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Abstract

The hyper2 package presented a new formulation of the hyperdirichlet package, offer-
ing speed advantages and the ability to deal with higher-dimensional datasets. However,
hyper2 was based on likelihood methods and as originally uploaded did not have the abil-
ity to integrate over the unit-sum simplex. This functionality has now been incorporated
into the package which is documented here, by reproducing earlier analysis.
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1. Introduction

To cite this work in publications, please use Hankin (2017). The hy-

per2 package presented a new formulation of the hyperdirichlet distri-
bution (Hankin 2010) which offered speed advantages over the original
hyperdirichlet package, and the ability to deal with higher-dimensional
datasets. However, hyper2 was based on likelihood methods and as orig-
inally uploaded did not have the ability to integrate over the unit-sum
simplex. This functionality has now been incorporated into the package
which is documented here, by reproducing earlier analysis.

2. Chess

Consider Table 1 in which matches between three chess players are tab-
ulated; this dataset was analysed by Hankin (2010).

C
p30

1 p36
2 p22

3

(p1 + p2)35 (p2 + p3)35 (p1 + p3)18

(the symbol ‘C’ consistently stands for an undetermined constant). This likelihood function
is provided in the hyper2 package as the chess dataset:

> chess

log(Anand^36 * (Anand + Karpov)^-35 * (Anand + Topalov)^-35 * Karpov^22

* (Karpov + Topalov)^-18 * Topalov^30)
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Topalov Anand Karpov total

22 13 - 35
- 23 12 35
8 - 10 18

30 36 22 88

Table 1: Results of 88 chess matches (dataset chess in the aylmer package) between three
Grandmasters; entries show number of games won up to 2001 (draws are discarded). Topalov
beats Anand 22-13; Anand beats Karpov 23-12; and Karpov beats Topalov 10-8

We can calculate the normalizing constant:

B(chess)

[1] 1.442828e-28

comparing well with the value given by the hyperdirichlet package of 1.47 × 10−28. Hankin

(2010) went on to calculate the p-value for H0: p =
(

1

3
, 1

3
, 1

3

)

as 0.395, a calculation which

may be performed in the hyper2 package as follows:

f <- function(p){loglik(indep(p),chess) > loglik(c(1,1)/3,chess)}

probability(chess, disallowed=f,tol=0.1)

[1] 0.4099

Again comparing well with the older result (smaller values of tol give closer agreement at
the expense of increased computation time). Finally, we can calculate the probability that
Topalov is a better player than Anand:

T.lt.A <- function(p){p[1]<p[2]}

probability(chess, disallowed=T.lt.A,tol=0.01)

[1] 0.7123

again showing reasonable agreement with the 2010 value of 0.701.

3. Verification

In a breathtaking display of arrogance and/or incompetence, Hankin (2010) did not actually
provide any evidence that the integration suite of hyperdirichlet was accurate. Here I com-
pensate for that inexcusable lapse by comparing numerical results with analytical formulae.
Consider the standard Dirichlet distribution:

pα1−1

1 . . . pαk−1

k

B (α1, . . . , αk)
(1)

where it is understood that the pi > 0 and
∑

pi = 1; here B =
Γ

∑

αi
∏

Γαi

is the normalization

constant. We can verify that hyper2::B() is operating as expected for the case α = (1, 2, 3, 4):
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> x <- c(a=1, b=2, c=3, d=4) # needs a named vector

> ans1 <- B(dirichlet(alpha = x),tol=0.1)

> ans2 <- prod(gamma(x))/gamma(sum(x))

> c(numerical=ans1,theoretical=ans2) # should agree

numerical theoretical

3.30092705e-05 3.30687831e-05

Further, consider a Dirichlet distribution with α1 = α2 = α3 = α4 = 3. Then, by symmetry,
the probability that p1 < p2 should be exactly 1

2
:

> f <- function(p){p[1]<p[2]}

> H <- dirichlet(alpha=c(a=3,b=3,c=3,d=3))

> probability(H,f,tol=0.1)

[1] 0.49730037

(compare exact value of 0.5; note the loose tolerance of 0.1, needed to keep computational
time short—the integrand has a severe discontinuity which is computationally expensive to
integrate across). Further, P(p1 < p2 < p3) should be exactly 1

6
:

> g <- function(p){(p[1]<p[2]) & (p[2]<p[3])}

> 1-probability(H,disallowed=g,tol=0.1)

[1] 0.186621983

(compare exact value of 0.1666).

4. More results: icons dataset

Consider the icons dataset, shown in table 2, and the following hypotheses, again following
Hankin (2010), and reproduced here for convenience.

> icons

log(L^24 * (L + NB + OA + THC)^-20 * (L + NB + OA + WAIS)^-9 * (L + NB

+ THC + WAIS)^-15 * (L + OA + PB + THC)^-11 * (L + OA + PB + WAIS)^-18

* (L + PB + THC + WAIS)^-16 * NB^32 * (NB + OA + PB + THC)^-18 * (NB +

OA + PB + WAIS)^-8 * (NB + PB + THC + WAIS)^-18 * OA^14 * PB^30 *

THC^24 * WAIS^9)

> maxp(icons)

NB L PB THC OA WAIS

0.2523041150 0.1736443259 0.2245818764 0.1701128100 0.1106860420 0.0686708306
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icon

NB L PB THC OA WAIS total

5 3 - 4 - 3 15
3 - 5 8 - 2 18
- 4 9 2 - 1 16
1 3 - 3 4 - 11
4 - 5 6 3 - 18
- 4 3 1 3 - 11
5 1 - - 1 2 9
5 - 1 - 1 1 8
- 9 7 - 2 0 18

23 24 30 24 14 9 124

Table 2: Experimental results from O’Neill (2007) (dataset icons in the package): respon-
dents’ choice of ‘most concerning’ icon of those presented. Thus the first row shows results
from respondents presented with icons NB, L, THC, and WAIS; of the 15 respondents, 5
chose NB as the most concerning (see text for a key to the acronyms). Note the “0” in row 9,
column 6: this option was available to the 18 respondents of that row, but none of them
actually chose WAIS

For reference, the other hypotheses were:

• H1: p1 ⩾
1

6

• H2: p1 ⩾ max {p2, . . . p6}

• H3: p5 + p6 ⩾
1

3

• H4: max {p5, p6} ⩾ min {p1, p2, p3, p4}

> f1 <- function(p){p[1] > 1/6}

> f2 <- function(p){p[1] > max(fillup(p)[-1])}

> f3 <- function(p){sum(fillup(p)[5:6]) > 1/3}

> f4 <- function(p){max(fillup(p)[1:2]) > min(fillup(p)[3:6])}

Here I will analyse just the first hypothesis, that is H1: p1 ⩽
1

6
using the integration facilities

of the hyper2 package, and compare with previous results. Here we perform a Bayesian
analysis, made possible by the efficient coding of hyper2:

probability(icons, disallowed=function(p){p[1] > 1/6}, tol=0.1)

[1] 0.01502

See how the disallowed region is the expected bit of the parameter space. Thus the probability
that the pi are unexpected (that is, p1 < 1/6) is about 1.5% or conversely, P (H1) ≃ 0.985.
The likelihood ratio reported was about 2.608, which would correspond to a p-value of about

> pchisq(2*2.608,df=1,lower.tail=FALSE)
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[1] 0.0223799725

or just over 2% under an asymptotic distribution; thus this frequentist technique gives com-
parable strength of evidence for H1 to the Bayesian approach.

5. Incomplete survey data

This section performs the analysis originally presented in Altham and Hankin (2010). The
data, given here in table 4 arises from 69 medical malpractice claims, and are the two surgeons’
answers to the question: was there a communication breakdown in the hand-off between
physicians caring for the patient?

Reviewer 1 Reviewer 2
Yes No Missing Total

Yes 26 1 2 29
No 5 18 9 32
Missing 4 4 0 8

Total 35 23 11 69

Table 3: Two surgeon reviews of malpractice claims data
Reviewer 1 Reviewer 2

Yes No Missing Total

Yes y11 y10 z1+ y1+ + z1+

No y01 y00 z0+ y0+ + z0+

Missing u+1 u+0 0 u++

Total y+1 + u+1 y+0 + u+0 z++ n

Table 4: Notation for the data
We may implement an appropriate likelihood function as follows:

> H <- hyper2()

> H["t00"] <- 18

> H["t10"] <- 01

> H["t01"] <- 05

> H["t11"] <- 26

> H[c("t11","t10")] <- 2

> H[c("t01","t00")] <- 9

> H[c("t11","t01")] <- 4

> H[c("t10","t00")] <- 4

> H <- balance(H)

> H

log(t00^18 * (t00 + t01)^9 * (t00 + t01 + t10 + t11)^-69 * (t00 +

t10)^4 * t01^5 * (t01 + t11)^4 * t10 * (t10 + t11)^2 * t11^26)

(object H is provided as handover in the package). Then we may estimate the probability
that reviewer 2 is more likely to give a ‘yes’ than reviewer 1 as follows:
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> free <- maxp(H,give=TRUE)

> m <- fillup(free$par)

> names(m) <- pnames(H)

> m

t00 t01 t10 t11

0.4195489413 0.1112755384 0.0179871939 0.4511883264

> free$value

[1] -64.1453767

Then the constrained optimization:

> obj <- function(p){-loglik(p,H)} # objective func

> gr <- function(p){-gradient(H,p)} # gradient, needed for speed

> UI <- rbind(diag(3),-1) # UI and CI specify constraints

> CI <- c(rep(0,3),-1) # p_i >= 0 and sum p_i <= 1

We will test HA: p2 < p3 using the method of support.

> constrained <- maxp(H,give=TRUE,fcm = rbind(c(0,-1,1)), fcv=0,maxtry=1e5)

> constrained

$par

[1] 0.42735779 0.06018069 0.06018069

$value

[1] -66.14478

$counts

function gradient

318 43

$convergence

[1] 0

$message

NULL

$outer.iterations

[1] 2

$barrier.value

[1] 0.0001060435

$likes

[1] -82.48451 -66.73119 -82.48454 -66.14478 -67.33553 -67.11853 -66.14607

[8] -66.16411 -66.27162 -66.67668
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Thus the support for HA is about 66.14478 − 64.14538 = 1.9999, or almost exactly 2 units of
support.
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