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Introduction to gerbil

The problem of missing data is common in scientific analysis. A variety of events might occur leading to
missing data in a project: survey respondents might skip questions, data might be blinded for privacy reasons,
or subjects might leave a study early. Restricting an analysis to complete cases can lead to biased inferences,
biased parameters, larger standard errors, or reduced statistical power, depending on the reason data is
missing.1 Properly accounting for missing data in an analysis is critical for producing efficient and accurate
results.

The gerbil software package introduces a contemporary solution for missing data problems using Generalized
Efficient Regression-Based Multivariate Imputation with Latent processes (GERBIL). Through the use of
a latent data-generating mechanism, the GERBIL method applies imputation through joint modeling on
datasets which may contain variables with a variety of general structures (e.g. categorical data, continuous
data, binary data), which is not easily accommodated by other joint modeling approaches. As such, the
GERBIL method circumvents the use of fully conditional specification (FCS) in which sampling from an
incoherent joint distribution may be applied. gerbil applies a novel method of joint imputation that uses
regression-based modeling - sequences of conditional regression models are used to build the joint distribution.
Therefore, gerbil provides its user flexibility to specify any dependencies within the conditional regression
models.

gerbil is computationally efficient and ideal for application on high dimensional datasets with missingness.
This is due to gerbil’s efficient use of the SWEEP operator for both sampling and modeling steps to minimize
the amount of matrix inversion and due to gerbil’s avoidance of computationally expensive logistic and
multinomial regression. More details on the specifics of GERBIL’s approach are available in a scientific article
introducing the method.2 Therein, the procedure is demonstrated in simulations to recover information lost
from missing data with less error and in less computational time than alternative approaches using FCS.

Using gerbil in an analysis requires a few assumptions (which are common to other imputation approaches)
that users should keep in mind when using this package. Estimators using imputed data produced from gerbil

are valid under the “missing at random” and “missing completely at random” assumptions. Additionally,

1Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592.
2Robbins, M. W. (2020). A flexible and efficient algorithm for joint imputation of general data. arXiv preprint

arXiv:2008.02243.
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the GERBIL method assumes the data have a latent data-generating process and this latent process has a
multivariate Gaussian distribution.

This vignette aims to demonstrate the use of the gerbil package. We’ll use data from the India Human
Development Survey-II to demonstrate gerbil‘s functions and ability to recover missing data under both
the MCAR and MAR assumptions.3. We’ll generate missingness within the dataset, to create MCAR and
MAR patterns. We’ll then compare model predictions from a "complete-cases’ model, with predictions using
imputations produced by GERBIL with the MCAR and MAR datasets.

gerbil Example

Data and initial results

The India Human Development Survey-II is a nationally-representative survey on multiple topics, collected
during 2010-2011. For example 1, we’ll use data from the individual-module, pertaining to use a few select
variables to predict income using a linear regression. To demonstrate the utility of gerbil, we’ll drop 10% of
observations in both MCAR and MAR patterns. We’ll then use gerbil to recover those observations and
compare the goodness-of-fit across four models: Complete cases, MAR, MCAR, and recovered cases.

library(gerbil)

#Replace with upload data, once that's finished. For now, read from local file

data(ihd)

#Specify all our variable types correctly:

ihd$job_field <- factor(ihd$job_field, ordered = F)

ihd$education_level <- factor(ihd$education_level, ordered = T,

levels = sort(unique(ihd$education_level)))

# Peek at the initial dataset:

summary(ihd)

#> sex age marital_status job_field

#> Min. :0.0000 Min. : 1.00 Min. :0.0000 1 :9627

#> 1st Qu.:0.0000 1st Qu.:40.00 1st Qu.:1.0000 4 :8284

#> Median :0.0000 Median :49.00 Median :1.0000 8 :6345

#> Mean :0.1431 Mean :49.69 Mean :0.8091 6 :4355

#> 3rd Qu.:0.0000 3rd Qu.:60.00 3rd Qu.:1.0000 3 :4075

#> Max. :1.0000 Max. :99.00 Max. :1.0000 11 :2917

#> (Other):6522

#> farm_labour_days own_livestock education_level income

#> Min. : 0.00 Min. :0.000 0 :13453 Min. : 0

#> 1st Qu.: 0.00 1st Qu.:0.000 10 : 4521 1st Qu.: 39000

#> Median : 0.00 Median :0.000 5 : 3844 Median : 73500

#> Mean : 47.73 Mean :0.418 8 : 3111 Mean : 128187

#> 3rd Qu.: 70.00 3rd Qu.:1.000 9 : 3059 3rd Qu.: 144000

#> Max. :365.00 Max. :1.000 7 : 2276 Max. :11360000

#> (Other):11861

We can see from the above summary table we have one dependent variable, “income”, and 7 independent
variables. The variables have the following data structures:

• The outcome, “income”, is a continuous variable referring to net income in rupees, in the year 2010.

3Desai, Sonalde, and Vanneman, Reeve. India Human Development Survey-II (IHDS-II), 2011-12. Inter-university Consortium
for Political and Social Research [distributor], 2018-08-08. https://doi.org/10.3886/ICPSR36151.v6
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Value Job Field

1 Cultivation
2 Allied agriculture
3 Agricultural labour

4
Non-agricultural

wage labour
5 Artisan
6 Small business
7 Organized business
8 Salaried
9 Professional
10 Retired
11 Housework
12 Student
13 Unemployed
14 Unfit/Disabled
15 Other

Value
Educational
Attainment

0 None
1 1st class
2 2nd class
3 3rd class
4 4th class
5 5th class
6 6th class
7 7th class
8 8th class
9 9th class
10 Secondary
11 11th class
12 High Secondary
13 1 year post-secondary
14 2 year post-secondary
15 Bachelors
16 Above Bachelors

• “sex” is a binary variable, corresponding to the head-of-household’s biological sex, with 0 = “male” and
1 = “female”.

• “age” is a continuous variable; we’ll drop observations with age less than 18, which are implausible
observations for a head-of-household.

• “job_field” is a categorical variable in one of fifteen categories (see categories below).
• “education_level” is an ordinal categorical variable, referring to the highest level of education attained

by the head of household (see categories below).
• “marital status” corresponds to 0 = “unmarried” and 1 = “married”.
• “farm_labour_days” is a semi-continuous variable, which equals zero if the head-of-household does not

do farm work or is a continuous value in number of days if the head-of-household does do farm work.
• “own_livestock” is a binary variable indicating if the head-of-household owns livestock.

percent_miss <- 0.35

drop_cols <- c("income", "education_level", "age", "marital_status",

"job_field", "farm_labour_days", "own_livestock")

ihd_mcar <- data.frame(ihd)

ihd_mar <- data.frame(ihd)

#Drop column cells completely at random

for (col in drop_cols){

drop_rows <- sample(1:nrow(ihd), percent_miss*nrow(ihd), replace = F)

ihd_mcar[drop_rows,][col] <- NA

}

#Drop column cells on the basis of age & sex (missing at random).

#This procedure is based on:

# Schouten, R. M., Lugtig, P., & Vink, G. (2018).

# Generating missing values for simulation purposes: a multivariate amputation procedure.

# Journal of Statistical Computation and Simulation, 88(15), 2909-2930.
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#Make married individuals more likely to drop out from the study,

#along with females. Calculate a weighted sum score on this basis,

#then standarize the score.

wss <- 2*(ihd$sex) + 1.5*(abs(ihd$marital_status - 1))

wss <- (wss - mean(wss))/sd(wss)

#Transform the standardized weighted sum scores into a probability using

#a modified logistic function.

prob_drop <- plogis(wss, location = 0, scale = 3)

for (col in drop_cols){

#For each column, randomly drop rows, with probability equal to

#logistically-transformed standardized weighted sum scores

drop_rows <- sample(1:nrow(ihd), percent_miss*nrow(ihd), replace = F, prob = prob_drop)

ihd_mar[drop_rows,][col] <- NA

}

In the above code, we simulated two different missingness patterns: Missing completely at random (MCAR)
and missing at random (MAR). In the MCAR case, we randomly dropped rows from the initial dataset. In the
MAR case, we dropped rows on the basis of a hypothetical missingness pattern, determined by observed data
with complete cases. In the example here, we dropped rows with female individuals at a greater probability
than males, and unmarried individuals at a greater probability than married individuals.

Using gerbil

Running gerbil requires a single line of code. gerbil should ideally recognize the data structure of each
variable included in our dataset. We can simply pass our dataset with missingness to gerbil, which will
create a single imputation dataset, using five monte-carlo markov chains. Below, in the MAR example, we’re
reducing the amount of warnings produced by Gerbilby setting the option “printFlag” to false.

#Impute using Gerbil for both MCAR & MAR datasets:

imputed_mcar <- gerbil(ihd_mcar)

#> Variable Summary:

#> Variable.Type Num.Observed Num.Miss Miss.Rate

#> sex binary 42125 0 0.00%

#> age continuous (EMP) 27382 14743 35.00%

#> marital_status binary 27382 14743 35.00%

#> job_field categorical 27382 14743 35.00%

#> farm_labour_days continuous (EMP) 27382 14743 35.00%

#> own_livestock binary 27382 14743 35.00%

#> education_level ordinal 27382 14743 35.00%

#> income continuous (EMP) 27382 14743 35.00%

#>

#> Completed transformations, Time = 0.95

#> Imp. 1: gerbil initialized. Time = 3.89

#> Imp. 1: MCMC iteration 1 completed. Total time = 3.93, I-Step: 3.85, P-Step: 0.08

#> Imp. 1: MCMC iteration 2 completed. Total time = 3.59, I-Step: 3.51, P-Step: 0.08

#> Imp. 1: MCMC iteration 3 completed. Total time = 3.83, I-Step: 3.71, P-Step: 0.12

#> Imp. 1: MCMC iteration 4 completed. Total time = 3.83, I-Step: 3.75, P-Step: 0.08

#> Imp. 1: MCMC iteration 5 completed. Total time = 3.89, I-Step: 3.81, P-Step: 0.08

#> Completed untransformations for imputed dataset 1, Time = 0.71

imputed_mar <- gerbil(ihd_mar)

#> Variable Summary:
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#> Variable.Type Num.Observed Num.Miss Miss.Rate

#> sex binary 42125 0 0.00%

#> age continuous (EMP) 27382 14743 35.00%

#> marital_status binary 27382 14743 35.00%

#> job_field categorical 27382 14743 35.00%

#> farm_labour_days continuous (EMP) 27382 14743 35.00%

#> own_livestock binary 27382 14743 35.00%

#> education_level ordinal 27382 14743 35.00%

#> income continuous (EMP) 27382 14743 35.00%

#>

#> Completed transformations, Time = 1.09

#> Imp. 1: gerbil initialized. Time = 3.99

#> Imp. 1: MCMC iteration 1 completed. Total time = 3.83, I-Step: 3.76, P-Step: 0.07

#> Imp. 1: MCMC iteration 2 completed. Total time = 3.53, I-Step: 3.45, P-Step: 0.08

#> Imp. 1: MCMC iteration 3 completed. Total time = 3.62, I-Step: 3.53, P-Step: 0.09

#> Imp. 1: MCMC iteration 4 completed. Total time = 4.09, I-Step: 4.03, P-Step: 0.06

#> Imp. 1: MCMC iteration 5 completed. Total time = 3.78, I-Step: 3.70, P-Step: 0.08

#> Completed untransformations for imputed dataset 1, Time = 0.67

#Look at the results

summary(imputed_mcar)

#> Object Class: gerbil

#>

#> Includes 1 imputed dataset created using 5 iterations of MCMC.

#>

#> Predicted Variables, Types and Missing Rates:

#> Variable.Type Num.Observed Num.Miss Miss.Rate

#> sex binary 42125 0 0.00%

#> age continuous (EMP) 27382 14743 35.00%

#> marital_status binary 27382 14743 35.00%

#> job_field categorical 27382 14743 35.00%

#> farm_labour_days continuous (EMP) 27382 14743 35.00%

#> own_livestock binary 27382 14743 35.00%

#> education_level ordinal 27382 14743 35.00%

#> income continuous (EMP) 27382 14743 35.00%

#>

#> Predictor Matrix:

#> sex age marital_status job_field farm_labour_days

#> sex 0 0 0 0 0

#> age 1 0 0 0 0

#> marital_status 1 1 0 0 0

#> job_field 1 1 1 0 0

#> farm_labour_days 1 1 1 1 0

#> own_livestock 1 1 1 1 1

#> education_level 1 1 1 1 1

#> income 1 1 1 1 1

#> own_livestock education_level income

#> sex 0 0 0

#> age 0 0 0

#> marital_status 0 0 0

#> job_field 0 0 0

#> farm_labour_days 0 0 0

#> own_livestock 0 0 0
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#> education_level 1 0 0

#> income 1 1 0

We can see from the above summary table that the semi-continuous variable wasn’t recognized as the correct
data structure. Luckily, we can rectify this within gerbil by specifying this variable’s data structure in the
function, using the “type” argument.

imputed_mcar <- gerbil(ihd_mcar, type = c(farm_labour_days = "semicont"))

#> Variable Summary:

#> Variable.Type Num.Observed Num.Miss Miss.Rate

#> sex binary 42125 0 0.00%

#> age continuous (EMP) 27382 14743 35.00%

#> marital_status binary 27382 14743 35.00%

#> job_field categorical 27382 14743 35.00%

#> farm_labour_days semicont 27382 14743 35.00%

#> own_livestock binary 27382 14743 35.00%

#> education_level ordinal 27382 14743 35.00%

#> income continuous (EMP) 27382 14743 35.00%

#>

#> Completed transformations, Time = 0.34

#> Imp. 1: gerbil initialized. Time = 3.97

#> Imp. 1: MCMC iteration 1 completed. Total time = 3.53, I-Step: 3.46, P-Step: 0.07

#> Imp. 1: MCMC iteration 2 completed. Total time = 3.55, I-Step: 3.50, P-Step: 0.05

#> Imp. 1: MCMC iteration 3 completed. Total time = 3.52, I-Step: 3.47, P-Step: 0.05

#> Imp. 1: MCMC iteration 4 completed. Total time = 3.48, I-Step: 3.42, P-Step: 0.06

#> Imp. 1: MCMC iteration 5 completed. Total time = 3.47, I-Step: 3.41, P-Step: 0.06

#> Completed untransformations for imputed dataset 1, Time = 0.09

imputed_mar <- gerbil(ihd_mar, type = c(farm_labour_days = "semicont"))

#> Variable Summary:

#> Variable.Type Num.Observed Num.Miss Miss.Rate

#> sex binary 42125 0 0.00%

#> age continuous (EMP) 27382 14743 35.00%

#> marital_status binary 27382 14743 35.00%

#> job_field categorical 27382 14743 35.00%

#> farm_labour_days semicont 27382 14743 35.00%

#> own_livestock binary 27382 14743 35.00%

#> education_level ordinal 27382 14743 35.00%

#> income continuous (EMP) 27382 14743 35.00%

#>

#> Completed transformations, Time = 0.34

#> Imp. 1: gerbil initialized. Time = 3.83

#> Imp. 1: MCMC iteration 1 completed. Total time = 3.45, I-Step: 3.39, P-Step: 0.06

#> Imp. 1: MCMC iteration 2 completed. Total time = 3.48, I-Step: 3.42, P-Step: 0.06

#> Imp. 1: MCMC iteration 3 completed. Total time = 4.19, I-Step: 4.15, P-Step: 0.04

#> Imp. 1: MCMC iteration 4 completed. Total time = 3.41, I-Step: 3.35, P-Step: 0.06

#> Imp. 1: MCMC iteration 5 completed. Total time = 3.52, I-Step: 3.46, P-Step: 0.06

#> Completed untransformations for imputed dataset 1, Time = 0.07

Alternatively, we could have set types using a slightly different method. Let’s also increase the number of
imputed datasets that gerbil produces using the “m” parameter (we could also increase the number of
MCMC iterations using the “mcmciter” parameter). An increased number of imputations should lead to
more accurate results later, when we pool models across imputation datasets. Similarly, increased MCMC
iterations should lead to improved convergence in the imputation estimates.
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imputed_mcar <- gerbil(ihd_mcar, semi = "farm_labour_days",

m = 5, mcmciter = 100, seed = 111675)

#> Variable Summary:

#> Variable.Type Num.Observed Num.Miss Miss.Rate

#> sex binary 42125 0 0.00%

#> age continuous (EMP) 27382 14743 35.00%

#> marital_status binary 27382 14743 35.00%

#> job_field categorical 27382 14743 35.00%

#> farm_labour_days semicont 27382 14743 35.00%

#> own_livestock binary 27382 14743 35.00%

#> education_level ordinal 27382 14743 35.00%

#> income continuous (EMP) 27382 14743 35.00%

#>

#> Completed transformations, Time = 0.35

#> Parallelizing with n.cores = 4...

#> Created 5 imputed datasets. Total time = 861.00.

#> Completed untransformations and post-processing, Time = 2.06

imputed_mar <- gerbil(ihd_mar, semi = "farm_labour_days",

m = 5, mcmciter = 100, seed = 111675)

#> Variable Summary:

#> Variable.Type Num.Observed Num.Miss Miss.Rate

#> sex binary 42125 0 0.00%

#> age continuous (EMP) 27382 14743 35.00%

#> marital_status binary 27382 14743 35.00%

#> job_field categorical 27382 14743 35.00%

#> farm_labour_days semicont 27382 14743 35.00%

#> own_livestock binary 27382 14743 35.00%

#> education_level ordinal 27382 14743 35.00%

#> income continuous (EMP) 27382 14743 35.00%

#>

#> Completed transformations, Time = 0.35

#> Parallelizing with n.cores = 4...

#> Created 5 imputed datasets. Total time = 851.85.

#> Completed untransformations and post-processing, Time = 1.87

We can see from the above summary that all of the variable types are being correctly identified by gerbil

We also note that with an increased number of imputation datasets, gerbil is parallelizing computations.
This behavior could be set off by setting “n.cores” equal to zero.

We’ll now check the performance of the imputations by comparing the imputed estimates to our observed
data.

Diagnostic plots

# Plotting functions aren't being sourced when loading gerbil, currently.

# Update this once they're fixed.

#Plot all univariate plots (e.g. type = 1) for the MAR dataset,

#and one example of a bivariate plot(e.g. type = 2):

par(bty = "n")

plot(imputed_mar, type = 1, mfrow = c(2, 1))
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plot(imputed_mar, type = 2, y = c("sex", "marital_status"))

We can see from the above plots that GERBIL did pretty well matching imputed estimates with observed
data. For the continuous variable “age”, the empirical distributions of imputed estimates matches the density
of observed data fairly well (though the observed data has more clumping at 5-year intervals). The frequency
of “marital_status” unmarried (i.e. == 0) is a little bit higher in the imputed data than in observed data
but this is what we would hope happens, given the missingness pattern was initially predicated on being
higher for unmarried individuals.

The patterns in “job_field” are pretty similar between observed data and imputed estimates, with the
exception of housework (i.e. job_field == 11), which occurs at a higher frequency for the imputed estimates
(again, this might be a function of the imposed missingness patterns, since we dropped “females” from the
dataset at a higher rate than “males”; “females” in the dataset are coded as having the job_field “housework”
more often than males.).

The “farm_labour_days” variable has a very similar frequency & density, between the imputed estimates and
observed data. The empirical distribution matches well between the imputations and observations, despite
the rather odd empirical distribution. We also see a close match between imputations and observations for
the “own_livestock” variable.

The bivariate plot for sex & marital status allows follows a pattern we might expect. For males, we imputed
similar estimates across both marital statuses. However, for females, we imputed estimates more often as
“unmarried” than “married”, which makes sense given we generated more missingness within that category.

In addition to diagnostic plots, gerbil also has built-in functions for analyzing correlations between observed
and imputed cases, through use of the “cor_gerbil” function:
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ihd_mar_imp_cors <- cor_gerbil(imputed_mar)

print(ihd_mar_imp_cors)

#> Summary analysis comparing correlations calculated between observed cases with

#> corresponding correlations calcluated between imputed cases:

#>

#> Average absolute difference in correlation between observed and imputed cases:

#>

#> 0.0142

#>

#> Average value of the test statistic based on Fisher's z across all variable pairs:

#>

#> 1.3661

#>

#> The largest statistic (14.48) corresponds to variable pair sex and marital_status.

#>

#> Portion of p-values for the test based on Fisher's z that are less than 0.05:

#>

#> 0.2478

From the above statistics, we can see that the average absolute difference in pair-wise variable correlations
between the imputed estimates and observed data is 0.0142, which indicates the variable correlations across
imputed cases are, on average, very similar to variable correlations across the observed cases. For 75.2% of all
pair-wise variable correlations, the correlation estimated with imputed cases does not test as being different
from the correlation estimated with the observed cases at the 5% significance level. Note, however, that this
test is based off of Fisher’s z transformation and requires bivariate normality, which is not satisfied in these
data

Now that we’ve seen the imputations look reasonable, we can run similar models to the ones we ran earlier,
but using the imputation datasets rather than restricting the analysis to complete cases. We’ll combine model
estimates produced across imputation datasets by using Rubin’s rules to calculate pooled predictions4 We’ll
then compare predictions from the imputed models with the complete-cases model.

Regression models

specification <- formula(income ~ sex + age + marital_status + job_field +

farm_labour_days + own_livestock + education_level)

#For illustrative purposes I'm using a glm with the poisson family

#but alternative estimators would likely perform better with this data &

#specification

model_bench <- glm(specification, data = ihd, family = poisson(link = "log"))

model_mcar <- glm(specification, data = ihd_mcar, family = poisson(link = "log"))

model_mar <- glm(specification, data = ihd_mar, family = poisson(link = "log"))

#Run model on each imputation dataset, then pool predictions.

impute_mcar <- lapply(imputed_mcar$imputed, glm, formula = specification,

family = poisson(link = "log"))

impute_mar <- lapply(imputed_mar$imputed, glm, formula = specification,

family = poisson(link = "log"))

pool_predictions <- function(model_list){

4Rubin, D. B. (2004). Multiple imputation for nonresponse in surveys (Vol. 81). John Wiley & Sons.
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Table 1: RMSE for imputation models

Model RMSE (Benchmark) RMSE (MCAR) RMSE (MAR)

Complete case analysis 200000.4 205200.9 202145.7
Imputed analysis 200000.4 200928.4 200764.6

#Get coefficients from each model

coefs <- lapply(model_list, function(x){x$coefficients})

#Convert the list of coefficients into a data.frame

coefs <- data.frame(matrix(unlist(coefs), nrow = length(coefs), byrow = T))

#Calculate mean of each coefficient across models:

coef_means <- apply(coefs, 2, mean)

#Replace coefficient estimates in one of the model objects with those

#produced by pooled predictions (so we can easily use the predict function)

dummy_model <- model_list[[1]]

dummy_model$coefficients <- coef_means

pred_pool <- predict(dummy_model, type = "response", newdata = ihd)

return(pred_pool)

}

bench_cca <- predict(model_bench, type = "response")

mcar_cca <- predict(model_mcar, type = "response", newdata = ihd)

mar_cca <- predict(model_mar, type = "response", newdata = ihd)

mcar_pooled <- pool_predictions(impute_mcar)

mar_pooled <- pool_predictions(impute_mar)

#Calculate RMSE for each model

rmse <- function(obs, pred){

return(sqrt(mean((obs - pred)ˆ2)))

}

rmse_bench <- rmse(ihd$income, bench_cca)

rmse_mcar_cca <- rmse(ihd$income, mcar_cca)

rmse_mar_cca <- rmse(ihd$income, mar_cca)

rmse_mcar_imp <- rmse(ihd$income, mcar_pooled)

rmse_mar_imp <- rmse(ihd$income, mar_pooled)

rmse_results <- data.frame("models" = c("Complete case analysis", "Imputed analysis"),

"RMSE (Benchmark)" = c(rmse_bench, rmse_bench),

"RMSE (MCAR)" = c(rmse_mcar_cca, rmse_mcar_imp),

"RMSE (MAR)" = c(rmse_mar_cca, rmse_mar_imp))
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We can see from the above table depicting each model’s respective root-mean-squared error. In both the
MCAR and MAR example, we would ideally want model error to closely match the error in the benchmark
model.The benchmark model uses the initial dataset without any missingness and has root-mean-squared
error (RMSE) of 20,0000 rupees (~$2750 USD).

However, we can see in both cases that restricting the MCAR and MAR model to a complete case analysis is
leading to larger RMSE than the benchmark. We’ve reduced the discrepancy between the benchmark and
MCAR/MAR by imputing for the missing observations using gerbil.

The models for MAR & MCAR using GERBIL imputations have RMSEs that are closer to the error
observed in the benchmark model. Additionally, we can look at the predictions graphically by plotting their
distributions across models:
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Looking at these empirical density plots, we can also see that the predictions with imputations better match
the predictions in the benchmark, compared to the complete case analysis. In both cases, GERBIL improved
the analysis with missing data, compared with dropping incomplete cases within the model.
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