Package 'invertiforms'

November 25, 2022

Title Invertible Transforms for Matrices Version 0.1.1 Description Provides composable invertible transforms for (sparse) matrices. License MIT + file LICENSE URL https://rohelab.github.io/invertiforms/, https://github.com/RoheLab/invertiforms BugReports https://github.com/RoheLab/invertiforms/issues Depends Matrix, methods **Imports** sparseLRMatrix (>= 0.1.0), glue Suggests covr, testthat (>= 3.0.0), igraph, igraphdata **Encoding** UTF-8 RoxygenNote 7.2.1.9000 Collate 's4-generics.R' 'DoubleCenter.R' 'NormalizedLaplacian.R' 'PerturbedLaplacian.R' 'RegularizedLaplacian.R' 'invertiforms-package.R' 'utils.R' Config/testthat/edition 3 NeedsCompilation no Author Alex Hayes [aut, cre, cph] (<https://orcid.org/0000-0002-4985-5160>) Maintainer Alex Hayes <alexpghayes@gmail.com> **Repository** CRAN

Date/Publication 2022-11-25 12:40:10 UTC

R topics documented:

DoubleCenter				•						•								 •									2
DoubleCenter-class																											
inverse_transform .					•													 •									3
Invertiform-class .		•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	 •	•	•	•	•	•	•	•	•	4

DoubleCenter

NormalizedLaplacian	4
NormalizedLaplacian-class	5
PerturbedLaplacian	6
PerturbedLaplacian-class	7
RegularizedLaplacian	8
RegularizedLaplacian-class	0
transform	0
1	1

Index

DoubleCenter

Construct and use DoubleCenter transformations

Description

A convenience function to create DoubleCenter S4 objects, which are useful for simultaneously row and column centering a matrix.

Usage

```
DoubleCenter(A)
```

S4 method for signature 'DoubleCenter,sparseMatrix'
transform(iform, A)

```
## S4 method for signature 'DoubleCenter,sparseLRMatrix'
inverse_transform(iform, A)
```

```
## S4 method for signature 'DoubleCenter,vsp_fa'
inverse_transform(iform, A)
```

Arguments

A	A matrix to transform.
iform	An Invertiform object describing the transformation.

Value

- DoubleCenter() creates a DoubleCenter object.
- transform() returns the transformed matrix, typically as a sparseLRMatrix::sparseLRMatrix.
- inverse_transform() returns the inverse transformed matrix, typically as a sparseLRMatrix::sparseLRMatrix in most cases. When possible reduces the sparseLRMatrix::sparseLRMatrix to a Matrix::sparseMatrix().

DoubleCenter-class

Examples

```
library(igraph)
library(igraphdata)
data("karate", package = "igraphdata")
A <- get.adjacency(karate)
iform <- DoubleCenter(A)
A_tilde <- transform(iform, A)
A_recovered <- inverse_transform(iform, A_tilde)
all.equal(A, A_recovered)</pre>
```

DoubleCenter-class Row and column centering transformation

Description

Row and column centering transformation

Slots

row_means numeric.
col_means numeric.
overall_mean numeric.

inverse_transform Apply the inverse of an invertible transformation

Description

Apply the inverse of an invertible transformation

Usage

```
inverse_transform(iform, A)
```

Arguments

iform	An Invertiform object describing the transformation.
A	A matrix to inverse transform.

Value

The inverse transformed matrix.

Invertiform-class An abstract S4 class representing an invertible transformation

Description

An abstract S4 class representing an invertible transformation

NormalizedLaplacian Construct and use the Normalized Laplacian

Description

A convenience function to create NormalizedLaplacian S4 objects, which are useful for finding the normalized Laplacian of the adjacency matrix of a graph.

Usage

```
NormalizedLaplacian(A)
```

S4 method for signature 'NormalizedLaplacian,sparseMatrix'
transform(iform, A)

S4 method for signature 'NormalizedLaplacian,sparseMatrix'
inverse_transform(iform, A)

Arguments

A	A matrix to transform.
iform	An Invertiform object describing the transformation.

Details

We define the *normalized Laplacian* L(A) of an $n \times n$ graph adjacency matrix A as

$$L(A)_{ij} = \frac{A_{ij}}{\sqrt{d_i^{out}}\sqrt{d_j^{in}}}$$

where

$$d_i^{out} = \sum_{j=1}^n \|A_{ij}\|$$

and

$$d_j^{in} = \sum_{i=1}^n \|A_{ij}\|.$$

When A_{ij} denotes the present of an edge *from* node *i* to node *j*, which is fairly standard notation, d_i^{out} denotes the (absolute) out-degree of node *i* and d_j^{in} denotes the (absolute) in-degree of node *j*. Note that this documentation renders most clearly at https://rohelab.github.io/invertiforms/.

Value

- NormalizedLaplacian() creates a NormalizedLaplacian object.
- transform() returns the transformed matrix, typically as a Matrix.
- inverse_transform() returns the inverse transformed matrix, typically as a Matrix.

Examples

```
library(igraph)
library(igraphdata)
data("karate", package = "igraphdata")
A <- get.adjacency(karate)
iform <- NormalizedLaplacian(A)
L <- transform(iform, A)
A_recovered <- inverse_transform(iform, L)
all.equal(A, A_recovered)</pre>
```

NormalizedLaplacian-class

Normalized graph Laplacian transformation

Description

Normalized graph Laplacian transformation

Slots

- rsA numeric.
- csA numeric.

PerturbedLaplacian Construct and use the Perturbed Laplacian

Description

Construct and use the Perturbed Laplacian

Usage

```
PerturbedLaplacian(A, tau = NULL)
## S4 method for signature 'PerturbedLaplacian,sparseMatrix'
```

transform(iform, A)

```
## S4 method for signature 'PerturbedLaplacian,sparseLRMatrix'
inverse_transform(iform, A)
```

Arguments

А	A matrix to transform.
tau	Additive regularizer for row and column sums of abs(A). Typically this corresponds to inflating the (absolute) out-degree and the (absolute) in-degree of each node by tau. Defaults to NULL, in which case we set tau to the mean value of abs(A).
iform	An Invertiform object describing the transformation.

Details

We define the *perturbed Laplacian* $L^{\tau}(A)$ of an $n \times n$ graph adjacency matrix A as

$$L^{\tau}(A)_{ij} = \frac{A_{ij} + \frac{\tau}{n}}{\sqrt{d_i^{out} + \tau}\sqrt{d_j^{in} + \tau}}$$

where

$$d_i^{out} = \sum_{j=1}^n \|A_{ij}\|$$

and

$$d_j^{in} = \sum_{i=1}^n \|A_{ij}\|.$$

When A_{ij} denotes the present of an edge *from* node *i* to node *j*, which is fairly standard notation, d_i^{out} denotes the (absolute) out-degree of node *i* and d_j^{in} denotes the (absolute) in-degree of node *j*. Note that this documentation renders more clearly at https://rohelab.github.io/invertiforms/.

Value

- PerturbedLaplacian() creates a PerturbedLaplacian object.
- transform() returns the transformed matrix, typically as a Matrix.
- inverse_transform() returns the inverse transformed matrix, typically as a Matrix.

Examples

```
library(igraph)
library(igraphdata)
data("karate", package = "igraphdata")
A <- get.adjacency(karate)
iform <- PerturbedLaplacian(A)
L <- transform(iform, A)
L
## Not run:
A_recovered <- inverse_transform(iform, L)
all.equal(A, A_recovered)
## End(Not run)</pre>
```

PerturbedLaplacian-class

Perturbed graph Laplacian transformation

Description

Perturbed graph Laplacian transformation

Slots

- tau numeric.
- rsA numeric.
- csA numeric.
- tau_choice character.

RegularizedLaplacian Construct and use the Regularized Laplacian

Description

Construct and use the Regularized Laplacian

Usage

RegularizedLaplacian(A, tau_row = NULL, tau_col = NULL)
S4 method for signature 'RegularizedLaplacian,Matrix'
transform(iform, A)
S4 method for signature 'RegularizedLaplacian,matrix'
transform(iform, A)
S4 method for signature 'RegularizedLaplacian,sparseLRMatrix'
transform(iform, A)
S4 method for signature 'RegularizedLaplacian,Matrix'
inverse_transform(iform, A)
S4 method for signature 'RegularizedLaplacian,matrix'
inverse_transform(iform, A)
S4 method for signature 'RegularizedLaplacian,matrix'
S4 method for signature 'RegularizedLaplacian,vsp_fa'

inverse_transform(iform, A)

Arguments

A	A matrix to transform.
tau_row	Additive regularizer for row sums of abs(A). Typically this corresponds to in- flating the (absolute) out-degree of each node by tau_row. Defaults to NULL, in which case we set tau_row to the mean (absolute) row sum of A.
tau_col	Additive regularizer for column sums of abs(A). Typically this corresponds to inflating the (absolute) in-degree of each node by tau_col. Defaults to NULL, in which case we set tau_col to the mean (absolute) column sum of A.
iform	An Invertiform object describing the transformation.

Details

We define the *regularized Laplacian* $L^{\tau}(A)$ of an $n \times n$ graph adjacency matrix A as

$$L^{\tau}(A)_{ij} = \frac{A_{ij}}{\sqrt{d_i^{out} + \tau_{row}}\sqrt{d_j^{in} + \tau_{col}}}$$

where

$$d_i^{out} = \sum_{j=1}^n \|A_{ij}\|$$

and

$$d_j^{in} = \sum_{i=1}^n \|A_{ij}\|$$

When A_{ij} denotes the present of an edge *from* node *i* to node *j*, which is fairly standard notation, d_i^{out} denotes the (absolute) out-degree of node *i* and d_j^{in} denotes the (absolute) in-degree of node *j*. Then τ_{row} is an additive out-degree regularizer and τ_{col} is an additive in-degree regularizer.

Note that this documentation renders more clearly at https://rohelab.github.io/invertiforms/.

Value

- RegularizedLaplacian() creates a RegularizedLaplacian object.
- transform() returns the transformed matrix, typically as a Matrix.
- inverse_transform() returns the inverse transformed matrix, typically as a Matrix.

Examples

```
library(igraph)
library(igraphdata)
data("karate", package = "igraphdata")
A <- get.adjacency(karate)
iform <- RegularizedLaplacian(A)
L <- transform(iform, A)
L
A_recovered <- inverse_transform(iform, L)
all.equal(A, A_recovered)</pre>
```

 ${\tt Regularized Laplacian-class}$

Regularized graph Laplacian transformation

Description

Regularized graph Laplacian transformation

Slots

tau_row numeric. tau_col numeric. rsA numeric. csA numeric. tau_choice_row character. tau_choice_col character.

transform

Apply an invertible transformation

Description

Apply an invertible transformation

Usage

```
transform(iform, A)
```

Arguments

iform	An Invertiform object describing the transformation.
А	A matrix to transform.

Value

The transformed matrix.

Index

```
DoubleCenter, 2, 2
                                               transform, PerturbedLaplacian, sparseMatrix-method
DoubleCenter-class, 3
                                                        (PerturbedLaplacian), 6
                                               transform,RegularizedLaplacian,Matrix-method
inverse_transform, 3
                                                        (RegularizedLaplacian), 8
inverse_transform, DoubleCenter, sparseLRMatrixtmentsfodrm, RegularizedLaplacian, matrix-method
        (DoubleCenter), 2
                                                        (RegularizedLaplacian), 8
inverse_transform, DoubleCenter, vsp_fa-method transform, RegularizedLaplacian, sparseLRMatrix-method
        (DoubleCenter), 2
                                                        (RegularizedLaplacian), 8
inverse_transform,NormalizedLaplacian,sparseMatrix-method
        (NormalizedLaplacian), 4
inverse_transform, PerturbedLaplacian, sparseLRMatrix-method
        (PerturbedLaplacian), 6
inverse_transform, RegularizedLaplacian, Matrix-method
        (RegularizedLaplacian), 8
inverse_transform,RegularizedLaplacian,matrix-method
        (RegularizedLaplacian), 8
inverse_transform, RegularizedLaplacian, vsp_fa-method
        (RegularizedLaplacian), 8
Invertiform, 2-4, 6, 8, 10
Invertiform-class, 4
Matrix, 5, 7, 9
Matrix::sparseMatrix(), 2
NormalizedLaplacian, 4, 4, 5
NormalizedLaplacian-class, 5
```

```
PerturbedLaplacian, 6, 7
PerturbedLaplacian-class, 7
```

```
RegularizedLaplacian, 8, 9
RegularizedLaplacian-class, 10
```

```
sparseLRMatrix::sparseLRMatrix,2
```

```
transform, 10
transform, DoubleCenter, sparseMatrix-method
        (DoubleCenter), 2
transform, NormalizedLaplacian, sparseMatrix-method
        (NormalizedLaplacian), 4
```