
Package ‘lime’
October 13, 2022

Type Package

Title Local Interpretable Model-Agnostic Explanations

Version 0.5.3

Maintainer Emil Hvitfeldt <emilhhvitfeldt@gmail.com>

Description When building complex models, it is often difficult to explain why
the model should be trusted. While global measures such as accuracy are
useful, they cannot be used for explaining why a model made a specific
prediction. 'lime' (a port of the 'lime' 'Python' package) is a method for
explaining the outcome of black box models by fitting a local model around
the point in question an perturbations of this point. The approach is
described in more detail in the article by Ribeiro et al. (2016)
<arXiv:1602.04938>.

License MIT + file LICENSE

URL https://lime.data-imaginist.com, https://github.com/thomasp85/lime

BugReports https://github.com/thomasp85/lime/issues

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

VignetteBuilder knitr

Imports glmnet, stats, ggplot2, tools, stringi, Matrix, Rcpp,
assertthat, methods, grDevices, gower

Suggests xgboost, testthat, mlr, h2o, text2vec, MASS, covr, knitr,
rmarkdown, sessioninfo, magick, keras, htmlwidgets, shiny,
shinythemes, ranger

LinkingTo Rcpp, RcppEigen

NeedsCompilation yes

Author Emil Hvitfeldt [aut, cre] (<https://orcid.org/0000-0002-0679-1945>),
Thomas Lin Pedersen [aut] (<https://orcid.org/0000-0002-5147-4711>),
Michaël Benesty [aut]

Repository CRAN

Date/Publication 2022-08-19 08:50:06 UTC

1

https://arxiv.org/abs/1602.04938
https://lime.data-imaginist.com
https://github.com/thomasp85/lime
https://github.com/thomasp85/lime/issues
https://orcid.org/0000-0002-0679-1945
https://orcid.org/0000-0002-5147-4711

2 lime-package

R topics documented:

lime-package . 2
as_classifier . 3
default_tokenize . 4
explain . 4
interactive_text_explanations . 7
lime . 9
model_support . 12
plot_explanations . 13
plot_features . 14
plot_image_explanation . 15
plot_superpixels . 16
plot_text_explanations . 17
stop_words_sentences . 18
test_sentences . 19
train_sentences . 20

Index 21

lime-package lime: Local Interpretable Model-Agnostic Explanations

Description

When building complex models, it is often difficult to explain why the model should be trusted.
While global measures such as accuracy are useful, they cannot be used for explaining why a model
made a specific prediction. ’lime’ (a port of the ’lime’ ’Python’ package) is a method for explaining
the outcome of black box models by fitting a local model around the point in question an perturba-
tions of this point. The approach is described in more detail in the article by Ribeiro et al. (2016)
arXiv:1602.04938.

Details

This package is a port of the original Python lime package implementing the prediction explanation
framework laid out Ribeiro et al. (2016). The package supports models from caret and mlr
natively, but see the docs for how to make it work for any model.

Main functions:

Use of lime is mainly through two functions. First you create an explainer object using the
lime() function based on the training data and the model, and then you can use the explain()
function along with new data and the explainer to create explanations for the model output.

Along with these two functions, lime also provides the plot_features() and plot_text_explanations()
function to visualise the explanations directly.

https://arxiv.org/abs/1602.04938

as_classifier 3

Author(s)

Maintainer: Emil Hvitfeldt <emilhhvitfeldt@gmail.com> (ORCID)

Authors:

• Thomas Lin Pedersen <thomasp85@gmail.com> (ORCID)
• Michaël Benesty <michael@benesty.fr>

References

Ribeiro, M.T., Singh, S., Guestrin, C. "Why Should I Trust You?": Explaining the Predictions of
Any Classifier. 2016, https://arxiv.org/abs/1602.04938

See Also

Useful links:

• https://lime.data-imaginist.com

• https://github.com/thomasp85/lime

• Report bugs at https://github.com/thomasp85/lime/issues

as_classifier Indicate model type to lime

Description

lime requires knowledge about the type of model it is dealing with, more specifically whether the
model is a regressor or a classifier. If the model class has a model_type() method defined lime
can figure it out on its own but if not, you can wrap your model in either of these functions to
indicate what type of model lime is dealing with. This can also be used to overwrite the output
from model_type() if the implementation uses some heuristic that doesn’t work for your particular
model (e.g. keras models types are found by checking if the activation in the last layer is linear or
not - this is rather crude). In addition as_classifier can be used to overwrite the returned class
labels - this is handy if the model does not store the labels (again, keras springs to mind).

Usage

as_classifier(x, labels = NULL)

as_regressor(x)

Arguments

x The model object
labels An optional character vector giving labels for each class

Value

A model augmented with information about the model type and (potentially) the class labels.

https://orcid.org/0000-0002-0679-1945
https://orcid.org/0000-0002-5147-4711
https://arxiv.org/abs/1602.04938
https://lime.data-imaginist.com
https://github.com/thomasp85/lime
https://github.com/thomasp85/lime/issues

4 explain

default_tokenize Default function to tokenize

Description

This tokenizer uses stringi::stri_split_boundaries() to tokenize a character vector. To be
used with [explain.character()‘.

Usage

default_tokenize(text)

Arguments

text text to tokenize as a character vector

Value

a character vector.

Examples

data('train_sentences')
default_tokenize(train_sentences$text[1])

explain Explain model predictions

Description

Once an explainer has been created using the lime() function it can be used to explain the result
of the model on new observations. The explain() function takes new observation along with
the explainer and returns a data.frame with prediction explanations, one observation per row. The
returned explanations can then be visualised in a number of ways, e.g. with plot_features().

Usage

S3 method for class 'data.frame'
explain(
x,
explainer,
labels = NULL,
n_labels = NULL,
n_features,
n_permutations = 5000,

explain 5

feature_select = "auto",
dist_fun = "gower",
kernel_width = NULL,
gower_pow = 1,
...

)

S3 method for class 'character'
explain(
x,
explainer,
labels = NULL,
n_labels = NULL,
n_features,
n_permutations = 5000,
feature_select = "auto",
single_explanation = FALSE,
...

)

explain(
x,
explainer,
labels,
n_labels = NULL,
n_features,
n_permutations = 5000,
feature_select = "auto",
...

)

S3 method for class 'imagefile'
explain(
x,
explainer,
labels = NULL,
n_labels = NULL,
n_features,
n_permutations = 1000,
feature_select = "auto",
n_superpixels = 50,
weight = 20,
n_iter = 10,
p_remove = 0.5,
batch_size = 10,
background = "grey",
...

)

6 explain

Arguments

x New observations to explain, of the same format as used when creating the ex-
plainer

explainer An explainer object to use for explaining the observations

labels The specific labels (classes) to explain in case the model is a classifier. For
classifiers either this or n_labels must be given.

n_labels The number of labels to explain. If this is given for classifiers the top n_label
classes will be explained.

n_features The number of features to use for each explanation.

n_permutations The number of permutations to use for each explanation.

feature_select The algorithm to use for selecting features. One of:

• "auto": If n_features <= 6 use "forward_selection" else use "highest_weights".
• "none": Ignore n_features and use all features.
• "forward_selection": Add one feature at a time until n_features is

reached, based on quality of a ridge regression model.
• "highest_weights": Fit a ridge regression and select the n_features

with the highest absolute weight.
• "lasso_path": Fit a lasso model and choose the n_features whose lars

path converge to zero the latest.
• "tree" : Fit a tree to select n_features (which needs to be a power of 2).

It requires last version of XGBoost.

dist_fun The distance function to use for calculating the distance from the observation to
the permutations. If dist_fun = 'gower' (default) it will use gower::gower_dist().
Otherwise it will be forwarded to stats::dist()

kernel_width The width of the exponential kernel that will be used to convert the distance to
a similarity in case dist_fun != 'gower'.

gower_pow A modifier for gower distance. The calculated distance will be raised to the
power of this value.

... Parameters passed on to the predict_model() method

single_explanation

A boolean indicating whether to pool all text in x into a single explanation.

n_superpixels The number of segments an image should be split into

weight How high should locality be weighted compared to colour. High values leads to
more compact superpixels, while low values follow the image structure more

n_iter How many iterations should the segmentation run for

p_remove The probability that a superpixel will be removed in each permutation

batch_size The number of explanations to handle at a time

background The colour to use for blocked out superpixels

interactive_text_explanations 7

Value

A data.frame encoding the explanations one row per explained observation. The columns are:

• model_type: The type of the model used for prediction.

• case: The case being explained (the rowname in cases).

• model_r2: The quality of the model used for the explanation

• model_intercept: The intercept of the model used for the explanation

• model_prediction: The prediction of the observation based on the model used for the expla-
nation.

• feature: The feature used for the explanation

• feature_value: The value of the feature used

• feature_weight: The weight of the feature in the explanation

• feature_desc: A human readable description of the feature importance.

• data: Original data being explained

• prediction: The original prediction from the model

Furthermore classification explanations will also contain:

• label: The label being explained

• label_prob: The probability of label as predicted by model

Examples

Explaining a model and an explainer for it
library(MASS)
iris_test <- iris[1, 1:4]
iris_train <- iris[-1, 1:4]
iris_lab <- iris[[5]][-1]
model <- lda(iris_train, iris_lab)
explanation <- lime(iris_train, model)

This can now be used together with the explain method
explain(iris_test, explanation, n_labels = 1, n_features = 2)

interactive_text_explanations

Interactive explanations

Description

Display text explanation in an interactive way. You can :

Create an output to insert text explanation plot in Shiny application.

Render the text explanations in Shiny application.

8 interactive_text_explanations

Usage

interactive_text_explanations(
explainer,
window_title = "Text model explainer",
title = "Local Interpretable Model-agnostic Explanations",
place_holder = "Put here the text to explain",
minimum_lentgh = 3,
minimum_lentgh_error = "Text provided is too short to be explained (>= 3).",
max_feature_to_select = 20

)

text_explanations_output(outputId, width = "100%", height = "400px")

render_text_explanations(expr, env = parent.frame(), quoted = FALSE)

Arguments

explainer parameters
window_title, title, place_holder, minimum_lentgh_error

text to be displayed on the page

minimum_lentgh don’t update display if text is shorter than this parameter
max_feature_to_select

up limit to the number of words that can be selected

outputId output variable to read from

width, height Must be a valid CSS unit or a number, which will be coerced to a string and have
"px" appended.

expr An expression that generates an HTML widget

env The environment in which to evaluate expr.

quoted Is expr a quoted expression (with quote())? This is useful if you want to save
an expression in a variable.

Details

• send a new sentence

• update the parameters of the explainer

Value

An output function that enables the use of the widget within Shiny applications.

A render function that enables the use of the widget within Shiny applications.

Examples

Not run:
library(text2vec)

lime 9

library(xgboost)

data(train_sentences)
data(test_sentences)

get_matrix <- function(text) {
it <- itoken(text, progressbar = FALSE)
create_dtm(it, vectorizer = hash_vectorizer())

}

dtm_train = get_matrix(train_sentences$text)

xgb_model <- xgb.train(list(max_depth = 7, eta = 0.1, objective = "binary:logistic",
eval_metric = "error", nthread = 1),
xgb.DMatrix(dtm_train, label = train_sentences$class.text == "OWNX"),
nrounds = 50)

sentences <- head(test_sentences[test_sentences$class.text == "OWNX", "text"], 1)
explainer <- lime(train_sentences$text, xgb_model, get_matrix)

The explainer can now be queried interactively:
interactive_text_explanations(explainer)

End(Not run)

lime Create a model explanation function based on training data

Description

This is the main function of the lime package. It is a factory function that returns a new function that
can be used to explain the predictions made by black box models. This is a generic with methods
for the different data types supported by lime.

Usage

S3 method for class 'data.frame'
lime(
x,
model,
preprocess = NULL,
bin_continuous = TRUE,
n_bins = 4,
quantile_bins = TRUE,
use_density = TRUE,
...

)

S3 method for class 'character'

10 lime

lime(
x,
model,
preprocess = NULL,
tokenization = default_tokenize,
keep_word_position = FALSE,
...

)

S3 method for class 'imagefile'
lime(x, model, preprocess = NULL, ...)

lime(x, model, ...)

Arguments

x The training data used for training the model that should be explained.

model The model whose output should be explained

preprocess Function to transform a character vector to the format expected from the
model.

bin_continuous Should continuous variables be binned when making the explanation

n_bins The number of bins for continuous variables if bin_continuous = TRUE

quantile_bins Should the bins be based on n_bins quantiles or spread evenly over the range
of the training data

use_density If bin_continuous = FALSE should continuous data be sampled using a kernel
density estimation. If not, continuous features are expected to follow a normal
distribution.

... Arguments passed on to methods

tokenization function used to tokenize text for the permutations.
keep_word_position

set to TRUE if to keep order of words. Warning: each word will be replaced by
word_position.

Value

Return an explainer which can be used together with explain() to explain model predictions.

Examples

Explaining a model based on tabular data
library(MASS)
iris_test <- iris[1, 1:4]
iris_train <- iris[-1, 1:4]
iris_lab <- iris[[5]][-1]
Create linear discriminant model on iris data
model <- lda(iris_train, iris_lab)
Create explanation object

lime 11

explanation <- lime(iris_train, model)

This can now be used together with the explain method
explain(iris_test, explanation, n_labels = 1, n_features = 2)

Not run:
Explaining a model based on text data

Purpose is to classify sentences from scientific publications
and find those where the team writes about their own work
(category OWNX in the provided dataset).

library(text2vec)
library(xgboost)

data(train_sentences)
data(test_sentences)

get_matrix <- function(text) {
it <- itoken(text, progressbar = FALSE)
create_dtm(it, vectorizer = hash_vectorizer())

}

dtm_train = get_matrix(train_sentences$text)

xgb_model <- xgb.train(list(max_depth = 7, eta = 0.1, objective = "binary:logistic",
eval_metric = "error", nthread = 1),
xgb.DMatrix(dtm_train, label = train_sentences$class.text == "OWNX"),
nrounds = 50)

sentences <- head(test_sentences[test_sentences$class.text == "OWNX", "text"], 1)
explainer <- lime(train_sentences$text, xgb_model, get_matrix)
explanations <- explain(sentences, explainer, n_labels = 1, n_features = 2)

We can see that many explanations are based
on the presence of the word `we` in the sentences
which makes sense regarding the task.
print(explanations)

End(Not run)
Not run:
library(keras)
library(abind)
get some image
img_path <- system.file('extdata', 'produce.png', package = 'lime')
load a predefined image classifier
model <- application_vgg16(

weights = "imagenet",
include_top = TRUE

)

create a function that prepare images for the model
img_preprocess <- function(x) {

12 model_support

arrays <- lapply(x, function(path) {
img <- image_load(path, target_size = c(224,224))
x <- image_to_array(img)
x <- array_reshape(x, c(1, dim(x)))
x <- imagenet_preprocess_input(x)

})
do.call(abind, c(arrays, list(along = 1)))

}

Create an explainer (lime recognise the path as an image)
explainer <- lime(img_path, as_classifier(model, unlist(labels)), img_preprocess)

Explain the model (can take a long time depending on your system)
explanation <- explain(img_path, explainer, n_labels = 2, n_features = 10, n_superpixels = 70)

End(Not run)

model_support Methods for extending limes model support

Description

In order to have lime support for your model of choice lime needs to be able to get predictions
from the model in a standardised way, and it needs to be able to know whether it is a classification
or regression model. For the former it calls the predict_model() generic which the user is free
to supply methods for without overriding the standard predict() method. For the latter the model
must respond to the model_type() generic.

Usage

predict_model(x, newdata, type, ...)

model_type(x, ...)

Arguments

x A model object
newdata The new observations to predict
type Either 'raw' to indicate predicted values, or 'prob' to indicate class probabili-

ties
... passed on to predict method

Value

A data.frame in the case of predict_model(). If type = 'raw' it will contain one column named
'Response' holding the predicted values. If type = 'prob' it will contain a column for each of
the possible classes named after the class, each column holding the probability score for class
membership. For model_type() a character string. Either 'regression' or 'classification'
is currently supported.

plot_explanations 13

Supported Models

Out of the box, lime supports the following model objects:

• train from caret

• WrappedModel from mlr

• xgb.Booster from xgboost

• H2OModel from h2o

• keras.engine.training.Model from keras

• lda from MASS (used for low-dependency examples)

If your model is not one of the above you’ll need to implement support yourself. If the model
has a predict interface mimicking that of predict.train() from caret, it will be enough to wrap
your model in as_classifier()/as_regressor() to gain support. Otherwise you’ll need need
to implement a predict_model() method and potentially a model_type() method (if the latter is
omitted the model should be wrapped in as_classifier()/as_regressor(), everytime it is used
in lime()).

Examples

Example of adding support for lda models (already available in lime)
predict_model.lda <- function(x, newdata, type, ...) {

res <- predict(x, newdata = newdata, ...)
switch(
type,
raw = data.frame(Response = res$class, stringsAsFactors = FALSE),
prob = as.data.frame(res$posterior, check.names = FALSE)

)
}

model_type.lda <- function(x, ...) 'classification'

plot_explanations Plot a condensed overview of all explanations

Description

This function produces a facetted heatmap visualisation of all case/label/feature combinations.
Compared to plot_features() it is much more condensed, thus allowing for an overview of many
explanations in one plot. On the other hand it is less useful for getting exact numerical statistics of
the explanation.

Usage

plot_explanations(explanation, ...)

14 plot_features

Arguments

explanation A data.frame as returned by explain().

... Parameters passed on to ggplot2::facet_wrap()

Value

A ggplot object

See Also

Other explanation plots: plot_features(), plot_text_explanations()

Examples

Create some explanations
library(MASS)
iris_test <- iris[c(1, 51, 101), 1:4]
iris_train <- iris[-c(1, 51, 101), 1:4]
iris_lab <- iris[[5]][-c(1, 51, 101)]
model <- lda(iris_train, iris_lab)
explanation <- lime(iris_train, model)
explanations <- explain(iris_test, explanation, n_labels = 1, n_features = 2)

Get an overview with the standard plot
plot_explanations(explanations)

plot_features Plot the features in an explanation

Description

This functions creates a compact visual representation of the explanations for each case and label
combination in an explanation. Each extracted feature is shown with its weight, thus giving the
importance of the feature in the label prediction.

Usage

plot_features(explanation, ncol = 2, cases = NULL)

Arguments

explanation A data.frame as returned by explain().

ncol The number of columns in the facetted plot

cases An optional vector with case names to plot. explanation will be filtered to only
include these cases prior to plotting

plot_image_explanation 15

Value

A ggplot object

See Also

Other explanation plots: plot_explanations(), plot_text_explanations()

Examples

Create some explanations
library(MASS)
iris_test <- iris[1, 1:4]
iris_train <- iris[-1, 1:4]
iris_lab <- iris[[5]][-1]
model <- lda(iris_train, iris_lab)
explanation <- lime(iris_train, model)
explanations <- explain(iris_test, explanation, n_labels = 1, n_features = 2)

Get an overview with the standard plot
plot_features(explanations)

plot_image_explanation

Display image explanations as superpixel areas

Description

When classifying images one is often interested in seeing the areas that supports and/or contradicts
a classification. plot_image_explanation() will take the result of an image explanation and
highlight the areas found relevant to each label in the explanation. The highlighting can either
be done by blocking the parts of the image not related to the classification, or by encircling and
colouring the areas that influence the explanation.

Usage

plot_image_explanation(
explanation,
which = 1,
threshold = 0.02,
show_negative = FALSE,
display = "outline",
fill_alpha = 0.3,
outline_col = c("blue", "red"),
block_col = "grey"

)

16 plot_superpixels

Arguments

explanation The explanation created with an image_explainer

which The case in explanation to illustrate. plot_image_explanation only sup-
ports showing one case at a time.

threshold The lowest absolute weighted superpixels to include

show_negative Should areas that contradicts the prediction also be shown

display How should the areas be shown? Either outline or block

fill_alpha In case of display = 'outline' how opaque should the area colour be?

outline_col A vector of length 2 giving the colour for supporting and contradicting areas
respectively if display = 'outline'

block_col The colour to use for the unimportant areas if display = 'block'

Value

A ggplot object

Examples

Not run:
load precalculated explanation as it takes a long time to create
explanation <- .load_image_example()

Default
plot_image_explanation(explanation)

Block out background instead
plot_image_explanation(explanation, display = 'block')

Show negatively correlated areas as well
plot_image_explanation(explanation, show_negative = TRUE)

End(Not run)

plot_superpixels Test super pixel segmentation

Description

The segmentation of an image into superpixels are an important step in generating explanations for
image models. It is both important that the segmentation is correct and follows meaningful patterns
in the picture, but also that the size/number of superpixels are appropriate. If the important features
in the image are chopped into too many segments the permutations will probably damage the picture
beyond recognition in almost all cases leading to a poor or failing explanation model. As the size of
the object of interest is varying it is impossible to set up hard rules for the number of superpixels to

plot_text_explanations 17

segment into - the larger the object is relative to the size of the image, the fewer superpixels should
be generated. Using plot_superpixels it is possible to evaluate the superpixel parameters before
starting the time consuming explanation function.

Usage

plot_superpixels(
path,
n_superpixels = 50,
weight = 20,
n_iter = 10,
colour = "black"

)

Arguments

path The path to the image. Must be readable by magick::image_read()

n_superpixels The number of superpixels to segment into

weight How high should locality be weighted compared to colour. High values leads to
more compact superpixels, while low values follow the image structure more

n_iter How many iterations should the segmentation run for

colour What line colour should be used to show the segment boundaries

Value

A ggplot object

Examples

image <- system.file('extdata', 'produce.png', package = 'lime')

plot with default settings
plot_superpixels(image)

Test different settings
plot_superpixels(image, n_superpixels = 100, colour = 'white')

plot_text_explanations

Plot text explanations

Description

Highlight words which explains a prediction.

18 stop_words_sentences

Usage

plot_text_explanations(explanations, ...)

Arguments

explanations object returned by the lime.character function.

... parameters passed to htmlwidgets::sizingPolicy()

See Also

Other explanation plots: plot_explanations(), plot_features()

Examples

We load a precalculated explanation set based on the procedure in the ?lime
examples
explanations <- .load_text_example()

We see that the explanations are in the expected format
print(explanations)

We can now get the explanations in the context of the input text
plot_text_explanations(explanations)

stop_words_sentences Stop words list

Description

List of words that can be safely removed from sentences.

Usage

stop_words_sentences

Format

Character vector of stop words

Source

https://archive.ics.uci.edu/ml/datasets/

https://archive.ics.uci.edu/ml/datasets/

test_sentences 19

test_sentences Sentence corpus - test part

Description

This corpus contains sentences from the abstract and introduction of 30 scientific articles that have
been annotated (i.e. labeled or tagged) according to a modified version of the Argumentative Zones
annotation scheme.

Usage

test_sentences

Format

2 data frame with 3117 rows and 2 variables:

text the sentences as a character vector

class.text the category of the sentence

Details

These 30 scientific articles come from three different domains:

1. PLoS Computational Biology (PLOS)

2. The machine learning repository on arXiv (ARXIV)

3. The psychology journal Judgment and Decision Making (JDM)

There are 10 articles from each domain. In addition to the labeled data, this corpus also contains
a corresponding set of unlabeled articles. These unlabeled articles also come from PLOS, ARXIV,
and JDM. There are 300 unlabeled articles from each domain (again, only the sentences from the
abstract and introduction). These unlabeled articles can be used for unsupervised or semi-supervised
approaches to sentence classification which rely on a small set of labeled data and a larger set of
unlabeled data.

===== References =====

S. Teufel and M. Moens. Summarizing scientific articles: experiments with relevance and rhetorical
status. Computational Linguistics, 28(4):409-445, 2002.

S. Teufel. Argumentative zoning: information extraction from scientific text. PhD thesis, School of
Informatics, University of Edinburgh, 1999.

Source

https://archive.ics.uci.edu/ml/datasets/Sentence+Classification

https://archive.ics.uci.edu/ml/datasets/Sentence+Classification

20 train_sentences

train_sentences Sentence corpus - train part

Description

This corpus contains sentences from the abstract and introduction of 30 scientific articles that have
been annotated (i.e. labeled or tagged) according to a modified version of the Argumentative Zones
annotation scheme.

Usage

train_sentences

Format

2 data frame with 3117 rows and 2 variables:

text the sentences as a character vector

class.text the category of the sentence

Details

These 30 scientific articles come from three different domains:

1. PLoS Computational Biology (PLOS)

2. The machine learning repository on arXiv (ARXIV)

3. The psychology journal Judgment and Decision Making (JDM)

There are 10 articles from each domain. In addition to the labeled data, this corpus also contains
a corresponding set of unlabeled articles. These unlabeled articles also come from PLOS, ARXIV,
and JDM. There are 300 unlabeled articles from each domain (again, only the sentences from the
abstract and introduction). These unlabeled articles can be used for unsupervised or semi-supervised
approaches to sentence classification which rely on a small set of labeled data and a larger set of
unlabeled data.

===== References =====

S. Teufel and M. Moens. Summarizing scientific articles: experiments with relevance and rhetorical
status. Computational Linguistics, 28(4):409-445, 2002.

S. Teufel. Argumentative zoning: information extraction from scientific text. PhD thesis, School of
Informatics, University of Edinburgh, 1999.

Source

https://archive.ics.uci.edu/ml/datasets/Sentence+Classification

https://archive.ics.uci.edu/ml/datasets/Sentence+Classification

Index

∗ datasets
stop_words_sentences, 18
test_sentences, 19
train_sentences, 20

∗ explanation plots
plot_explanations, 13
plot_features, 14
plot_text_explanations, 17

_PACKAGE (lime-package), 2

as_classifier, 3
as_classifier(), 13
as_regressor (as_classifier), 3
as_regressor(), 13

default_tokenize, 4

explain, 4
explain(), 2, 10, 14

ggplot2::facet_wrap(), 14
gower::gower_dist(), 6

interactive_text_explanations, 7

lime, 9
lime(), 2, 4, 13
lime-package, 2
lime.character, 18

magick::image_read(), 17
model_support, 12
model_type (model_support), 12
model_type(), 3

plot_explanations, 13, 15, 18
plot_features, 14, 14, 18
plot_features(), 2, 4, 13
plot_image_explanation, 15
plot_superpixels, 16
plot_text_explanations, 14, 15, 17

plot_text_explanations(), 2
predict_model (model_support), 12

quote(), 8

render_text_explanations
(interactive_text_explanations),
7

stats::dist(), 6
stop_words_sentences, 18
stringi::stri_split_boundaries(), 4

test_sentences, 19
text_explanations_output

(interactive_text_explanations),
7

the docs, 2
train_sentences, 20

21

	lime-package
	as_classifier
	default_tokenize
	explain
	interactive_text_explanations
	lime
	model_support
	plot_explanations
	plot_features
	plot_image_explanation
	plot_superpixels
	plot_text_explanations
	stop_words_sentences
	test_sentences
	train_sentences
	Index

