
Package ‘jsonvalidate’
February 7, 2025

Title Validate 'JSON' Schema

Version 1.5.0

Maintainer Rich FitzJohn <rich.fitzjohn@gmail.com>

Description Uses the node library 'is-my-json-valid' or 'ajv' to
validate 'JSON' against a 'JSON' schema. Drafts 04, 06 and 07 of
'JSON' schema are supported.

License MIT + file LICENSE

URL https://docs.ropensci.org/jsonvalidate/,

https://github.com/ropensci/jsonvalidate

BugReports https://github.com/ropensci/jsonvalidate/issues

Imports R6, V8

Suggests knitr, jsonlite, rmarkdown, testthat, withr

RoxygenNote 7.3.2

VignetteBuilder knitr

Encoding UTF-8

Language en-GB

Config/testthat/edition 3

NeedsCompilation no

Author Rich FitzJohn [aut, cre],
Rob Ashton [aut],
Alex Hill [ctb],
Alicia Schep [ctb],
Ian Lyttle [ctb],
Kara Woo [ctb],
Mathias Buus [aut, cph] (Author of bundled imjv library),
Evgeny Poberezkin [aut, cph] (Author of bundled Ajv library)

Repository CRAN

Date/Publication 2025-02-07 11:20:02 UTC

1

https://docs.ropensci.org/jsonvalidate/
https://github.com/ropensci/jsonvalidate
https://github.com/ropensci/jsonvalidate/issues

2 json_schema

Contents
json_schema . 2
json_serialise . 4
json_validate . 7
json_validator . 9

Index 13

json_schema Interact with JSON schemas

Description

Interact with JSON schemas, using them to validate json strings or serialise objects to JSON safely.

This interface supersedes json_schema and changes some default arguments. While the old interface
is not going away any time soon, users are encouraged to switch to this interface, which is what we
will develop in the future.

Public fields

schema The parsed schema, cannot be rebound

engine The name of the schema validation engine

Methods

Public methods:

• json_schema$new()

• json_schema$validate()

• json_schema$serialise()

Method new(): Create a new json_schema object.

Usage:
json_schema$new(schema, engine = "ajv", reference = NULL, strict = FALSE)

Arguments:

schema Contents of the json schema, or a filename containing a schema.
engine Specify the validation engine to use. Options are "ajv" (the default; "Another JSON

Schema Validator") or "imjv" ("is-my-json-valid", the default everywhere in versions prior
to 1.4.0, and the default for json_validator. Use of ajv is strongly recommended for all new
code.

reference Reference within schema to use for validating against a sub-schema instead of the
full schema passed in. For example if the schema has a ’definitions’ list including a defini-
tion for a ’Hello’ object, one could pass "#/definitions/Hello" and the validator would check
that the json is a valid "Hello" object. Only available if engine = "ajv".

json_schema 3

strict Set whether the schema should be parsed strictly or not. If in strict mode schemas will
error to "prevent any unexpected behaviours or silently ignored mistakes in user schema".
For example it will error if encounters unknown formats or unknown keywords. See https://ajv.js.org/strict-
mode.html for details. Only available in engine = "ajv" and silently ignored for "imjv".
Validate a json string against a schema.

Method validate():
Usage:
json_schema$validate(
json,
verbose = FALSE,
greedy = FALSE,
error = FALSE,
query = NULL

)

Arguments:
json Contents of a json object, or a filename containing one.
verbose Be verbose? If TRUE, then an attribute "errors" will list validation failures as a data.frame
greedy Continue after the first error?
error Throw an error on parse failure? If TRUE, then the function returns NULL on success (i.e.,

call only for the side-effect of an error on failure, like stopifnot).
query A string indicating a component of the data to validate the schema against. Eventually

this may support full jsonpath syntax, but for now this must be the name of an element
within json. See the examples for more details. Serialise an R object to JSON with unbox-
ing guided by the schema. See json_serialise for details on the problem and the algorithm.

Method serialise():
Usage:
json_schema$serialise(object)

Arguments:
object An R object to serialise

Examples

This is the schema from ?json_validator
schema <- '{

"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Product",
"description": "A product from Acme\'s catalog",
"type": "object",
"properties": {

"id": {
"description": "The unique identifier for a product",
"type": "integer"

},
"name": {

"description": "Name of the product",
"type": "string"

https://www.npmjs.com/package/jsonpath

4 json_serialise

},
"price": {

"type": "number",
"minimum": 0,
"exclusiveMinimum": true

},
"tags": {

"type": "array",
"items": {

"type": "string"
},
"minItems": 1,
"uniqueItems": true

}
},
"required": ["id", "name", "price"]

}'

We're going to use a validator object below
v <- jsonvalidate::json_validator(schema, "ajv")

And this is some data that we might generate in R that we want to
serialise using that schema
x <- list(id = 1, name = "apple", price = 0.50, tags = "fruit")

If we serialise to json, then 'id', 'name' and "price' end up a
length 1-arrays
jsonlite::toJSON(x)

...and that fails validation
v(jsonlite::toJSON(x))

If we auto-unbox then 'fruit' ends up as a string and not an array,
also failing validation:
jsonlite::toJSON(x, auto_unbox = TRUE)
v(jsonlite::toJSON(x, auto_unbox = TRUE))

Using json_serialise we can guide the serialisation process using
the schema:
jsonvalidate::json_serialise(x, schema)

...and this way we do pass validation:
v(jsonvalidate::json_serialise(x, schema))

It is typically much more efficient to construct a json_schema
object first and do both operations with it:
obj <- jsonvalidate::json_schema$new(schema)
json <- obj$serialise(x)
obj$validate(json)

json_serialise Safe JSON serialisation

json_serialise 5

Description

Safe serialisation of json with unboxing guided by the schema.

Usage

json_serialise(
object,
schema,
engine = "ajv",
reference = NULL,
strict = FALSE

)

Arguments

object An object to be serialised

schema A schema (string or path to a string, suitable to be passed through to json_validator
or a validator object itself.

engine The engine to use. Only ajv is supported, and trying to use imjv will throw an
error.

reference Reference within schema to use for validating against a sub-schema instead of
the full schema passed in. For example if the schema has a ’definitions’ list in-
cluding a definition for a ’Hello’ object, one could pass "#/definitions/Hello" and
the validator would check that the json is a valid "Hello" object. Only available
if engine = "ajv".

strict Set whether the schema should be parsed strictly or not. If in strict mode
schemas will error to "prevent any unexpected behaviours or silently ignored
mistakes in user schema". For example it will error if encounters unknown for-
mats or unknown keywords. See https://ajv.js.org/strict-mode.html for details.
Only available in engine = "ajv".

Details

When using jsonlite::toJSON we are forced to deal with the differences between R’s types and those
available in JSON. In particular:

• R has no scalar types so it is not clear if 1 should be serialised as a number or a vector of
length 1; jsonlite provides support for "automatically unboxing" such values (assuming that
length-1 vectors are scalars) or never unboxing them unless asked to using jsonlite::unbox

• JSON has no date/time values and there are many possible string representations.

• JSON has no data.frame or matrix type and there are several ways of representing these in
JSON, all equally valid (e.g., row-wise, column-wise or as an array of objects).

• The handling of NULL and missing values (NA, NaN) are different

• We need to chose the number of digits to write numbers out at, balancing precision and storage.

6 json_serialise

These issues are somewhat lessened when we have a schema because we know what our target
type looks like. This function attempts to use the schema to guide serialisation of json safely. Cur-
rently it only supports detecting the appropriate treatment of length-1 vectors, but we will expand
functionality over time.

For a user, this function provides an argument-free replacement for jsonlite::toJSON, accept-
ing an R object and returning a string with the JSON representation of the object. Internally the
algorithm is:

1. serialise the object with jsonlite::toJSON, with auto_unbox = FALSE so that length-1 vectors
are serialised as a length-1 arrays.

2. operating entirely within JavaScript, deserialise the object with JSON.parse, traverse the ob-
ject and its schema simultaneously looking for length-1 arrays where the schema says there
should be scalar value and unboxing these, and re-serialise with JSON.stringify

There are several limitations to our current approach, and not all unboxable values will be found - at
the moment we know that schemas contained within a oneOf block (or similar) will not be recursed
into.

Value

A string, representing object in JSON format. As for jsonlite::toJSON we set the class attribute
to be json to mark it as serialised json.

Warning

Direct use of this function will be slow! If you are going to serialise more than one or two objects
with a single schema, you should use the serialise method of a json_schema object which you
create once and pass around.

Examples

This is the schema from ?json_validator
schema <- '{

"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Product",
"description": "A product from Acme\'s catalog",
"type": "object",
"properties": {

"id": {
"description": "The unique identifier for a product",
"type": "integer"

},
"name": {

"description": "Name of the product",
"type": "string"

},
"price": {

"type": "number",
"minimum": 0,
"exclusiveMinimum": true

},

json_validate 7

"tags": {
"type": "array",
"items": {

"type": "string"
},
"minItems": 1,
"uniqueItems": true

}
},
"required": ["id", "name", "price"]

}'

We're going to use a validator object below
v <- jsonvalidate::json_validator(schema, "ajv")

And this is some data that we might generate in R that we want to
serialise using that schema
x <- list(id = 1, name = "apple", price = 0.50, tags = "fruit")

If we serialise to json, then 'id', 'name' and "price' end up a
length 1-arrays
jsonlite::toJSON(x)

...and that fails validation
v(jsonlite::toJSON(x))

If we auto-unbox then 'fruit' ends up as a string and not an array,
also failing validation:
jsonlite::toJSON(x, auto_unbox = TRUE)
v(jsonlite::toJSON(x, auto_unbox = TRUE))

Using json_serialise we can guide the serialisation process using
the schema:
jsonvalidate::json_serialise(x, schema)

...and this way we do pass validation:
v(jsonvalidate::json_serialise(x, schema))

It is typically much more efficient to construct a json_schema
object first and do both operations with it:
obj <- jsonvalidate::json_schema$new(schema)
json <- obj$serialise(x)
obj$validate(json)

json_validate Validate a json file

Description

Validate a single json against a schema. This is a convenience wrapper around json_validator(schema)(json)
or json_schema$new(schema, engine = "ajv")$validate(json). See json_validator() for

8 json_validate

further details.

Usage

json_validate(
json,
schema,
verbose = FALSE,
greedy = FALSE,
error = FALSE,
engine = "imjv",
reference = NULL,
query = NULL,
strict = FALSE

)

Arguments

json Contents of a json object, or a filename containing one.

schema Contents of the json schema, or a filename containing a schema.

verbose Be verbose? If TRUE, then an attribute "errors" will list validation failures as a
data.frame

greedy Continue after the first error?

error Throw an error on parse failure? If TRUE, then the function returns NULL on
success (i.e., call only for the side-effect of an error on failure, like stopifnot).

engine Specify the validation engine to use. Options are "imjv" (the default; which uses
"is-my-json-valid") and "ajv" (Another JSON Schema Validator). The latter
supports more recent json schema features.

reference Reference within schema to use for validating against a sub-schema instead of
the full schema passed in. For example if the schema has a ’definitions’ list in-
cluding a definition for a ’Hello’ object, one could pass "#/definitions/Hello" and
the validator would check that the json is a valid "Hello" object. Only available
if engine = "ajv".

query A string indicating a component of the data to validate the schema against. Even-
tually this may support full jsonpath syntax, but for now this must be the name
of an element within json. See the examples for more details.

strict Set whether the schema should be parsed strictly or not. If in strict mode
schemas will error to "prevent any unexpected behaviours or silently ignored
mistakes in user schema". For example it will error if encounters unknown for-
mats or unknown keywords. See https://ajv.js.org/strict-mode.html for details.
Only available in engine = "ajv".

Examples

A simple schema example:
schema <- '{

"$schema": "http://json-schema.org/draft-04/schema#",

https://www.npmjs.com/package/jsonpath

json_validator 9

"title": "Product",
"description": "A product from Acme\'s catalog",
"type": "object",
"properties": {

"id": {
"description": "The unique identifier for a product",
"type": "integer"

},
"name": {

"description": "Name of the product",
"type": "string"

},
"price": {

"type": "number",
"minimum": 0,
"exclusiveMinimum": true

},
"tags": {

"type": "array",
"items": {

"type": "string"
},
"minItems": 1,
"uniqueItems": true

}
},
"required": ["id", "name", "price"]

}'

Test if some (invalid) json conforms to the schema
jsonvalidate::json_validate("{}", schema, verbose = TRUE)

Test if some (valid) json conforms to the schema
json <- '{

"id": 1,
"name": "A green door",
"price": 12.50,
"tags": ["home", "green"]

}'
jsonvalidate::json_validate(json, schema)

Test a fraction of a data against a reference into the schema:
jsonvalidate::json_validate(json, schema,

query = "tags", reference = "#/properties/tags",
engine = "ajv", verbose = TRUE)

json_validator Create a json validator

Description

Create a validator that can validate multiple json files.

10 json_validator

Usage

json_validator(schema, engine = "imjv", reference = NULL, strict = FALSE)

Arguments

schema Contents of the json schema, or a filename containing a schema.

engine Specify the validation engine to use. Options are "imjv" (the default; which uses
"is-my-json-valid") and "ajv" (Another JSON Schema Validator). The latter
supports more recent json schema features.

reference Reference within schema to use for validating against a sub-schema instead of
the full schema passed in. For example if the schema has a ’definitions’ list in-
cluding a definition for a ’Hello’ object, one could pass "#/definitions/Hello" and
the validator would check that the json is a valid "Hello" object. Only available
if engine = "ajv".

strict Set whether the schema should be parsed strictly or not. If in strict mode
schemas will error to "prevent any unexpected behaviours or silently ignored
mistakes in user schema". For example it will error if encounters unknown for-
mats or unknown keywords. See https://ajv.js.org/strict-mode.html for details.
Only available in engine = "ajv".

Value

A function that can be used to validate a schema. Additionally, the function has two attributes
assigned: v8 which is the JavaScript context (used internally) and engine, which contains the name
of the engine used.

Validation Engines

We support two different json validation engines, imjv ("is-my-json-valid") and ajv ("Another
JSON Validator"). imjv was the original validator included in the package and remains the default
for reasons of backward compatibility. However, users are encouraged to migrate to ajv as with
it we support many more features, including nested schemas that span multiple files, meta schema
versions later than draft-04, validating using a subschema, and validating a subset of an input data
object.

If your schema uses these features we will print a message to screen indicating that you should up-
date when running interactively. We do not use a warning here as this will be disruptive to users. You
can disable the message by setting the option jsonvalidate.no_note_imjv to TRUE. Consider us-
ing withr::with_options() (or simply suppressMessages()) to scope this option if you want to
quieten it within code you do not control. Alternatively, setting the option jsonvalidate.no_note_imjv
to FALSE will print the message even non-interactively.

Updating the engine should be simply a case of adding engine = "ajv" to your json_validator
or json_validate calls, but you may see some issues when doing so.

• Your json now fails validation: We’ve seen this where schemas spanned several files and are
silently ignored. By including these, your data may now fail validation and you will need to
either fix the data or the schema.

json_validator 11

• Your code depended on the exact payload returned by imjv: If you are inspecting the error
result and checking numbers of errors, or even the columns used to describe the errors, you
will likely need to update your code to accommodate the slightly different format of ajv

• Your schema is simply invalid: If you reference an invalid metaschema for example, jsonvali-
date will fail

Using multiple files

Multiple files are supported. You can have a schema that references a file child.json using
{"$ref": "child.json"}—in this case if child.json includes an id or $id element it will be
silently dropped and the filename used to reference the schema will be used as the schema id.

The support is currently quite limited - it will not (yet) read sub-child schemas relative to child
schema $id url, and does not support reading from URLs (only local files are supported).

Examples

A simple schema example:
schema <- '{

"$schema": "http://json-schema.org/draft-04/schema#",
"title": "Product",
"description": "A product from Acme\'s catalog",
"type": "object",
"properties": {

"id": {
"description": "The unique identifier for a product",
"type": "integer"

},
"name": {

"description": "Name of the product",
"type": "string"

},
"price": {

"type": "number",
"minimum": 0,
"exclusiveMinimum": true

},
"tags": {

"type": "array",
"items": {

"type": "string"
},
"minItems": 1,
"uniqueItems": true

}
},
"required": ["id", "name", "price"]

}'

Create a validator function
v <- jsonvalidate::json_validator(schema)

12 json_validator

Test if some (invalid) json conforms to the schema
v("{}", verbose = TRUE)

Test if some (valid) json conforms to the schema
v('{

"id": 1,
"name": "A green door",
"price": 12.50,
"tags": ["home", "green"]

}')

Using features from draft-06 or draft-07 requires the ajv engine:
schema <- "{

'$schema': 'http://json-schema.org/draft-06/schema#',
'type': 'object',
'properties': {

'a': {
'const': 'foo'

}
}

}"

Create the validator
v <- jsonvalidate::json_validator(schema, engine = "ajv")

This confirms to the schema
v('{"a": "foo"}')

But this does not
v('{"a": "bar"}')

Index

data.frame, 5

json_schema, 2, 2, 6
json_serialise, 3, 4
json_validate, 7
json_validator, 2, 5, 9
json_validator(), 7
jsonlite::toJSON, 5, 6
jsonlite::unbox, 5

matrix, 5

suppressMessages(), 10

withr::with_options(), 10

13

	json_schema
	json_serialise
	json_validate
	json_validator
	Index

