
V
ersion

3.1-0

Guide to the memuse Package
A Package for Estimating Memory Usage

Drew Schmidt

Guide to the memuse Package

A Package for Estimating Memory Usage

April 13, 2017

Drew Schmidt

wrathematics@gmail.com

Version 3.1-0

Acknowledgements

We thank Dan Burgess for his contribution of a Mac for development and testing.

We also thank Christian Heckendorf for his contribution of a FreeBSD platform for development and
testing, as well as his numerous helpful conversations about software development, and improvements to
functionality on FreeBSD.

We also thank Wei-Chen Chen for his numerous contributions to improve the usability of this package
on the Windows platform.

Disclaimer

The material in this vignette is, at times, presented in an exaggerated fashion, punctuated by adult
language for comedic effect. The author requests that the reader chill out and not take things quote so
seriously.

The author is neither sponsored nor compensated in any way, financial or otherwise, for the creation or
maintenance of this package, its documentation, or this vignette.

The views and opinions contained in this package, its documentation, and/or this vignette are purely those
of the author and do not necessarily represent those of my employer, the U.S. government, collaborators,
or anything or anyone else.

The information presented here may be incorrect or out of date. We assume no responsibility for errors
or omissions, or for damages resulting from the use of the information contained in this package, its
documentation, or this vignette.

c© 2013–2016 Drew Schmidt.

Permission is granted to make and distribute verbatim copies of this vignette and its source provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

This manual may be incorrect or out-of-date. The author assume no responsibility for errors or omissions,
or for damages resulting from the use of the information contained herein.

Cover art from A German Menagerie Being a Folio Collection of 1100 Illustrations of Mammals and

Birds by Edouard Poppig, 1841.

This publication was typeset using LATEX.

Contents

1 Introduction 1
1.1 History . 1
1.2 Purpose . 1
1.3 License . 1

2 Installation 2
2.1 Installing from Source . 2
2.2 Installing from CRAN . 3

3 It Turns Out That Size Does Matter, and How You Are Using It Is Wrong 3

4 Using the memuse Package 4
4.1 Constructing memuse Objects . 4
4.2 Default Parameters . 5
4.3 Methods . 5
4.4 Package Demos . 6

5 object.size() and Strings 6
5.1 Comparison to object.size() . 6
5.2 Strings . 7

6 Hardware Memory Information 8
6.1 Terminology . 9
6.2 Sys.meminfo() and Sys.swapinfo() . 9

6.2.1 Linux and FreeBSD . 9
6.2.2 Miscellaneous *NIX Variants . 10

6.3 Sys.procmem() . 10

1 INTRODUCTION 1 of 11

1 Introduction

1.1 History

This package was born out of a ≈ 10 line function I wrote to estimate the memory usage of (non-allocated)
in-core, dense R objects of numeric (double precision) data. I need this kind of thing for my work quite
a bit, surprisingly, so it made sense to actually create this function instead of constantly doing ad hoc
multiplications of nrows× ncols× 8 then dividing by powers of 1024 (or 1000 — more on this later).

But then I got the great idea to make this application ∼enterprise ready∼ by adding a lot of unnecessary
and convoluted OOP. And so this stupid package was born. From this perspective, this intentional
(unnecessary) over-engineering is a sort of a love letter to other needlessly complex programs, like the
Enterprise Fizzbuzz1.

1.2 Purpose

As hinted at in the above subsection, this package aids in the estimation of the memory usage of unal-
located, dense, in-core, numeric objects; that’s a very long-winded way of saying “matrices”, but there
you go. So why should you care about this package? Well, maybe you shouldn’t; I’m not here to tell you
what to do. But this is an impressively useful little package for my own work, and possibly yours too.

Aside from addressing uninteresting curiosities (e.g., How much ram do I need to store a 1, 000, 000×1, 000
matrix? — answer: about 7.5GiB), it is very handy when benchmarking, especially if you are doing any
kind of scaling study. To be a bit loose, scalability is the study of the performance of the implementation
of a parallel algorithm. Most people are fairly familiar with the concept of strong scalability, even if they
have never encountered the term before; this is where you try to capture how well your parallel algorithm
is performing on a fixed total problem size, relative to the number of cores you throw at it. Good scaling
makes a kind of y = 1

x
kind of plot, but is usually converted into a speedup plot, which frankly I don’t

really want to get into. Look, I’m sorry I even brought it up, ok?

On the other hand, in a weak scaling study, you keep the local problem size (amount per processor) fixed
and throw more cores at your method. This is a much less known way of measuring performance for the
R community, but it is a very useful one, especially when you break ≈ 10, 000 cores; at that scale, strong
scalability generally isn’t possible for any remotely interesting task. The memuse package’s methods
howbig() and howmany() were designed with these two benchmarking tasks in mind.

In the remainder of the document, we will explore the memuse package, including how to install it, how
to use it, and how it behaves with core R utilities. Additionally, in the oh-so-cleverly titled Section 3, we
will talk more about storage units for memory sizes than is reasonable.

1.3 License

This package is licensed under the permissive FreeBSD 2-clause license. It is thus compatible with the
GNU General Public License version ≥ 2 (see Figure 1 for full details). If you violate the terms of the
GPL, Richard Stallman’s beard will sue you in internet court.

1If you are unfamiliar with the fizzbuzz, see my posts “Honing your R skills for Job Interviews” and “The Fizzbuzz that
Fortran Deserves”.

https://github.com/Mikkeren/FizzBuzzEnterpriseEdition
https://en.wikipedia.org/wiki/Bizz_buzz
 http://librestats.com/2012/01/10/honing-your-r-skills-for-job-interviews/
http://librestats.com/2013/04/26/the-fizzbuzz-that-fortran-deserves/
http://librestats.com/2013/04/26/the-fizzbuzz-that-fortran-deserves/

2 INSTALLATION 2 of 11

Figure 1: The GNU GPL Explained

2 Installation

2.1 Installing from Source

The sourcecode for this package is available (and actively maintained) on GitHub. No binary is available
from GitHub, only the source. To install this (or any other) package from source on Windows, you will
need to first install the Rtools package. Rtools is not needed for Mac or Linux2 platforms, and so memuse

should install on them without problem.

The easiest way to install memuse from GitHub is via the devtools package by Hadley Wickham. With
this package, you can effectively install packages from GitHub just as you would from the CRAN. To
install memuse using devtools, simply issue the command:
✞ ☎

1 library(devtools)

2I’d just like to interject for a moment. What you’re referring to as Linux, is in fact, GNU/Linux, or as I’ve recently
taken to calling it, GNU plus Linux. Linux is not an operating system unto itself, but rather another free component of a
fully functioning GNU system made useful by the GNU corelibs, shell utilities and vital system components comprising a
full OS as defined by POSIX.

Many computer users run a modified version of the GNU system every day, without realizing it. Through a peculiar turn
of events, the version of GNU which is widely used today is often called Linux, and many of its users are not aware that it
is basically the GNU system, developed by the GNU Project.

There really is a Linux, and these people are using it, but it is just a part of the system they use. Linux is the kernel: the
program in the system that allocates the machine’s resources to the other programs that you run. The kernel is an essential
part of an operating system, but useless by itself; it can only function in the context of a complete operating system. Linux
is normally used in combination with the GNU operating system: the whole system is basically GNU with Linux added, or
GNU/Linux. All the so-called Linux distributions are really distributions of GNU/Linux.

http://cran.r-project.org/bin/windows/Rtools/Rtools216.exe
http://cran.r-project.org/web/packages/devtools/index.html

3 IT TURNS OUT THAT SIZE DOES MATTER, AND HOW YOU ARE USING IT IS WRONG3 of 11

2 install_github(repo="shinra -dev/memuse")
✝ ✆

from R. Alternatively, you could download the sourcecode from github, unzip this archive, and issue the
command:
✞ ☎

R CMD INSTALL memuse -master
✝ ✆

from your shell.

2.2 Installing from CRAN

I managed to trick the CRAN into letting this nonesense on their servers, so the installation amounts to
issuing the command
✞ ☎

1 install.packages("memuse")
✝ ✆

from an R session. But you already knew that, didn’t you? So why are you still reading this?

3 It Turns Out That Size Does Matter, and How You Are Using
It Is Wrong

The core of the memuse package is the memuse class object. You can construct a memuse object via the
memuse() or mu() constructor. The constructor has several options. You can pass the size of the object,
the unit, the unit prefix (IEC or SI), and the unit names (short or long). The size is the number of bytes,
scaled by some factor depending on the unit. The unit is an abstract rescaling unit, like percent, used
for the sake of simple comprehension at larger scales; for example, kilobyte and kibibyte are the typical
storage units to represent “roughly a thousand” bytes (more on this later). Finally, the unit names are for
printing, i.e., controlling whether the long version (e.g., kilobyte) or short version (kB) is used. Table 1

IEC Prefix SI Prefix
Short Long Factor Short Long Factor
b bit 1

8
b bit 1

8

B byte 1 B byte 1
KiB kibibyte 210 kB kilobyte 103

MiB mebibyte 220 MB megabyte 106

GiB gibibyte 230 GB gigabyte 109

TiB tebibyte 240 TB terabyte 1012

PiB pebibyte 250 PB petabyte 1015

EiB exbibyte 260 EB exabyte 1018

ZiB zebibyte 270 ZB zettabyte 1021

YiB yobibyte 280 YB yottabyte 1024

Table 1: Units, Unit Prefices, and Scaling Factors for Byte Storage

gives a complete list of the different units for the different prefices.

So for example, 1 kilobyte (kB) is equal to 1000 bytes, but 1 kibibyte (KiB) is equal to 1024 bytes. And
so 1 kB is roughly 0.977 KiB.

https://github.com/shinra-dev/memuse/archive/master.zip

4 USING THE MEMUSE PACKAGE 4 of 11

There is a great deal of ambiguity in the public regarding the meaning of these terms. People, even
those who know the difference (myself included) almost overwhelmingly use, for example, gigabyte when
they mean gibibyte. The reason for this is obvious; “gibibyte” sounds fucking stupid. This actually
gets all the more confusing because in addition to many conflating — intentionally or otherwise — 1
megabyte (MB) with 1 mebibyte (MiB), internet service providers advertise their bandwidth speeds in
terms of bits3 instead of bytes using the same goddamn symbols. So for example, when an ISP reports
“15 MB” bandwidth speeds, they are actually offering 5 megabit, or 1.875 megabytes (MB), which is
1.788 mebibytes (MiB). They do this because they’re huge assholes.

Another example of this confusion is when people talk about ∼big data∼ . Often I/O people will use the
term “terabytes” or “exabytes” and mean it, even though many file-on-disk-size reporting utilities (such
as du) use the IEC prefix. Rescaling reported SI units into IEC units — the ones people are generally
more familiar with — is simple with the memuse package:
✞ ☎

1 swap.prefix(mu(size=1, unit="tb", unit.prefix="SI"))

2 ## 0.909 TiB

3 swap.prefix(mu(size=1, unit="pb", unit.prefix="SI"))

4 ## 0.888 PiB
✝ ✆

These sizes represent an impressive amount of data, but this ambiguity in naming conventions allows
people to lie a bit. For all of these reasons, since the package is meant to be useful for understanding R
object size, the default behavior is somewhat complicated, but can be summarized as trying to provide
what most people meant in the first place. We achieve this by offering several default string objects which
the user can easily control. These units are .UNIT, .PREFIX, and .NAMES.

In the sections to follow, we will further examine the above memuse functions, as well as the other utilities
the package offers.

4 Using the memuse Package

The following sections demonstrate the ways in which the user is meant to interact with the memuse

package. Hence the title.

4.1 Constructing memuse Objects

The memuse object is an S4 class object, which is a high-falootin way of saying it’s a data structure
with specialized interpreted context. Think of it like a list whose elements are always the same. The
specification is:

memuse =



















size

unit

unit.prefix

unit.names

This object has a prototype, sanity checking, and all kinds of other boring crap no one cares about.
What’s important is how to use this thing.

31 byte is 8 bits

4 USING THE MEMUSE PACKAGE 5 of 11

To construct a memuse object, you can use the memuse() or mu() constructors. These functions behave
identically; memuse() exists because I generally find it inappropriate to not have an object constructor
of the same name as the object, and mu() exists because if I have to type more than 5 characters, I’m
completely furious. I’m looking at you, suppressPackageStartupMessages(). . .

Precedence is given to unit.prefix= over unit= in the constructor. So for example, mu(10, "mb",

unit.prefix="IEC") will return 10.000 MiB. The assumption is that you either do not know or do not
care about the distinction between IEC and SI unit prefices, but are probably more familiar with IEC.

4.2 Default Parameters

So as you might have guessed from Section 3, the memuse object’s constructor is full of options you will
never use. In the constructor, the argument size= is a required argument with no default. However, the
constructors invoke the default parameters .UNIT, .PREFIX, and .NAMES. These are default data values
loaded into the package. They are, respectively, "best", "IEC", and "short". To change a package
default, for example "IEC" to "SI", simply execute:
✞ ☎

1 .PREFIX <- "SI"
✝ ✆

And from then on, the constructor will use SI units by default. This, and all other string values, are case
insensitive, in the sense that the correct case will be determined for the user, regardless of the input.
Similarly, the choices for .NAMES are "short" and "long", and are again case insensitive.

On the other hand, .UNIT is slightly different. This defaults to "best" and like the weird guy at
work, should probably just be left alone. Functions that need to know an input unit, such as the
constructor mu(), have default argument unit=.UNIT. Realistically, you are probably better off modifying
that argument as necessary than changing .UNIT. For example, you want to construct a 100 KiB memuse

object, you probably just want to call
✞ ☎

1 mu(100, "KiB")
✝ ✆

This is equivalent to calling
✞ ☎

1 mu (102400)
✝ ✆

since the default .UNIT=best will make the choice to switch the units from b to KiB once you breach
1024 bytes. This sounds a lot more confusing than it really is.

4.3 Methods

Aside from the constructor, you have already seen one very useful method: swap.prefix(). In addition
to these, we have several other obvious methods, such as swap.unit(), swap.names(), print(), show(),
etc. But we also have some simple arithmetic, namely ‘+‘ (addition), ‘*‘ (multiplication), and ‘^‘

(exponentiation). So for example:
✞ ☎

1 mu(100) + mu (200)

2 ## 300.000 B

3 mu(100) * mu (200) # 100*200/1024

4 ## 19.531 KiB
✝ ✆

Other arithmetic of memuse objects is available, including division, as well as

5 OBJECT.SIZE() AND STRINGS 6 of 11

Finally, we have the methods that inspired the creation of this entire dumb thing in the first place:
howbig() and howmany(). The former takes in the dimensions of a matrix (nrow rows and ncol columns)
and returns the memory usage (as the package namesake would imply) of the object. So for example, if
you wanted to perform a principal components decomposition on a 100,000 by 100,000 matrix via SVD
(as we have), then you would need:
✞ ☎

howbig (100000 , 100000)

74.506 GiB
✝ ✆

Of ram just to store the data. Another interesting anecdote about this sized matrix is that we were able
to generate it in just over a tenth of a second. Pretty cool, eh?

As mentioned before, there is also the howmany() method which does somewhat the reverse of howbig().
Here you pass a memuse object and get a matrix size out. You can pass (exactly) one argument nrow

or ncol in addition to the memuse object; the method will determine the maximum possible size of the
outlying dimension in the obvious way. If no additional argument is passed, then the largest square
matrix dimensions will be returned.

4.4 Package Demos

In addition to all of the above, the memuse package includes several demos. You can execute them via
the command:

List of Demos
✞ ☎

(Use Rscript.exe for windows systems)

Basic construction/use of memuse objects

Rscript -e "demo(demo , package=’memuse ’, ask=F, echo=F)"

Arithmetic

Rscript -e "demo(demo2 , package=’memuse ’, ask=F, echo=F)"

howbig/howmany examples

Rscript -e "demo(demo3 , package=’memuse ’, ask=F, echo=F)"
✝ ✆

5 object.size() and Strings

5.1 Comparison to object.size()

R contains a handy tool for telling you how big an already allocated object is, namely the object.size()
function from the utils package. The functions in this package are essentially an extension of that
function for unallocated, dense objects, provided your objects are numeric (more on this later).

So say we have the vector x <- 1.0. This should be using 8 bytes to store that 1.0 as a double, right?
Well. . .
✞ ☎

1 object.size (1.0)

2 ## 48 bytes
✝ ✆

So where is all that extra space coming from? Simply put, R objects are more than just their data.
They contain a great deal of very useful metadata, which is where all the nice abstraction comes from.

5 OBJECT.SIZE() AND STRINGS 7 of 11

Whenever you create a vector, R keeps track of, for example, its length. If you do not appreciate this
convenience, go learn C and then get back to me.

For vectors, this overhead is 40 bytes, regardless of the type of data. Matrices, unsurprisingly cost more,
clocking in at 200 bytes overhead. It is worth noting that this overhead does not scale; it is on a per-object
basis. So we don’t need 40 bytes for each element of a vector when just 8 would do (in the case of double
precision values). We need 40 plus 8 per element:
✞ ☎

1 # 2 elements

2 40+8*2

3 ## [1] 56

4 object.size(rnorm (2))

5 ## 56 bytes

6

7 # 100.000 elements

8 40+1e5*8

9 ## [1] 800040

10 object.size(rnorm(1e5))

11 ## 800040 bytes
✝ ✆

The story is slightly more complicated for integer data (and a lot more complicated for strings; see
the following section). On my machine (and probably yours, but not necessarily), ints costs 4 bytes.
However, R does some aggressive allocation:
✞ ☎

1 object.size(1L:3L)

2 ## 56 bytes

3 object.size(1L:4L)

4 ## 56 bytes
✝ ✆

Here we see R allocating more bytes than it needs for integer vectors sometimes, choosing to allocate in
16 byte chunks rather than 8 byte chunks.

The memuse package does not adjust for this overhead, because it honestly just doesn’t matter. This
overhead is really paltry, and when you think about all the abstraction it buys you, it’s a hell of a bargain.
If you have a million R objects stored, you’re wasting less than one MiB (10242 bytes); so you would
need a billion objects to use just about a GiB (10243 bytes) on overhead. And if you’re doing that kind
of silly shit, my advice would be to learn how to properly use data structures.

All that said, the main memuse() (mu() for short) function will offer a better version of object.size().
In previous version, the package overwrote the default functionality, but as of package version 3.0.0, that
is no longer the case.

The object.size() function returns an object of class object_size, which is a not-so-useful S3 class
provided by core R. If you instead use memuse(), then you will get a much more useful memuse object.
So revisiting the code above:
✞ ☎

1 memuse(rnorm(1e5))

2 ## 781.289 KiB
✝ ✆

5.2 Strings

String objects have been avoided up until this point because they are much more difficult to describe
in general, unless they have a great deal of regularity imposed on them. In R, strings by default are

6 HARDWARE MEMORY INFORMATION 8 of 11

allocated to use 56 bytes (not counting overhead), unless they need more. I’m not sure why this value
was chosen, but 56 byte strings will allow for the storage of 7 chars (like a but not aa). Each char costs 1
byte, so there’s some fat overhead for the strings here, and almost certainly an additional byte held out
for the null terminator. So for example, recall that a vector allocates 40 bytes of overhead, so the vector
string letters should use 56× 26 + 40 bytes. We can easily verify that this is the case:
✞ ☎

1 56*26+40

2 ## [1] 1496

3 memuse(letters)

4 ## 1.461 KiB
✝ ✆

If you have a string with more than 7 chars, R will allocate extra space in 8-16 byte blocks. After the
initial 8 byte allocation (7 chars + null terminator), if you need more you get an additional 8 bytes (in
reality this is probably a contiguous 16 byte allocation; I have not bothered to check). Beyond that,
storage is allocate in 16 byte blocks for each string. For example:
✞ ☎

1 memuse(c(paste(rep("a", 7), collapse=""), "a"))

2 ## 152 B

3

4 memuse(c(paste(rep("a", 7+1), collapse=""), "a"))

5 ## 160 B

6

7 memuse(c(paste(rep("a", 7+8+1) , collapse=""), "a"))

8 ## 176 B

9

10 memuse(c(paste(rep("a", 7+8+16+1) , collapse=""), "a"))

11 ## 192 B
✝ ✆

If you have a vector of strings with them of varying lengths, the allocation of individual elements is
handled on a case-by-case basis. Consider the following:
✞ ☎

1 memuse(c(paste(rep("a", 7+8+16+1) , collapse=""), "a"))

2 ## 192 B
✝ ✆

This object (the vector of 2 elements with first element “aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa” and second
element “a”) is using 40 bytes for the vector, 56 + 8 + 16 + 16 bytes for the first element, and 56 bytes
for the second.

For all of these reasons, and given the fact that I almost never (ever) deal with character data, I have not
bothered to make any attempt to extend, for example, howmany() or howbig(), to incorporate strings.
Deal with it, nerd.

6 Hardware Memory Information

As of memuse version 2.0, some basic hardware memory information is accessible from several new
Sys.*() functions:

6 HARDWARE MEMORY INFORMATION 9 of 11

Function Description of Measurement
Sys.meminfo() Total and free RAM (also buffers and cache if available)
Sys.swapinfo() Total and free swap/page space.
Sys.procmem() Total and peak RAM usage by current R process.
Sys.cachesize() Cache sizes
Sys.cachelinesize() Cache line size

Not all platforms are supported for any given function, and even among those that are, not all measure-
ments are available across all platforms. The platform with the best support in the memuse package is
Linux. This is largely because getting this information in Linux is very simple — on top of the data itself
being very well-defined — compared to other platforms. So get your shit together, other OS devs.

All of this data can be accessed by a standalone C library located in memuse/src/meminfo. You can test
the library by going to this directory and running make; also see the README.

All platforms get these values differently, and most of them are calculated in slightly different ways as
well. The remainder of this section will outline these differences, as a kind of angrily written reference
standard, dedicated to the sisyphean tragedy of multiplatform software development.

6.1 Terminology

For clarity, we define some terms here.

RAM is “fast” storage on your computer (if you pretend that cache doesn’t exist, anyway). Free ram

is the portion of ram not being used, either by the OS (when this information is possible to get) or by
programs, hackers, etc.

Swap is pretend-ram that resides on disk that you shouldn’t ever actually use for anything. You’re much
better off having a program crash than sending you into a 40 hour swap death, where the computer
becomes completely inaccessible.. How swap is used and/or created itself is platform dependent. Swap
is kind of the same thing as paging on Windows, and so Sys.swapinfo() is aliased as Sys.pageinfo().
The two functions are identical within a given platform. All operating systems basically treat swap/page
files the same. There are minor differences in allocation; for example, Mac OS X bizarrely uses unused
space on the /boot partition for swap, for instance.

Cache is very fast temporary storage that data gets stuffed into along its way to being operated on by
the processor. For more information about cache, see the pbdPAPI package’s vignette. All operating
systems basically do a lookup in some table somewhere after identifying your processor to find the cache
sizes of your processor. The same is true of cache line size, which is the size of chunks of memory handled
by cache lookups.

6.2 Sys.meminfo() and Sys.swapinfo()

These functions return the amount of available and free ram for the former, and the amount of available
and free swap for the latter. How this happens is a labyrinthine mess. Join me, won’t you?

6.2.1 Linux and FreeBSD

In Linux and FreeBSD, the total available ram can be broken down into

6 HARDWARE MEMORY INFORMATION 10 of 11

• truly unused (freeram)

• used for buffer cache (bufferram)

• used for file caching (cachedram)

• used by programs

By default, memuse will collapse the first three into freeram, because that’s how most people think
about it; and if you open up some kind of system monitor program, they probably do the exact same
thing. By truly unused, we mean that nothing on the system has made any claim to it (according to
the kernel). The memory allocated for buffers and file cache is, well, file cache. It’s the stuff that makes
loading a program the second time much faster than it is to load it the first time. For more details, see
https://www.redhat.com/advice/tips/meminfo.html.

These values should agree with (and in some cases, are taken directly from) those found in /proc/meminfo,
with a small sample of the file provided:

✞ ☎

MemTotal: 8053556 kB

MemFree: 1761144 kB

Buffers: 808096 kB

Cached: 2327648 kB

SwapCached: 8 kB
✝ ✆

The actual implementation of meminfo() uses sysinfo (see man 2 sysinfo) for everything but cached
memory, which is read directly from /proc/meminfo.

6.2.2 Miscellaneous *NIX Variants

Everybody seems to have their own little wiggle to sysctl for getting various memory statistics, and I
just don’t have the kind of time or resources to set up 100 different BSD-variant vm’s to test that the
man pages aren’t lying to me. As such, all *NIX’s outside of Linux, FreeBSD, and Mac get only total
ram and “free ram”, as reported by sysconf.

Sys.swapinfo() is not supported on these platforms at this time.

6.3 Sys.procmem()

We also provide a utility for discovering the amount of ram being used by the current R process. To use
it, simply call:
✞ ☎

1 Sys.procmem ()
✝ ✆

This is utility is only supported on Linux, Windows, and Mac. On Linux and Windows, the utility will
also return the maximum amount of ram used by the current R process. You can see how this works by
calling:
✞ ☎

1 library(memuse)

2

3 Sys.procmem ()

4 x <- rnorm (1e7)

https://www.redhat.com/advice/tips/meminfo.html

6 HARDWARE MEMORY INFORMATION 11 of 11

5 object.size(x)

6 Sys.procmem ()

7 rm(x)

8 gc(FALSE)

9 Sys.procmem ()
✝ ✆

Just as an example, on my machine, this produces:
✞ ☎

Sys.procmem ()

$size

134.488 MiB

##

$peak

134.488 MiB

x <- rnorm(1e7)

object.size(x)

76.294 MiB

Sys.procmem ()

$size

210.785 MiB

##

$peak

210.785 MiB

rm(x)

gc(FALSE)

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 324437 17.4 597831 32.0 407500 21.8

Vcells 578176 4.5 9599428 73.3 10582203 80.8

Sys.procmem ()

$size

134.488 MiB

##

$peak

210.785 MiB
✝ ✆

	Introduction
	History
	Purpose
	License

	Installation
	Installing from Source
	Installing from CRAN

	It Turns Out That Size Does Matter, and How You Are Using It Is Wrong
	Using the memuse Package
	Constructing memuse Objects
	Default Parameters
	Methods
	Package Demos

	object.size() and Strings
	Comparison to `_12`12`$12=-1 object.size()
	Strings

	Hardware Memory Information
	Terminology
	Sys.meminfo() and Sys.swapinfo()
	Linux and FreeBSD
	Miscellaneous *NIX Variants

	Sys.procmem()

