Package ‘itp’

December 2, 2023

Type Package

Title The Interpolate, Truncate, Project (ITP) Root-Finding Algorithm
Version 1.2.1

Date 2023-12-02

Description Implements the Interpolate, Truncate, Project (ITP) root-finding
algorithm developed by Oliveira and Takahashi (2021) <doi:10.1145/3423597>.
The user provides the function, from the real numbers to the real numbers,
and an interval with the property that the values of the function at its
endpoints have different signs. If the function is continuous over this
interval then the ITP method estimates the value at which the function is
equal to zero. If the function is discontinuous then a point of
discontinuity at which the function changes sign may be found.

The function can be supplied using either an R function or an external
pointer to a C++ function. Tuning parameters of the ITP algorithm can be
set by the user. Default values are set based on arguments in Oliveira and
Takahashi (2021).

License GPL (>=2)

Encoding UTF-8

RoxygenNote 7.2.3

Imports Rcpp (>=1.0.8)

LinkingTo Rcpp

Suggests knitr, rmarkdown, stats, testthat (>= 3.0.0)
VignetteBuilder knitr

URL https://paulnorthrop.github.io/itp/,
https://github.com/paulnorthrop/itp

BugReports https://github.com/paulnorthrop/itp/issues

Config/testthat/edition 3

NeedsCompilation yes

Author Paul J. Northrop [aut, cre, cph]

Maintainer Paul J. Northrop <p.northrop@ucl.ac.uk>

1

https://doi.org/10.1145/3423597
https://paulnorthrop.github.io/itp/
https://github.com/paulnorthrop/itp
https://github.com/paulnorthrop/itp/issues

2 itp-package

Repository CRAN
Date/Publication 2023-12-02 15:00:02 UTC

R topics documented:

itp-package 2
P o e 3
P C . o e e e e e 6
PIOLAD . . o o o e e e e 7
Printitp o e e e e 8
XPU_CTRALE . . o . v v o o e i e e e e e e e e e e e e e e e e e e e 9
xptr_eval . .o e e e 10
Index 12
itp-package itp: The Interpolate, Truncate, Project (ITP) Root-Finding Algorithm
Description

Implements the Interpolate, Truncate, Project (ITP) root-finding algorithm developed by Oliveira
and Takahashi (2021). The user provides a function, from the real numbers to the real numbers, and
an interval with the property that the values of the function at its endpoints have different signs. If
the function is continuous over this interval then the ITP method estimates the value at which the
function is equal to zero. If the function is discontinuous then a point of discontinuity at which the
function changes sign may be found. The function can be supplied using either an R function or an
external pointer to a C++ function. Tuning parameters of the ITP algorithm can be set by the user.
Default values are set based on arguments in Oliveira and Takahashi (2021).

Details
The main function is itp. See the vignette Overview of the itp package, which can also be accessed
using vignette("itp-vignette"”, package = "itp").

Author(s)

Maintainer: Paul J. Northrop <p.northrop@ucl.ac.uk> [copyright holder]

References

Oliveira, I. F. D. and Takahashi, R. H. C. (2021). An Enhancement of the Bisection Method Average
Performance Preserving Minmax Optimality, ACM Transactions on Mathematical Software, 47(1),
1-24. doi:10.1145/3423597

https://paulnorthrop.github.io/itp/articles/itp-vignette.html
https://doi.org/10.1145/3423597

itp 3
See Also
itp for the ITP root-finding algorithm
print.itp and plot.itp for print and plot methods for objects of class "itp"” returned from itp.
xptr_create and xptr_eval for creating external pointers to the C++ functions used as examples
in this package and evaluating those functions.
itp The ITP root-finding algorithm
Description

Performs one-dimensional root-finding using the ITP algorithm of Oliveira and Takahashi (2021).
The function itp searches an interval [a, b] for a root (i.e., a zero) of the function f with respect to
its first argument. Each iteration results in a bracketing interval for the root that is narrower than the
previous interval. If the function is discontinuous then a point of discontinuity at which the function
changes sign may be found.

Usage
itp(
f,
interval,
a = min(interval),
b = max(interval),
f.a = f(, ...),
f.b=f(, ...),
epsilon = 1e-10,
ki =0.2/(b - a),
k2 = 2,
ng =1
)
Arguments
f An R function or an external pointer to a C++ function. For the latter see the
article Passing user-supplied C++ functions in the Repp Gallery. The function
for which the root is sought.
interval A numeric vector c(a, b) of length 2 containing the end points of the interval
to be searched for the root. The function values at the end points must be of
opposite signs.
Additional arguments to be passed to f.
a, b An alternative way to set the lower and upper end points of the interval to be
searched. The function values at these end points must be of opposite signs.
f.a, f.b The values of f(a) and f(b), respectively.

https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
https://gallery.rcpp.org/

4 itp

epsilon A positive numeric scalar. The desired accuracy of the root. The algorithm
continues until the width of the bracketing interval for the root is less than or
equal to 2 x epsilon.

k1, k2, no Numeric scalars. The values of the tuning parameters k1, k2, ng. See Details.

Details

Page 8 of Oliveira and Takahashi (2021) describes the ITP algorithm and the roles of the tuning
parameters 1, ko and ng. The algorithm is described using pseudocode. The Wikipedia entry for
the ITP method provides a summary. If the input function f is continuous over the interval [a, b]
then the value of f evaluated at the estimated root is (approximately) equal to 0. If f is discontinuous
over the interval [a, b] then the bracketing interval returned after convergence has the property that
the signs of the function f at the end points of this interval are different and therefore the estimated
root may be a point of discontinuity at which the sign of f changes.

The ITP method requires at most nyax = 11,2 + no iterations, where ny /o is the smallest integer
not less than log, ((b — a)/2€). If ng = 0 then the ITP method will require no more iterations than
the bisection method. Depending on the function f, setting a larger value for ng = 0, e.g. the
default setting ng = 1 used by the itp function, may result in a smaller number of iterations.

The default values of the other tuning parameters (epsilon=1e-10, k1=0.2/ (b-a), k2=2)
are set based on arguments made in Oliveira and Takahashi (2021).

Value

An object (a list) of class "itp"” containing the following components:

root the location of the root, calculated as (a+b)/2, where [a, b] is the bracketing
interval after convergence.

f.root the value of the function evaluated at root.

iter the number of iterations performed.

a,b the end points of the bracketing interval [a, b] after convergence.

f.a,f.b the values of function at a and b after convergence.

estim.prec an approximate estimated precision for root, equal to the half the width of the

final bracket for the root.

the root occurs at one of the input endpoints a or b then iter = @ and estim.prec = NA.

The returned object also has the attributes f (the input R function or pointer to a C++ function f),
f_args (a list of additional arguments to f provided in ...), f_name (a function name extracted
from as.character(substitute(f)) or the form of the R function if f was not named), used_c
(a logical scalar: FALSE, if f is an R function and TRUE if f is a pointer to a C++ function) and
input_a and input_b (the input values of a and b). These attributes are used in plot.itp to
produce a plot of the function f over the interval (input_a, input_b).

References

Oliveira, I. F. D. and Takahashi, R. H. C. (2021). An Enhancement of the Bisection Method Average
Performance Preserving Minmax Optimality, ACM Transactions on Mathematical Software, 47(1),
1-24. doi:10.1145/3423597

https://en.wikipedia.org/wiki/ITP_method
https://doi.org/10.1145/3423597

itp 5

See Also

print.itp and plot.itp for print and plot methods for objects of class "itp” returned from itp.

Examples

#iHHH ——-—- The example used in the Wikipedia entry for the ITP method

Supplying an R function

wiki <- function(x) x * 3 - x - 2

itp(wiki, c(1, 2), epsilon = 0.0005, k1 = 0.1, n0 = 1)

The default setting (with k1 = 0.2) wins by 1 iteration
wres <- itp(wiki, c(1, 2), epsilon = 0.0005, n@ = 1)

wres

plot(wres)

Supplying an external pointer to a C++ function

wiki_ptr <- xptr_create("wiki")

wres_c <- itp(f = wiki_ptr, c(1, 2), epsilon = 0.0005, k1 = 0.1)
wres_c

plot(wres_c)

H#itHE -—-—- Some examples from Table 1 of Oliveira and Takahashi (2021)
Well-behaved functions

Lambert
lambert <- function(x) x * exp(x) - 1
itp(lambert, c(-1, 1))

Trigonometric 1

Supplying an R function

trigl <- function(x, root) tan(x - root)
itp(trigl, c(-1, 1), root =1 / 10)

Supplying an external pointer to a C++ function
trigl_ptr <- xptr_create("trigl")

itp(f = trigi_ptr, c(-1, 1), root =1 / 10)

Logarithmic
logarithmic <- function(x, shift) log(abs(x - shift))
itp(logarithmic, c(-1, 1), shift = 10 /9)

Linear

linear <- function(x) x

Solution in one iteration
itp(linear, c(-1, 1))

Solution at an input endpoint
itp(linear, c(-1, 0))

I1l-behaved functions

Non-simple zero

Polynomial 3

poly3 <- function(x) (x * 1e6 - 1) * 3

itp(poly3, c(-1, 1))

Using n@ = @ leads to fewer iterations, in this example
poly3 <- function(x) (x * 1e6 - 1) * 3

itp(poly3, c(-1, 1), no = 0)

Discontinuous

Staircase
staircase <- function(x) ceiling(10 * x - 1) + 1 / 2
itp(staircase, c(-1, 1))

Multiple roots

Warsaw

warsaw <- function(x) ifelse(x > -1, sin(1 / (x + 1)), -1)
Function increasing over the interval

itp(warsaw, c(-1, 1))

Function decreasing over the interval

itp(warsaw, c(-0.85, -0.8))

itp_c The ITP root-finding algorithm using C++

Description

Performs one-dimensional root-finding using the ITP algorithm of Oliveira and Takahashi (2021).
This function is equivalent to itp but calculations are performed entirely using C++, and the argu-
ments differ slightly: itp_c has a named required argument pars rather than ... and it does not
have the arguments interval, f.aor f.b.

Usage

itp_c(f, pars, a, b, epsilon = 1e-10, k1 = -1, k2 =2, n0 = 1)

Arguments
f An external pointer to a C++ function that evaluates the function f.
pars A list of additional arguments to the function. This may be an empty list.
a, b Numeric scalars. Lower (a) and upper b limits of the interval to be searched for
a root.
epsilon A positive numeric scalar. The desired accuracy of the root. The algorithm

continues until the width of the bracketing interval for the root is less than or
equal to 2 x epsilon.

plot.itp 7

k1, k2, no Numeric scalars. The values of the tuning parameters x1, k2, ng. See the Details
section of itp.

The default value for k1 in itp_c is set as the inadmissible value of -1 (in reality
K1 must be positive) as a device to set the same default value for k1 as itp, that
is, k1=0.2 / (b - a). If the input value of k1 is less than or equal to O then,
inside itp_c, k1 =0.2/ (b - a) is set.

Details

For details see itp.

Value

An object (a list) of class "itp"” with the same structure as detailed in the Value section of itp,
except that the attribute f_name is empty (equal to "").

References

Oliveira, I. F. D. and Takahashi, R. H. C. (2021). An Enhancement of the Bisection Method Average
Performance Preserving Minmax Optimality, ACM Transactions on Mathematical Software, 47(1),
1-24. doi:10.1145/3423597

See Also
print.itpandplot.itp for print and plot methods for objects of class "itp" returned from itp_c

oritp.

Examples

wiki_ptr <- xptr_create("wiki")
wres <- itp_c(f = wiki_ptr, pars = list(), a =1, b = 2, epsilon = 0.0005)

wres
plot(wres, main = "Wiki")
plot.itp Plot method for objects of class "itp"
Description

Plot method for objects of class "itp" returned from itp.

Usage

S3 method for class 'itp'
plot(x, ...)

https://doi.org/10.1145/3423597

8 print.itp

Arguments
X An object inheriting from class "itp”, a result of a call to itp.
Arguments passed to curve, such as graphical parameters.
Details

Uses curve to produce a plot of the function f provided to itp over the interval within which a root
was sought. The estimated root is indicated using a horizontal line drawn at 0 and a vertical line
drawn at the estimated root. By default the name of the function f is used as a title, but this can be
replaced by supplying the argument main. The interval over which f is plotted can be changed by
supplying the arguments from and/or to.

Value

No return value, only the plot is produced.

See Also

itp for the Interpolate, Truncate, Project (ITP) root finding algorithm.

Examples

Lambert

Supplying an R function

lambert <- function(x) x * exp(x) - 1
x <- itp(lambert, c(-1, 1))

plot(x)

Supplying an external pointer to a C++ function
lambert_ptr <- xptr_create("lambert”)

x <= itp(lambert_ptr, c(-1, 1))

plot(x, main = "Lambert")

print.itp Print method for objects of class "itp"

Description

Prints objects of class "itp" returned from itp.

Usage

S3 method for class 'itp'
print(x, all = FALSE, digits = max(3L, getOption("digits") - 3L), ...)

Xptr_create 9

Arguments
X An object inheriting from class "itp”, a result of a call to itp.
all A logical scalar. If all = FALSE then only the estimated root, the value of the
function at the root an the number of iterations are printed. If all = TRUE then,
in addition, the final bracketing interval [a, b], the values of the function at the
end points of this interval and the estimated precision are printed.
digits The argument digits passed to format to set the number of significant digits
to print.
Further arguments to be passed to or from other methods. They are ignored in
this function..
Details

The default setting is to print only the root, the value of the function at the root and the number of
iterations. To include the bracketing interval after convergence and the estimated precision use all
= TRUE.

Value

The argument x is returned, invisibly.

See Also

itp for the Interpolate, Truncate, Project (ITP) root finding algorithm.

xptr_create Create an external pointer to a C++ function

Description

This function is used in the itp package to create external pointers to the C++ functions used as
examples to illustrate the use of the function itp. These pointers are passed as the argument f to
itp. To create their own examples the user will need to create their own C++ function(s) and a
function that is similar to xptr_create.

Usage

xptr_create(fstr)

Arguments

fstr A string indicating the C++ function required.

Details

See the vignette Overview of the itp package and the file user_fns.cpp for information.

The example C++ functions available in i tp are: "wiki"”, "lambert”, "trig1”, "poly3”, "linear”
"warsaw” and staircase.

s

https://paulnorthrop.github.io/itp/articles/itp-vignette.html
https://raw.githubusercontent.com/paulnorthrop/itp/main/src/user_fns.cpp

10 xptr_eval

Value

The external pointer.

See Also

xptr_eval for calling a C++ function using an external pointer.

Examples

lambert_ptr <- xptr_create("lambert")
res <- itp(lambert_ptr, c(-1, 1))

xptr_eval Call a C++ function using an external pointer

Description

This function is used in plot. itp to plot a function and the root estimated by itp.

Usage

xptr_eval(x, pars, xpsexp)

Arguments
X The main argument of the function.
pars A list of additional arguments to the function. This may be an empty list.
Xpsexp An external pointer to a C++ function.

Details

See the Passing user-supplied C++ functions article in the Rcpp Gallery for information.

Value

A numeric scalar: the value of the C++ function evaluated at the input values x and pars.

See Also

xptr_create for creating an external pointer to a C++ function.

https://gallery.rcpp.org/articles/passing-cpp-function-pointers/
https://gallery.rcpp.org/

xptr_eval

Examples

lambert_ptr <- xptr_create(”lambert”)
res <- itp(lambert_ptr, c(-1, 1))

Value at lower limit
xptr_eval(-1, list(), lambert_ptr)

Value at upper limit
xptr_eval(1, list(), lambert_ptr)

Value at the estimated root
xptr_eval(res$root, list(), lambert_ptr)

11

Index

_PACKAGE (itp-package), 2
curve, §

format, 9

itp, 2, 3,3,6-10
itp-package, 2

itp_c, 6,7

plot.itp,3-5,7,7, 10
print.itp, 3,5,7,8

xptr_create, 3,9, 10
xptr_eval, 3, 10, 10

12

	itp-package
	itp
	itp_c
	plot.itp
	print.itp
	xptr_create
	xptr_eval
	Index

