj_r2(model, ...)
## Default S3 method:
ols_step_backward_adj_r2(
   model,
    include = NULL,
   exclude = NULL,
   progress = FALSE,
   details = FALSE,
   ...
)
## S3 method for class 'ols_step_backward_adj_r2'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m; the model should include all candidate predictor variables.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
x	An object of class ols_step_backward_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other backward selection procedures: ols_step_backward_aic(), ols_step_backward_p(), ols_step_backward_r2(), ols_step_backward_sbc(), ols_step_backward_sbic()

Examples

```
# stepwise backward regression
model <- lm(y \sim ., data = surgical)
ols_step_backward_adj_r2(model)
# final model and selection metrics
k <- ols_step_backward_aic(model)</pre>
k$metrics
k$model
# include or exclude variable
# force variables to be included in the selection process
ols_step_backward_adj_r2(model, include = c("alc_mod", "gender"))
# use index of variable instead of name
ols_step_backward_adj_r2(model, include = c(7, 6))
# force variable to be excluded from selection process
ols_step_backward_adj_r2(model, exclude = c("alc_heavy", "bcs"))
# use index of variable instead of name
ols_step_backward_adj_r2(model, exclude = c(8, 1))
```

ols_step_backward_aic Stepwise AIC backward regression

Description

Build regression model from a set of candidate predictor variables by removing predictors based on akaike information criterion, in a stepwise manner until there is no variable left to remove any more.

Usage

```
ols_step_backward_aic(model, ...)
```

```
## Default S3 method:
ols_step_backward_aic(
  model,
  include = NULL,
  exclude = NULL,
  progress = FALSE,
  details = FALSE,
  ...
)
## S3 method for class 'ols_step_backward_aic'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m; the model should include all candidate predictor variables.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
x	An object of class ols_step_backward_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other backward selection procedures: ols_step_backward_adj_r2(), ols_step_backward_p(), ols_step_backward_r2(), ols_step_backward_sbc(), ols_step_backward_sbic()

```
# stepwise backward regression
model <- lm(y ~ ., data = surgical)
ols_step_backward_aic(model)
# stepwise backward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_backward_aic(model)
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variable
# force variables to be included in the selection process
```

```
ols_step_backward_aic(model, include = c("alc_mod", "gender"))
# use index of variable instead of name
ols_step_backward_aic(model, include = c(7, 6))
# force variable to be excluded from selection process
ols_step_backward_aic(model, exclude = c("alc_heavy", "bcs"))
# use index of variable instead of name
ols_step_backward_aic(model, exclude = c(8, 1))
```

ols_step_backward_p Stepwise backward regression

Description

Build regression model from a set of candidate predictor variables by removing predictors based on p values, in a stepwise manner until there is no variable left to remove any more.

Usage

```
ols_step_backward_p(model, ...)
## Default S3 method:
ols_step_backward_p(
   model,
   p_val = 0.3,
   include = NULL,
   exclude = NULL,
   hierarchical = FALSE,
   progress = FALSE,
   details = FALSE,
   ...
)
## S3 method for class 'ols_step_backward_p'
plot(x, model = NA, print_plot = TRUE, details = TRUE, ...)
```

Arguments

model	An object of class 1m; the model should include all candidate predictor variables.
	Other inputs.
p_val	p value; variables with p more than p_val will be removed from the model.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
hierarchical	Logical; if TRUE, performs hierarchical selection.

progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
x	An object of class ols_step_backward_p.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_backward_p returns an object of class "ols_step_backward_p". An object of class "ols_step_backward_p" is a list containing the following components:

model	final model; an object of class 1m
metrics	selection metrics

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

See Also

Other backward selection procedures: ols_step_backward_adj_r2(), ols_step_backward_aic(), ols_step_backward_r2(), ols_step_backward_sbc(), ols_step_backward_sbic()

```
# stepwise backward regression
model <- lm(y \sim ., data = surgical)
ols_step_backward_p(model)
# stepwise backward regression plot
model <- lm(y ~ ., data = surgical)</pre>
k <- ols_step_backward_p(model)</pre>
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variables
# force variable to be included in selection process
ols_step_backward_p(model, include = c("age", "alc_mod"))
# use index of variable instead of name
ols_step_backward_p(model, include = c(5, 7))
# force variable to be excluded from selection process
ols_step_backward_p(model, exclude = c("pindex"))
# use index of variable instead of name
```

```
ols_step_backward_p(model, exclude = c(2))
# hierarchical selection
model <- lm(y ~ bcs + alc_heavy + pindex + age + alc_mod, data = surgical)
ols_step_backward_p(model, 0.1, hierarchical = TRUE)
# plot
k <- ols_step_backward_p(model, 0.1, hierarchical = TRUE)
plot(k)</pre>
```

ols_step_backward_r2 Stepwise R-Squared backward regression

Description

Build regression model from a set of candidate predictor variables by removing predictors based on r-squared, in a stepwise manner until there is no variable left to remove any more.

Usage

```
ols_step_backward_r2(model, ...)
## Default S3 method:
ols_step_backward_r2(
   model,
   include = NULL,
   exclude = NULL,
   progress = FALSE,
   details = FALSE,
   ...
)
## S3 method for class 'ols_step_backward_r2'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m; the model should include all candidate predictor variables.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
х	An object of class ols_step_backward_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
Other backward selection procedures: ols_step_backward_adj_r2(), ols_step_backward_aic(), ols_step_backward_p(), ols_step_backward_sbc(), ols_step_backward_sbic()
```

Examples

```
# stepwise backward regression
model <- lm(y ~ ., data = surgical)</pre>
ols_step_backward_r2(model)
# final model and selection metrics
k <- ols_step_backward_aic(model)</pre>
k$metrics
k$model
# include or exclude variable
# force variables to be included in the selection process
ols_step_backward_r2(model, include = c("alc_mod", "gender"))
# use index of variable instead of name
ols_step_backward_r2(model, include = c(7, 6))
# force variable to be excluded from selection process
ols_step_backward_r2(model, exclude = c("alc_heavy", "bcs"))
# use index of variable instead of name
ols_step_backward_r2(model, exclude = c(8, 1))
```

ols_step_backward_sbc Stepwise SBC backward regression

Description

Build regression model from a set of candidate predictor variables by removing predictors based on schwarz bayesian criterion, in a stepwise manner until there is no variable left to remove any more.

Usage

```
ols_step_backward_sbc(model, ...)
## Default S3 method:
ols_step_backward_sbc(
   model,
    include = NULL,
   exclude = NULL,
   progress = FALSE,
   details = FALSE,
   ...
)
## S3 method for class 'ols_step_backward_sbc'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m; the model should include all candidate predictor variables.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
х	An object of class ols_step_backward_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other backward selection procedures: ols_step_backward_adj_r2(), ols_step_backward_aic(), ols_step_backward_p(), ols_step_backward_r2(), ols_step_backward_sbic()

Examples

```
# stepwise backward regression
model <- lm(y \sim ., data = surgical)
ols_step_backward_sbc(model)
# stepwise backward regression plot
model <- lm(y ~ ., data = surgical)</pre>
k <- ols_step_backward_sbc(model)</pre>
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variable
# force variables to be included in the selection process
ols_step_backward_sbc(model, include = c("alc_mod", "gender"))
# use index of variable instead of name
ols_step_backward_sbc(model, include = c(7, 6))
# force variable to be excluded from selection process
ols_step_backward_sbc(model, exclude = c("alc_heavy", "bcs"))
# use index of variable instead of name
ols_step_backward_sbc(model, exclude = c(8, 1))
```

ols_step_backward_sbic

Stepwise SBIC backward regression

Description

Build regression model from a set of candidate predictor variables by removing predictors based on sawa bayesian criterion, in a stepwise manner until there is no variable left to remove any more.

Usage

```
ols_step_backward_sbic(model, ...)
## Default S3 method:
ols_step_backward_sbic(
   model,
   include = NULL,
   exclude = NULL,
   progress = FALSE,
```

```
details = FALSE,
...
)
## S3 method for class 'ols_step_backward_sbic'
```

```
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m; the model should include all candidate predictor variables.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
x	An object of class ols_step_backward_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other backward selection procedures: ols_step_backward_adj_r2(), ols_step_backward_aic(), ols_step_backward_p(), ols_step_backward_r2(), ols_step_backward_sbc()

Examples

```
# stepwise backward regression
model <- lm(y ~ ., data = surgical)
ols_step_backward_sbic(model)
# stepwise backward regression plot
model <- lm(y ~ ., data = surgical)
k <- ols_step_backward_sbic(model)
plot(k)</pre>
```

```
# selection metrics
k$metrics
# final model
k$model
# include or exclude variable
# force variables to be included in the selection process
ols_step_backward_sbic(model, include = c("alc_mod", "gender"))
# use index of variable instead of name
ols_step_backward_sbic(model, include = c(7, 6))
# force variable to be excluded from selection process
ols_step_backward_sbic(model, exclude = c("alc_heavy", "bcs"))
# use index of variable instead of name
ols_step_backward_sbic(model, exclude = c(8, 1))
```

ols_step_best_subset Best subsets regression

Description

Select the subset of predictors that do the best at meeting some well-defined objective criterion, such as having the largest R2 value or the smallest MSE, Mallow's Cp or AIC. The default metric used for selecting the model is R2 but the user can choose any of the other available metrics.

Usage

```
ols_step_best_subset(model, ...)
## Default S3 method:
ols_step_best_subset(
   model,
   max_order = NULL,
   include = NULL,
   exclude = NULL,
   metric = c("rsquare", "adjr", "predrsq", "cp", "aic", "sbic", "sbc", "msep", "fpe",
        "apc", "hsp"),
   ...
)
## S3 method for class 'ols_step_best_subset'
plot(x, model = NA, print_plot = TRUE, ...)
```

Arguments

model	An object of class 1m.
	Other inputs.
max_order	Maximum subset order.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
metric	Metric to select model.
x	An object of class ols_step_best_subset.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_best_subset returns an object of class "ols_step_best_subset". An object of class "ols_step_best_subset" is a list containing the following:

metrics selection metrics

References

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_step_best_subset(model)
ols_step_best_subset(model, metric = "adjr")
ols_step_best_subset(model, metric = "cp")
# maximum subset
model <- lm(mpg ~ disp + hp + drat + wt + qsec, data = mtcars)
ols_step_best_subset(model, max_order = 3)
# plot
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
k <- ols_step_best_subset(model)
plot(k)
# return only models including `qsec`
ols_step_best_subset(model, include = c("qsec"))
# exclude `hp` from selection process
ols_step_best_subset(model, exclude = c("hp"))</pre>
```

ols_step_both_adj_r2 Stepwise Adjusted R-Squared regression

Description

Build regression model from a set of candidate predictor variables by entering and removing predictors based on adjusted r-squared, in a stepwise manner until there is no variable left to enter or remove any more.

Usage

```
ols_step_both_adj_r2(model, ...)
## Default S3 method:
ols_step_both_adj_r2(
   model,
   include = NULL,
   exclude = NULL,
   progress = FALSE,
   details = FALSE,
   ...
)
## S3 method for class 'ols_step_both_adj_r2'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, details of variable selection will be printed on screen.
х	An object of class ols_step_both_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.
x print_plot	An object of class ols_step_both_*. logical; if TRUE, prints the plot else returns a plot object.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other both direction selection procedures: ols_step_both_aic(), ols_step_both_r2(), ols_step_both_sbc(), ols_step_both_sbic()

```
## Not run:
# stepwise regression
model <- lm(y ~ ., data = stepdata)</pre>
ols_step_both_adj_r2(model)
# stepwise regression plot
model <- lm(y ~ ., data = stepdata)</pre>
k <- ols_step_both_adj_r2(model)</pre>
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variables
# force variable to be included in selection process
model <- lm(y ~ ., data = stepdata)</pre>
ols_step_both_adj_r2(model, include = c("x6"))
# use index of variable instead of name
ols_step_both_adj_r2(model, include = c(6))
# force variable to be excluded from selection process
ols_step_both_adj_r2(model, exclude = c("x2"))
# use index of variable instead of name
ols_step_both_adj_r2(model, exclude = c(2))
# include & exclude variables in the selection process
ols_step_both_adj_r2(model, include = c("x6"), exclude = c("x2"))
# use index of variable instead of name
ols_step_both_adj_r2(model, include = c(6), exclude = c(2))
## End(Not run)
```

Description

Build regression model from a set of candidate predictor variables by entering and removing predictors based on akaike information criteria, in a stepwise manner until there is no variable left to enter or remove any more.

Usage

```
ols_step_both_aic(model, ...)
## Default S3 method:
ols_step_both_aic(
  model,
   include = NULL,
   exclude = NULL,
   progress = FALSE,
   details = FALSE,
   ...
)
## S3 method for class 'ols_step_both_aic'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, details of variable selection will be printed on screen.
х	An object of class ols_step_both_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other both direction selection procedures: ols_step_both_adj_r2(), ols_step_both_r2(), ols_step_both_sbc(), ols_step_both_sbic()

Examples

```
## Not run:
# stepwise regression
model <- lm(y ~ ., data = stepdata)</pre>
ols_step_both_aic(model)
# stepwise regression plot
model <- lm(y ~ ., data = stepdata)</pre>
k <- ols_step_both_aic(model)</pre>
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variables
# force variable to be included in selection process
model <- lm(y ~ ., data = stepdata)</pre>
ols_step_both_aic(model, include = c("x6"))
# use index of variable instead of name
ols_step_both_aic(model, include = c(6))
# force variable to be excluded from selection process
ols_step_both_aic(model, exclude = c("x2"))
# use index of variable instead of name
ols_step_both_aic(model, exclude = c(2))
# include & exclude variables in the selection process
ols_step_both_aic(model, include = c("x6"), exclude = c("x2"))
# use index of variable instead of name
ols_step_both_aic(model, include = c(6), exclude = c(2))
## End(Not run)
```

Description

Build regression model from a set of candidate predictor variables by entering and removing predictors based on p values, in a stepwise manner until there is no variable left to enter or remove any more.

Usage

```
ols_step_both_p(model, ...)
## Default S3 method:
ols_step_both_p(
    model,
    p_enter = 0.1,
    p_remove = 0.3,
    include = NULL,
    exclude = NULL,
    progress = FALSE,
    details = FALSE,
    ...
)
## S3 method for class 'ols_step_both_p'
plot(x, model = NA, print_plot = TRUE, details = TRUE, ...)
```

Arguments

model	An object of class 1m; the model should include all candidate predictor variables.
	Other arguments.
p_enter	p value; variables with p value less than p_enter will enter into the model.
p_remove	p value; variables with p more than <code>p_remove</code> will be removed from the model.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
x	An object of class ols_step_both_p.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_both_p returns an object of class "ols_step_both_p". An object of class "ols_step_both_p" is a list containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
beta_pval	beta and p values of models in each selection step

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

Examples

```
## Not run:
# stepwise regression
model <- lm(y ~ ., data = surgical)</pre>
ols_step_both_p(model)
# stepwise regression plot
model <- lm(y ~ ., data = surgical)</pre>
k <- ols_step_both_p(model)</pre>
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variables
model <- lm(y ~ ., data = stepdata)</pre>
# force variable to be included in selection process
ols_step_both_p(model, include = c("x6"))
# use index of variable instead of name
ols_step_both_p(model, include = c(6))
# force variable to be excluded from selection process
ols_step_both_p(model, exclude = c("x1"))
# use index of variable instead of name
ols_step_both_p(model, exclude = c(1))
## End(Not run)
```

ols_step_both_r2 Stepwise R-Squared regression

Description

Build regression model from a set of candidate predictor variables by entering and removing predictors based on r-squared, in a stepwise manner until there is no variable left to enter or remove any more.

Usage

```
ols_step_both_r2(model, ...)
## Default S3 method:
ols_step_both_r2(
  model,
   include = NULL,
   exclude = NULL,
   progress = FALSE,
   details = FALSE,
   ...
)
## S3 method for class 'ols_step_both_r2'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, details of variable selection will be printed on screen.
х	An object of class ols_step_both_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other both direction selection procedures: ols_step_both_adj_r2(), ols_step_both_aic(), ols_step_both_sbc(), ols_step_both_sbic()

```
## Not run:
# stepwise regression
model <- lm(y ~ ., data = stepdata)</pre>
ols_step_both_r2(model)
# stepwise regression plot
model <- lm(y ~ ., data = stepdata)</pre>
k <- ols_step_both_r2(model)</pre>
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variables
# force variable to be included in selection process
model <- lm(y ~ ., data = stepdata)</pre>
ols_step_both_r2(model, include = c("x6"))
# use index of variable instead of name
ols_step_both_r2(model, include = c(6))
# force variable to be excluded from selection process
ols_step_both_r2(model, exclude = c("x2"))
# use index of variable instead of name
ols_step_both_r2(model, exclude = c(2))
# include & exclude variables in the selection process
ols_step_both_r2(model, include = c("x6"), exclude = c("x2"))
# use index of variable instead of name
ols_step_both_r2(model, include = c(6), exclude = c(2))
## End(Not run)
```

ols_step_both_sbc Stepwise SBC regression

Description

Build regression model from a set of candidate predictor variables by entering and removing predictors based on schwarz bayesian criterion, in a stepwise manner until there is no variable left to enter or remove any more.

Usage

```
ols_step_both_sbc(model, ...)
## Default S3 method:
ols_step_both_sbc(
  model,
   include = NULL,
   exclude = NULL,
   progress = FALSE,
   details = FALSE,
   ...
)
## S3 method for class 'ols_step_both_sbc'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, details of variable selection will be printed on screen.
х	An object of class ols_step_both_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other both direction selection procedures: ols_step_both_adj_r2(), ols_step_both_aic(), ols_step_both_r2(), ols_step_both_sbic()

```
## Not run:
# stepwise regression
model <- lm(y ~ ., data = stepdata)</pre>
ols_step_both_sbc(model)
# stepwise regression plot
model <- lm(y ~ ., data = stepdata)</pre>
k <- ols_step_both_sbc(model)</pre>
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variables
# force variable to be included in selection process
model <- lm(y ~ ., data = stepdata)</pre>
ols_step_both_sbc(model, include = c("x6"))
# use index of variable instead of name
ols_step_both_sbc(model, include = c(6))
# force variable to be excluded from selection process
ols_step_both_sbc(model, exclude = c("x2"))
# use index of variable instead of name
ols_step_both_sbc(model, exclude = c(2))
# include & exclude variables in the selection process
ols_step_both_sbc(model, include = c("x6"), exclude = c("x2"))
# use index of variable instead of name
ols_step_both_sbc(model, include = c(6), exclude = c(2))
## End(Not run)
```
ols_step_both_sbic Stepwise SBIC regression

Description

Build regression model from a set of candidate predictor variables by entering and removing predictors based on sawa bayesian criterion, in a stepwise manner until there is no variable left to enter or remove any more.

Usage

```
ols_step_both_sbic(model, ...)
## Default S3 method:
ols_step_both_sbic(
  model,
  include = NULL,
  exclude = NULL,
  progress = FALSE,
  details = FALSE,
  ...
)
## S3 method for class 'ols_step_both_sbic'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, details of variable selection will be printed on screen.
х	An object of class ols_step_both_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other both direction selection procedures: ols_step_both_adj_r2(), ols_step_both_aic(), ols_step_both_r2(), ols_step_both_sbc()

Examples

```
## Not run:
# stepwise regression
model <- lm(y ~ ., data = stepdata)</pre>
ols_step_both_sbic(model)
# stepwise regression plot
model <- lm(y ~ ., data = stepdata)</pre>
k <- ols_step_both_sbic(model)</pre>
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variables
# force variable to be included in selection process
model <- lm(y ~ ., data = stepdata)</pre>
ols_step_both_sbic(model, include = c("x6"))
# use index of variable instead of name
ols_step_both_sbic(model, include = c(6))
# force variable to be excluded from selection process
ols_step_both_sbic(model, exclude = c("x2"))
# use index of variable instead of name
ols_step_both_sbic(model, exclude = c(2))
# include & exclude variables in the selection process
ols_step_both_sbic(model, include = c("x6"), exclude = c("x2"))
# use index of variable instead of name
ols_step_both_sbic(model, include = c(6), exclude = c(2))
## End(Not run)
```

ols_step_forward_adj_r2

Stepwise Adjusted R-Squared forward regression

Description

Build regression model from a set of candidate predictor variables by entering predictors based on adjusted r-squared, in a stepwise manner until there is no variable left to enter any more.

Usage

```
ols_step_forward_adj_r2(model, ...)
## Default S3 method:
ols_step_forward_adj_r2(
   model,
   include = NULL,
   exclude = NULL,
   progress = FALSE,
   details = FALSE,
   ...
)
## S3 method for class 'ols_step_forward_adj_r2'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
х	An object of class ols_step_forward_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

```
Other forward selection procedures: ols_step_forward_aic(), ols_step_forward_p(), ols_step_forward_r2(), ols_step_forward_sbc(), ols_step_forward_sbic()
```

Examples

```
# stepwise forward regression
model <- lm(y \sim ., data = surgical)
ols_step_forward_adj_r2(model)
# stepwise forward regression plot
k <- ols_step_forward_adj_r2(model)</pre>
plot(k)
# selection metrics
k$metrics
# extract final model
k$model
# include or exclude variables
# force variable to be included in selection process
ols_step_forward_adj_r2(model, include = c("age"))
# use index of variable instead of name
ols_step_forward_adj_r2(model, include = c(5))
# force variable to be excluded from selection process
ols_step_forward_adj_r2(model, exclude = c("liver_test"))
# use index of variable instead of name
ols_step_forward_adj_r2(model, exclude = c(4))
# include & exclude variables in the selection process
ols_step_forward_adj_r2(model, include = c("age"), exclude = c("liver_test"))
# use index of variable instead of name
ols_step_forward_adj_r2(model, include = c(5), exclude = c(4))
```

ols_step_forward_aic Stepwise AIC forward regression

Description

Build regression model from a set of candidate predictor variables by entering predictors based on akaike information criterion, in a stepwise manner until there is no variable left to enter any more.

ols_step_forward_aic

Usage

```
ols_step_forward_aic(model, ...)
## Default S3 method:
ols_step_forward_aic(
   model,
   include = NULL,
   exclude = NULL,
   progress = FALSE,
   details = FALSE,
   ...
)
## S3 method for class 'ols_step_forward_aic'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
x	An object of class ols_step_forward_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other forward selection procedures: ols_step_forward_adj_r2(), ols_step_forward_p(), ols_step_forward_r2(), ols_step_forward_sbc(), ols_step_forward_sbic()

Examples

```
# stepwise forward regression
model <- lm(y \sim ., data = surgical)
ols_step_forward_aic(model)
# stepwise forward regression plot
k <- ols_step_forward_aic(model)</pre>
plot(k)
# selection metrics
k$metrics
# extract final model
k$model
# include or exclude variables
# force variable to be included in selection process
ols_step_forward_aic(model, include = c("age"))
# use index of variable instead of name
ols_step_forward_aic(model, include = c(5))
# force variable to be excluded from selection process
ols_step_forward_aic(model, exclude = c("liver_test"))
# use index of variable instead of name
ols_step_forward_aic(model, exclude = c(4))
# include & exclude variables in the selection process
ols_step_forward_aic(model, include = c("age"), exclude = c("liver_test"))
# use index of variable instead of name
ols_step_forward_aic(model, include = c(5), exclude = c(4))
```

ols_step_forward_p Stepwise forward regression

Description

Build regression model from a set of candidate predictor variables by entering predictors based on p values, in a stepwise manner until there is no variable left to enter any more.

Usage

```
ols_step_forward_p(model, ...)
## Default S3 method:
ols_step_forward_p(
```

```
model,
p_val = 0.3,
include = NULL,
exclude = NULL,
hierarchical = FALSE,
progress = FALSE,
details = FALSE,
...
)
## S3 method for class 'ols_step_forward_p'
plot(x, model = NA, print_plot = TRUE, details = TRUE, ...)
```

Arguments

model	An object of class 1m; the model should include all candidate predictor variables.
	Other arguments.
p_val	p value; variables with p value less than p_val will enter into the model
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
hierarchical	Logical; if TRUE, performs hierarchical selection.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
х	An object of class ols_step_forward_p.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Value

ols_step_forward_p returns an object of class "ols_step_forward_p". An object of class "ols_step_forward_p" is a list containing the following components:

model	final model; an object of class 1m
metrics	selection metrics

References

Chatterjee, Samprit and Hadi, Ali. Regression Analysis by Example. 5th ed. N.p.: John Wiley & Sons, 2012. Print.

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

See Also

Other forward selection procedures: ols_step_forward_adj_r2(), ols_step_forward_aic(), ols_step_forward_r2(), ols_step_forward_sbc(), ols_step_forward_sbic()

Examples

```
# stepwise forward regression
model <- lm(y \sim ., data = surgical)
ols_step_forward_p(model)
# stepwise forward regression plot
model <- lm(y ~ ., data = surgical)</pre>
k <- ols_step_forward_p(model)</pre>
plot(k)
# selection metrics
k$metrics
# final model
k$model
# include or exclude variables
# force variable to be included in selection process
ols_step_forward_p(model, include = c("age", "alc_mod"))
# use index of variable instead of name
ols_step_forward_p(model, include = c(5, 7))
# force variable to be excluded from selection process
ols_step_forward_p(model, exclude = c("pindex"))
# use index of variable instead of name
ols_step_forward_p(model, exclude = c(2))
# hierarchical selection
model <- lm(y ~ bcs + alc_heavy + pindex + enzyme_test, data = surgical)</pre>
ols_step_forward_p(model, 0.1, hierarchical = TRUE)
# plot
k <- ols_step_forward_p(model, 0.1, hierarchical = TRUE)</pre>
plot(k)
```

ols_step_forward_r2 Stepwise R-Squared forward regression

Description

Build regression model from a set of candidate predictor variables by entering predictors based on r-squared, in a stepwise manner until there is no variable left to enter any more.

Usage

```
ols_step_forward_r2(model, ...)
```

```
## Default S3 method:
ols_step_forward_r2(
    model,
    include = NULL,
    exclude = NULL,
    progress = FALSE,
    details = FALSE,
    ...
)
## S3 method for class 'ols_step_forward_r2'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
x	An object of class ols_step_forward_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other forward selection procedures: ols_step_forward_adj_r2(), ols_step_forward_aic(), ols_step_forward_p(), ols_step_forward_sbc(), ols_step_forward_sbic()

Examples

```
# stepwise forward regression
model <- lm(y \sim ., data = surgical)
ols_step_forward_r2(model)
# stepwise forward regression plot
k <- ols_step_forward_r2(model)</pre>
plot(k)
# selection metrics
k$metrics
# extract final model
k$model
# include or exclude variables
# force variable to be included in selection process
ols_step_forward_r2(model, include = c("age"))
# use index of variable instead of name
ols_step_forward_r2(model, include = c(5))
# force variable to be excluded from selection process
ols_step_forward_r2(model, exclude = c("liver_test"))
# use index of variable instead of name
ols_step_forward_r2(model, exclude = c(4))
# include & exclude variables in the selection process
ols_step_forward_r2(model, include = c("age"), exclude = c("liver_test"))
# use index of variable instead of name
ols_step_forward_r2(model, include = c(5), exclude = c(4))
```

ols_step_forward_sbc Stepwise SBC forward regression

Description

Build regression model from a set of candidate predictor variables by entering predictors based on schwarz bayesian criterion, in a stepwise manner until there is no variable left to enter any more.

Usage

```
ols_step_forward_sbc(model, ...)
## Default S3 method:
ols_step_forward_sbc(
```

```
model,
include = NULL,
exclude = NULL,
progress = FALSE,
details = FALSE,
...
)
## S3 method for class 'ols_step_forward_sbc'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
х	An object of class ols_step_forward_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other forward selection procedures: ols_step_forward_adj_r2(), ols_step_forward_aic(), ols_step_forward_p(), ols_step_forward_r2(), ols_step_forward_sbic()

Examples

```
# stepwise forward regression
model <- lm(y ~ ., data = surgical)
ols_step_forward_sbc(model)</pre>
```

stepwise forward regression plot

```
k <- ols_step_forward_sbc(model)</pre>
plot(k)
# selection metrics
k$metrics
# extract final model
k$model
# include or exclude variables
# force variable to be included in selection process
ols_step_forward_sbc(model, include = c("age"))
# use index of variable instead of name
ols_step_forward_sbc(model, include = c(5))
# force variable to be excluded from selection process
ols_step_forward_sbc(model, exclude = c("liver_test"))
# use index of variable instead of name
ols_step_forward_sbc(model, exclude = c(4))
# include & exclude variables in the selection process
ols_step_forward_sbc(model, include = c("age"), exclude = c("liver_test"))
# use index of variable instead of name
ols_step_forward_sbc(model, include = c(5), exclude = c(4))
```

ols_step_forward_sbic Stepwise SBIC forward regression

Description

Build regression model from a set of candidate predictor variables by entering predictors based on sawa bayesian criterion, in a stepwise manner until there is no variable left to enter any more.

Usage

```
ols_step_forward_sbic(model, ...)
## Default S3 method:
ols_step_forward_sbic(
  model,
   include = NULL,
   exclude = NULL,
   progress = FALSE,
   details = FALSE,
   ...
```

)

```
## S3 method for class 'ols_step_forward_sbic'
plot(x, print_plot = TRUE, details = TRUE, digits = 3, ...)
```

Arguments

model	An object of class 1m.
	Other arguments.
include	Character or numeric vector; variables to be included in selection process.
exclude	Character or numeric vector; variables to be excluded from selection process.
progress	Logical; if TRUE, will display variable selection progress.
details	Logical; if TRUE, will print the regression result at each step.
x	An object of class ols_step_forward_*.
print_plot	logical; if TRUE, prints the plot else returns a plot object.
digits	Number of decimal places to display.

Value

List containing the following components:

model	final model; an object of class 1m
metrics	selection metrics
others	list; info used for plotting and printing

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Other forward selection procedures: ols_step_forward_adj_r2(), ols_step_forward_aic(), ols_step_forward_p(), ols_step_forward_r2(), ols_step_forward_sbc()

Examples

```
# stepwise forward regression
model <- lm(y ~ ., data = surgical)
ols_step_forward_sbic(model)</pre>
```

```
# stepwise forward regression plot
k <- ols_step_forward_sbic(model)
plot(k)</pre>
```

```
# selection metrics
k$metrics
```

extract final model

k\$model

```
# include or exclude variables
# force variable to be included in selection process
ols_step_forward_sbic(model, include = c("age"))
# use index of variable instead of name
ols_step_forward_sbic(model, include = c(5))
# force variable to be excluded from selection process
ols_step_forward_sbic(model, exclude = c("liver_test"))
# use index of variable instead of name
ols_step_forward_sbic(model, exclude = c(4))
# include & exclude variables in the selection process
ols_step_forward_sbic(model, include = c("age"), exclude = c("liver_test"))
# use index of variable instead of name
ols_step_forward_sbic(model, include = c("age"), exclude = c("liver_test"))
# use index of variable instead of name
ols_step_forward_sbic(model, include = c(5), exclude = c(4))
```

ols_test_bartlett Bartlett test

Description

Test if k samples are from populations with equal variances.

Usage

```
ols_test_bartlett(data, ...)
## Default S3 method:
ols_test_bartlett(data, ..., group_var = NULL)
```

Arguments

data	A data.frame or tibble.
•••	Columns in data.
group_var	Grouping variable.

Details

Bartlett's test is used to test if variances across samples is equal. It is sensitive to departures from normality. The Levene test is an alternative test that is less sensitive to departures from normality.

Value

ols_test_bartlett returns an object of class "ols_test_bartlett". An object of class "ols_test_bartlett" is a list containing the following components:

fstat	f statistic
pval	p-value of fstat
df	degrees of freedom

References

Snedecor, George W. and Cochran, William G. (1989), Statistical Methods, Eighth Edition, Iowa State University Press.

See Also

Other heteroskedasticity tests: ols_test_breusch_pagan(), ols_test_f(), ols_test_score()

Examples

```
# using grouping variable
if (require("descriptr")) {
    library(descriptr)
    ols_test_bartlett(mtcarz, 'mpg', group_var = 'cyl')
}
# using variables
ols_test_bartlett(hsb, 'read', 'write')
```

ols_test_breusch_pagan

Breusch pagan test

Description

Test for constant variance. It assumes that the error terms are normally distributed.

Usage

```
ols_test_breusch_pagan(
   model,
   fitted.values = TRUE,
   rhs = FALSE,
   multiple = FALSE,
   p.adj = c("none", "bonferroni", "sidak", "holm"),
   vars = NA
)
```

Arguments

model	An object of class 1m.
fitted.values	Logical; if TRUE, use fitted values of regression model.
rhs	Logical; if TRUE, specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory) variables of the fitted regression model.
multiple	Logical; if TRUE, specifies that multiple testing be performed.
p.adj	Adjustment for p value, the following options are available: bonferroni, holm, sidak and none.
vars	Variables to be used for heteroskedasticity test.

Details

Breusch Pagan Test was introduced by Trevor Breusch and Adrian Pagan in 1979. It is used to test for heteroskedasticity in a linear regression model. It test whether variance of errors from a regression is dependent on the values of a independent variable.

- Null Hypothesis: Equal/constant variances
- · Alternative Hypothesis: Unequal/non-constant variances

Computation

- Fit a regression model
- Regress the squared residuals from the above model on the independent variables
- Compute nR^2 . It follows a chi square distribution with p -1 degrees of freedom, where p is the number of independent variables, n is the sample size and R^2 is the coefficient of determination from the regression in step 2.

Value

ols_test_breusch_pagan returns an object of class "ols_test_breusch_pagan". An object of class "ols_test_breusch_pagan" is a list containing the following components:

bp	breusch pagan statistic
р	p-value of bp
fv	fitted values of the regression model
rhs	names of explanatory variables of fitted regression model
multiple	logical value indicating if multiple tests should be performed
padj	adjusted p values
vars	variables to be used for heteroskedasticity test
resp	response variable
preds	predictors

References

T.S. Breusch & A.R. Pagan (1979), A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 47, 1287–1294

Cook, R. D.; Weisberg, S. (1983). "Diagnostics for Heteroskedasticity in Regression". Biometrika. 70 (1): 1–10.

See Also

Other heteroskedasticity tests: ols_test_bartlett(), ols_test_f(), ols_test_score()

Examples

```
# model
model <- lm(mpg ~ disp + hp + wt + drat, data = mtcars)
# use fitted values of the model
ols_test_breusch_pagan(model)
# use independent variables of the model
ols_test_breusch_pagan(model, rhs = TRUE)
# use independent variables of the model and perform multiple tests
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE)
# bonferroni p value adjustment
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE, p.adj = 'bonferroni')
# sidak p value adjustment
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE, p.adj = 'sidak')
# holm's p value adjustment
ols_test_breusch_pagan(model, rhs = TRUE, multiple = TRUE, p.adj = 'holm')
```

ols_test_correlation Correlation test for normality

Description

Correlation between observed residuals and expected residuals under normality.

Usage

```
ols_test_correlation(model)
```

Arguments

model An object of class 1m.

Value

Correlation between fitted regression model residuals and expected values of residuals.

See Also

```
Other residual diagnostics: ols_plot_resid_box(), ols_plot_resid_fit(), ols_plot_resid_hist(),
ols_plot_resid_qq(), ols_test_normality()
```

Examples

```
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_test_correlation(model)</pre>
```

F test

ols_test_f

Description

Test for heteroskedasticity under the assumption that the errors are independent and identically distributed (i.i.d.).

Usage

```
ols_test_f(model, fitted_values = TRUE, rhs = FALSE, vars = NULL, ...)
```

Arguments

model	An object of class 1m.
fitted_values	Logical; if TRUE, use fitted values of regression model.
rhs	Logical; if TRUE, specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory) variables of the fitted regression model.
vars	Variables to be used for for heteroskedasticity test.
	Other arguments.

Value

ols_test_f returns an object of class "ols_test_f". An object of class "ols_test_f" is a list containing the following components:

f	f statistic
р	p-value of f
fv	fitted values of the regression model
rhs	names of explanatory variables of fitted regression model
numdf	numerator degrees of freedom

dendf	denominator degrees of freedom
vars	variables to be used for heteroskedasticity test
resp	response variable
preds	predictors

References

Wooldridge, J. M. 2013. Introductory Econometrics: A Modern Approach. 5th ed. Mason, OH: South-Western.

See Also

Other heteroskedasticity tests: ols_test_bartlett(), ols_test_breusch_pagan(), ols_test_score()

Examples

```
# model
model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
# using fitted values
ols_test_f(model)
# using all predictors of the model
ols_test_f(model, rhs = TRUE)
# using fitted values
ols_test_f(model, vars = c('disp', 'hp'))
```

ols_test_normality Test for normality

Description

Test for detecting violation of normality assumption.

Usage

```
ols_test_normality(y, ...)
```

S3 method for class 'lm'
ols_test_normality(y, ...)

Arguments

У	A numeric vector or an object of class 1m.
	Other arguments.

Value

ols_test_normality returns an object of class "ols_test_normality". An object of class "ols_test_normality" is a list containing the following components:

kolmogorv	kolmogorv smirnov statistic
shapiro	shapiro wilk statistic
cramer	cramer von mises statistic
anderson	anderson darling statistic

See Also

```
Other residual diagnostics: ols_plot_resid_box(), ols_plot_resid_fit(), ols_plot_resid_hist(),
ols_plot_resid_qq(), ols_test_correlation()
```

Examples

model <- lm(mpg ~ disp + hp + wt + qsec, data = mtcars)
ols_test_normality(model)</pre>

ols_test_outlier Bonferroni Outlier Test

Description

Detect outliers using Bonferroni p values.

Usage

```
ols_test_outlier(model, cut_off = 0.05, n_max = 10, ...)
```

Arguments

model	An object of class 1m.
cut_off	Bonferroni p-values cut off for reporting observations.
n_max	Maximum number of observations to report, default is 10.
	Other arguments.

Examples

```
# model
model <- lm(y ~ ., data = surgical)
ols_test_outlier(model)</pre>
```

ols_test_score Score test

Description

Test for heteroskedasticity under the assumption that the errors are independent and identically distributed (i.i.d.).

Usage

```
ols_test_score(model, fitted_values = TRUE, rhs = FALSE, vars = NULL)
```

Arguments

model	An object of class 1m.
fitted_values	Logical; if TRUE, use fitted values of regression model.
rhs	Logical; if TRUE, specifies that tests for heteroskedasticity be performed for the right-hand-side (explanatory) variables of the fitted regression model.
vars	Variables to be used for for heteroskedasticity test.

Value

ols_test_score returns an object of class "ols_test_score". An object of class "ols_test_score" is a list containing the following components:

score	f statistic
р	p value of score
df	degrees of freedom
fv	fitted values of the regression model
rhs	names of explanatory variables of fitted regression model
resp	response variable
preds	predictors

References

Breusch, T. S. and Pagan, A. R. (1979) A simple test for heteroscedasticity and random coefficient variation. Econometrica 47, 1287–1294.

Cook, R. D. and Weisberg, S. (1983) Diagnostics for heteroscedasticity in regression. Biometrika 70, 1–10.

Koenker, R. 1981. A note on studentizing a test for heteroskedasticity. Journal of Econometrics 17: 107–112.

See Also

Other heteroskedasticity tests: ols_test_bartlett(), ols_test_breusch_pagan(), ols_test_f()

Examples

```
# model
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
# using fitted values of the model
ols_test_score(model)
# using predictors from the model
ols_test_score(model, rhs = TRUE)
# specify predictors from the model
ols_test_score(model, vars = c('disp', 'wt'))
```

rvsr_plot_shiny

Residual vs regressors plot for shiny app

Description

Graph to determine whether we should add a new predictor to the model already containing other predictors. The residuals from the model is regressed on the new predictor and if the plot shows non random pattern, you should consider adding the new predictor to the model.

Usage

rvsr_plot_shiny(model, data, variable, print_plot = TRUE)

Arguments

model	An object of class 1m.
data	A data.frame or tibble.
variable	Character; new predictor to be added to the model.
print_plot	logical; if TRUE, prints the plot else returns a plot object.

Examples

```
model <- lm(mpg ~ disp + hp + wt, data = mtcars)
rvsr_plot_shiny(model, mtcars, 'drat')</pre>
```

stepdata

Test Data Set

Description

Test Data Set

Usage

stepdata

Format

An object of class data. frame with 20000 rows and 7 columns.

surgical

Surgical Unit Data Set

Description

A dataset containing data about survival of patients undergoing liver operation.

Usage

surgical

Format

A data frame with 54 rows and 9 variables:

bcs blood clotting score
pindex prognostic index
enzyme_test enzyme function test score
liver_test liver function test score
age age, in years
gender indicator variable for gender (0 = male, 1 = female)
alc_mod indicator variable for history of alcohol use (0 = None, 1 = Moderate)
alc_heavy indicator variable for history of alcohol use (0 = None, 1 = Heavy)
y Survival Time

Source

Kutner, MH, Nachtscheim CJ, Neter J and Li W., 2004, Applied Linear Statistical Models (5th edition). Chicago, IL., McGraw Hill/Irwin.

Index

* backward selection procedures ols_step_backward_adj_r2, 50 ols_step_backward_aic, 52 ols_step_backward_p, 54 ols_step_backward_r2, 56 ols_step_backward_sbc, 57 ols_step_backward_sbic, 59 * both direction selection procedures ols_step_both_adj_r2,63 ols_step_both_aic, 65 ols_step_both_r2, 69 ols_step_both_sbc, 71 ols_step_both_sbic, 73 ***** both direction selection_procedures ols_step_both_p, 67 * datasets stepdata, 95 surgical, 95 * forward selection procedures ols_step_forward_adj_r2,75 ols_step_forward_aic, 76 ols_step_forward_p, 78 ols_step_forward_r2, 80 ols_step_forward_sbc, 82 ols_step_forward_sbic, 84 * heteroskedasticity tests ols_test_bartlett, 86 ols_test_breusch_pagan, 87 ols_test_f, 90 ols_test_score, 93 * influence measures ols hadi. 10 ols_leverage, 12 ols_pred_rsq, 33 ols_press, 41 * model selection criteria ols_aic, 4 ols_apc, 5 ols_fpe, 9

ols_hsp, 11 ols_mallows_cp, 13 ols_msep, 14 ols_sbc, 46 ols_sbic, 47 * residual diagnostics ols_plot_resid_box, 24 ols_plot_resid_fit, 25 ols_plot_resid_hist, 27 ols_plot_resid_qq, 29 ols_test_correlation, 89 ols_test_normality, 91 ols_aic, 4, 6, 9, 11, 13, 14, 46, 48 ols_apc, 5, 5, 9, 11, 13, 14, 46, 48 ols_coll_diag, 6 ols_correlations, 8 ols_eigen_cindex (ols_coll_diag), 6 ols_fpe, 5, 6, 9, 11, 13, 14, 46, 48 ols_hadi, 10, 12, 34, 42 ols_hsp, 5, 6, 9, 11, 13, 14, 46, 48 ols_launch_app, 12 ols_leverage, 10, 12, 34, 42 ols_mallows_cp, 5, 6, 9, 11, 13, 14, 46, 48 ols_msep, 5, 6, 9, 11, 13, 14, 46, 48 ols_plot_added_variable, 15 ols_plot_added_variable(), 16, 30 ols_plot_comp_plus_resid, 16 ols_plot_comp_plus_resid(), 16, 30 ols_plot_cooksd_bar, 17 ols_plot_cooksd_bar(), 19 ols_plot_cooksd_chart, 18 ols_plot_cooksd_chart(), 18 ols_plot_dfbetas, 19 ols_plot_dfbetas(), 21 ols_plot_dffits, 20 ols_plot_dffits(), 20 ols_plot_diagnostics, 22 ols_plot_fm (ols_plot_resid_fit_spread), 26

INDEX

ols_plot_hadi, 22 ols_plot_hadi(), 28 ols_plot_obs_fit, 23 ols_plot_reg_line, 24 ols_plot_resid_box, 24, 25, 27, 29, 90, 92 ols_plot_resid_fit, 24, 25, 27, 29, 90, 92 ols_plot_resid_fit_spread, 26 ols_plot_resid_hist, 24, 25, 27, 29, 90, 92 ols_plot_resid_lev, 27 ols_plot_resid_lev(), 28, 32 ols_plot_resid_pot, 28 ols_plot_resid_pot(), 23 ols_plot_resid_qq, 24, 25, 27, 29, 90, 92 ols_plot_resid_regressor, 29 ols_plot_resid_regressor(), 16 ols_plot_resid_spread (ols_plot_resid_fit_spread), 26 ols_plot_resid_stand, 30 ols_plot_resid_stand(), 31, 32 ols_plot_resid_stud, 31 ols_plot_resid_stud(), 30, 32 ols_plot_resid_stud_fit, 32 ols_plot_resid_stud_fit(), 28 ols_plot_response, 33 ols_pred_rsg, 10, 12, 33, 42 ols_prep_avplot_data, 34 ols_prep_cdplot_data, 34 ols_prep_cdplot_outliers, 35 ols_prep_dfbeta_data, 35 ols_prep_dfbeta_outliers, 36 ols_prep_dsrvf_data, 37 ols_prep_outlier_obs, 37 ols_prep_regress_x, 38 ols_prep_regress_y, 38 ols_prep_rfsplot_fmdata, 39 ols_prep_rfsplot_rsdata (ols_prep_rfsplot_fmdata), 39 ols_prep_rstudlev_data, 39 ols_prep_rvsrplot_data, 40 ols_prep_srchart_data, 40 ols_prep_srplot_data, 41 ols_press, 10, 12, 34, 41 ols_pure_error_anova, 42 ols_regress, 44 ols_sbc, 5, 6, 9, 11, 13, 14, 46, 48 ols_sbic, 5, 6, 9, 11, 13, 14, 46, 47 ols_step_all_possible, 48 ols_step_all_possible_betas, 50

ols_step_backward_adj_r2, 50, 53, 55, 57, 58.60 ols_step_backward_aic, 51, 52, 55, 57, 58, 60 ols_step_backward_p, 51, 53, 54, 57, 58, 60 ols_step_backward_r2, 51, 53, 55, 56, 58, 60 ols_step_backward_sbc, 51, 53, 55, 57, 57, 60 ols_step_backward_sbic, 51, 53, 55, 57, 58, 59 ols_step_best_subset, 61 ols_step_both_adj_r2, 63, 66, 70, 72, 74 ols_step_both_aic, 64, 65, 70, 72, 74 ols_step_both_p, 67 ols_step_both_r2, 64, 66, 69, 72, 74 ols_step_both_sbc, 64, 66, 70, 71, 74 ols_step_both_sbic, 64, 66, 70, 72, 73 ols_step_forward_adj_r2, 75, 77, 79, 81, 83,85 ols_step_forward_aic, 76, 76, 79, 81, 83, 85 ols_step_forward_p, 76, 77, 78, 81, 83, 85 ols_step_forward_r2, 76, 77, 79, 80, 83, 85 ols_step_forward_sbc, 76, 77, 79, 81, 82, 85 ols_step_forward_sbic, 76, 77, 79, 81, 83, 84 ols_test_bartlett, 86, 89, 91, 93 ols_test_breusch_pagan, 87, 87, 91, 93 ols_test_correlation, 24, 25, 27, 29, 89, 92 ols_test_f, 87, 89, 90, 93 ols_test_normality, 24, 25, 27, 29, 90, 91 ols_test_outlier, 92 ols_test_score, 87, 89, 91, 93 ols_vif_tol (ols_coll_diag), 6 plot.ols_step_all_possible (ols_step_all_possible), 48 plot.ols_step_backward_adj_r2 (ols_step_backward_adj_r2), 50 plot.ols_step_backward_aic

INDEX

```
plot.ols_step_best_subset
        (ols_step_best_subset), 61
plot.ols_step_both_adj_r2
        (ols_step_both_adj_r2), 63
plot.ols_step_both_aic
        (ols_step_both_aic), 65
plot.ols_step_both_p (ols_step_both_p),
        67
plot.ols_step_both_r2
        (ols_step_both_r2), 69
plot.ols_step_both_sbc
        (ols_step_both_sbc), 71
plot.ols_step_both_sbic
        (ols_step_both_sbic), 73
plot.ols_step_forward_adj_r2
        (ols_step_forward_adj_r2), 75
plot.ols_step_forward_aic
        (ols_step_forward_aic), 76
plot.ols_step_forward_p
        (ols_step_forward_p), 78
plot.ols_step_forward_r2
        (ols_step_forward_r2), 80
plot.ols_step_forward_sbc
        (ols_step_forward_sbc), 82
plot.ols_step_forward_sbic
        (ols_step_forward_sbic), 84
rvsr_plot_shiny, 94
```

98

stepdata, 95 surgical, 95