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coefPlot Plots coefficients in an impulse response format
Description

Given a model xObj for which coef(xObj) returns a set of coefficients, plot the coefficients.

The plots make it easier to compare which features are large, which are set to zero, and how features
change from run to run in a graphical manner.

If the fitting process is linear (e.g. Im, glmnet, etc.) and the original features are appropriately
ordered lags, this will generate an impulse response.

Any coefficients that are exactly zero (for instance, set that way by LASSO) will appear as red X’s;
non-zero points will be black O’s.
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Usage
coefPlot(x0Obj, includelIntercept = FALSE, type = "h"”, main = NULL, ...)
Arguments
x0bj Output of a fitting model.
includelntercept
Should the 1st coefficient be plotted? Default is FALSE.
type Graphics type. Default is "h", which results in an impulse-like plot.
main "main" title; default is the relative number of non-zero coefficients, a measure
of sparsity.
Optional additional graphical parameters, for instance to set ylim to a fixed
value.
Details

If includelntercept==TRUE, the intercept of the model will be plotted as index O.

Changing the type using type="b" will result in a parallel coordinate-like plot rather than an
impulse-like plot. It is sometimes easier to see the differences in coefficients with type="b" rather
than type="h".

Value

Invisibly returns TRUE. Used for its graphic side effects only.

Examples

set.seed(1)

nObs <- 100

X <- distMat(nObs,6)

A <- cbind(c(1,0,-1,rep(0,3))) # Y will only depend on X[,1] and X[, 3]
Y <= X %*% A + @.1*rnorm(nObs)

lassoObj <- easyLASSO(X,Y)

Yhat <- predict(lassoObj,newx=X)
yyHatPlot(Y,Yhat)

coef( lassoObj ) # Sparse coefficients
coefPlot( lassoObj )

coefPlot( lassoObj, includeIntercept=TRUE )
coefPlot( lassoObj, type="b" )
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distMat Make a matrix with coefficients distributed as dist

Description

Generate a pXq matrix with coefficients drawn from the univariate distribution dist with options
distOpt.

Usage

distMat(p, q, dist = rnorm, distOpt = NULL)

Arguments
p Number of rows
q Number of columns
dist distribution of coefficients to draw from; default is rnorm.
distOpt Named list of additional parameters for dist. Always omit the first parameter,n,
of the distribution sampling function. Defaults may be omitted if desired (see
examples).
Details

The user may provide their own distribution function, but note that the number of values to return,
n, must be the first argument, just as with the built-in distributions. The first argument does not have
to be named.

Value

A pXq matrix with coefficients distributed as dist with parameters defined in °...°

Examples

<- distMat(10,2)

<- distMat(10,2,distOpt=1list(mean=1,sd=2))
<- distMat(5, 3, rnorm,list(mean=1,sd=2))

<- distMat(5,3,rnorm,list(sd=2))

<- distMat(50,3,rt,list(df=3))

>xX X X X X
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easyLASSO Select and fit sparse linear model with LASSO

Description

The purpose of this function is to make the process of LASSO modelling as simple as possible.

This is a simple wrapper on two glmnet functions which, when given input matrix X and response
vector y, and a criterion for model selection, will estimate the lambda parameter, and return the
LASSO results as a glmnet model. This model can then be used to find coefficients and predictions.

Usage

easyLASSO(X, y, criterion = "lambda.1se")

Arguments
X Predictor matrix, nXp, with n observations and p features.
y Response vector, or column or row matrix. Must have length n.
criterion String describing which lambda criterion to use in selecting a LASSO model.
Choices currently are c("lambda.lse","lambda.min").
Value

a glmnet model

See Also

glmnet and cv.glmnet

Examples

set.seed(1)
nObs <- 100
X <- distMat(nObs,6)
A <- cbind(c(1,0,-1,rep(9,3)))

# Y will only depend on X[,1] and X[, 3]
Y <= X %*% A + 0@.1*rnorm(nObs)
lassoObj <- easyLASSO(X=X,y=Y) # LASSO fitting
Yhat <- predict(lassoObj,newx=X)
yyHatPlot(Y,Yhat)
coef( lassoObj ) # Sparse coefficients
coefPlot( lassoObj )
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eDiff Matrix size-preserving diff function

Description

Returns a matrix, the same size as the input matrix X, containing the back difference.

Usage
eDiff (X, pad = NA)

Arguments
X R object coercible to matrix
pad Pad the first row with this value; the default is NA. O would be another value
often used in signal processing.
Value

Returns a matrix, the same size as the input matrix X, containing the back difference by column.
The first row is filled with copies of pad.

Examples

eDiff( 1:8 )
eDiff( as.data.frame(1:8) )
eDiff( matrix(1:8,ncol=2) )

elLag Convert vector into a matrix of lag columns

Description

Convert vector into a matrix of lag columns

Usage

eLag(x, colParamVector, pad = NA)

Arguments

X Data vector
colParamVector Vector of lags for embedding

pad Scalar for padding embedding
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Value

A matrix whose columns are x lagged by the corresponding values in colParamVector.

See Also

embed and embedd, which are related functions.

Examples

eLag(1:6, 0:2)
eLag(1:6, 0:2, pad=0)

eMatrixOuter Extends eOuter to allow a matrix for the first argument

Description

Extends eOuter to allow a matrix for the first argument

Usage
eMatrixQOuter(X, colParamVector, FUN, ...)
Arguments
X R object coercible to a matrix the columns of this will be the argument of FUN

(see below).
colParamVector Vector input which will be the second argument of FUN (see below).
FUN Function which will be applied to FUN(X[,i],colParam Vector[j],...)
Additional arguments to FUN.

Details

This function is a simple extension of eOuter which allows the function eOuter(X[,i],colParamVector,FUN,...)
for i in the columns of X.

Value

Returns a matrix with the matrics generated by eOuter for each column column bound together.
This means that each row of the returned matrix represents single observations (at least as long as
no lags are used).

Examples

A <- matrix(1:6,ncol=2)
temp <- eMatrixOuter(A,@:2,FUN=""%)



8 eOuter

eOuter Extend outer product.

Description

Extends outer {base} outer(x,y,FUN) to include functions FUN(x,y, ...) where the first argu-
ment of FUN is a vector but the second argument must be a scalar.

Usage
eOuter(x, y, FUN, ...)
Arguments
X Vector, with the same function as in outer {base}. Each value will correspond
to a row in the return matrix.
y Vector. Each element in the vector corresponds to a column in the return matrix.
FUN Function. x and y will be the first and second arguments. Unlike outer, how-
ever, while a vector can be the first argument, FUN might only allow one value
as the second argument. This means eOuter can use lagshift, for instance, as
FUN.
Additional parameters for FUN.
Details

outer has limitations; it only works with functions which can take vector inputs for both the first and
second arguments, such as "A". As a result, many functions cannot be used for FUN. The function
eOuter gets around this limitation by additionally allowing functions which accept a vector for the
first argument, but only scalars for the second argument. It can be used everywhere that outer can
be used, but also when FUN is limited in this way.

Value

A matrix Z of size length(x) X length(y) containing Z[,i] with values FUN(x,y[i],...).

See Also

outer and ePow

Examples

# This implements a function similar to ePow

# FIXME: change ePow to use eOuter!!!

eOuter(1:6,0:2,FUN = **%)

# Other functions of columns

eOuter(1:10,0:3,FUN = lagshift,lagMax=3,pad=NA)

# FIXME: Make function to allow polynomials to be used:

# eOuter(1:10,1:3,FUN = glaguerre.polynomials, alpha=0.5)
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ePow Convert vector x into a matrix X _ij = x_i"j

Description

Convert vector x into a matrix X;; = z;/

Usage

ePow(x, colParamVector)

Arguments

X Data vector.

colParamVector Vector of column powers.

Value

A matrix X of size length(x) X length(colParamVector)

Xij = Ii]
Examples
x <- 1:6
ePow(x,0:2)
eQuad Multivariate second order polynomial expansion.
Description

Expand matrix columns into linear, square, and unique product columns.

Usage
eQuad(X, FUN = *x* . ..)
Arguments
X vector or matrix. If a vector, it will be converted to a column matrix. If it is
desired that the squares and products of a vector are computed, pass rbind(X)
instead of X, and thereby pass a row matrix.
FUN Binary function which forms the products of the columns. By default, this is “*°,

but other commuting operators or kernels can be used if desired.
Options for FUN. Not needed if FUN doesn’t have options.
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Details

Form a matrix with columns composed of into linear, square, and product columns:
[XIFUN(X],d], X[, j])]

where ¢, 7 are the unique combinations of ¢ and 7, including 7 = j.

By default, the function used to form the squares and products, FUN, is just conventional multipli-
cation = “*°, but any commuting binary operator can be used.

This particular expansion is often applied in

* General Method of Data Handling (GMDH).

* Nonlinear Slow Feature Analysis (SFA). Performing a multivariate polynomial of second de-
gree expansion in all the features, then performing linear SFA on the resulting expanded
feature matrix, is a very common approach, and in fact is the default method in sfa2 {rSFA3}.

Value

[X, X2, uniqueproductsofcolumnsof X]. The unique products are in row major upper right tri-
angular order. Thus, for X with columns 1:3, the order is

X[ 1% X[,2)% X[, 3%, X[, 1] * X[,2], X[, 1] * X[, 3], X[, 2] * X[, 3]

See Also

sfa2

Examples

# # Examples
# eQuad(1:5)
# eQuad(matrix(1:12,ncol=3),FUN="+")

eReplace Replace values in an R object coerible to a matrix

Description

Replace values in an R object coerible to a matrix. It is useful for replacing NA with other values,
etc., such as with padding values.

Usage

eReplace(X, a, b)
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Arguments
X R object coercible to a matrix
a Value to be replaced
b Value to replace

Value

X with all a’s replaced with b’s. a may be NA

See Also

replace, which performs the same operation on vectors, and on which this operation is based.

Examples

A <- matrix(1:6,ncol=2)
A <- eReplace(A,1,NA)

A <- eReplace(A,NA,-9999)
A <- eReplace(A,-9999,0)

eTrim Remove padded rows from matrix X

Description

Remove padded rows from matrix X

Usage

eTrim(X, pad = NA)

Arguments

X R object coercible to matrix

pad Value representing padded elements. By default it is NA, but could be any value.
Value

A matrix.



12 expandFunctions

Examples
n <- 10
x <= rnorm(n) # x vector
X <- eLag(x,0:1) # X matrix
t <- 1:n # time vector
T <- elLag(t,0:1) # time matrix; the column corresponding

# to @ is the time for each row,
# even after trimming
matplot(X, type="1",1ty=1)
X <= eTrim(X)
T <= eTrim(T)
matplot(x=T[,1]1,y=X, type="1",1ty=1,
xlab="Time")

expandFunctions expandFunctions: a feature matrix builder

Description

A variety of functions for conversion of vectors and matrices to other matrices to use as features.
This allows one to quickly build feature structures and apply various machine learning methods to
those features for exploration and pedantic purposes.

Details

The expandFunctions package contains functions that can be used to expand feature vectors and
matrices into larger feature matrices. These functions include lag embedding, special function
univariate exansion, quadratic expansion, and random vector projection.

The general steps for feature generation for time domain data (which subsumes multivariate data
via lags) are:
* Preprocess data - remove mean, transform, etc., to a useful vector or matrix.

* If not a matrix, functionally expand vector into a matrix. This is typically done by lag embed-
ding, but may also include STFT, wavelet transforms, etc.

* Functionally expand matrices generated.
* Combine resulting matrices into a single feature matrix.

¢ Dimensional reduction, feature selection, and/or feature extraction to reduce the number of
features.

* Use machine learning method(s) on the resulting feature matrix.

Most of the steps above are well supported in R on CRAN, but the expansion steps tend to be scat-
tered in a variety of packages, poorly represented, or custom built by the user. The expandFunction
package is intended to collect many of these functions together in one place.

Preprocessing almost always should include centering and scaling the data. However, it may also
include a variety of transformations, such as Freeman-Tukey, in order to make the vector fit more
closely to a given model (say, a linear model with Gaussian noise).
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If the input isn’t a time domain vector, but is instead already in tabular form (for instance, Boston
Housing Data), the embedding step can be skipped.

Dimension reduction is outside the scope of this package, but is normally performed to reduce the
variables that need handling, reducing the memory used and speeding up the analysis.

The package functions are "magrittr-friendly", that is, built so that they can be directly pipelined
since X, the data, is the first argument.

Most functions are prefixed with "e" to help distinguish them from being confused with similarly
named functions.

Author(s)
Scott Miller <sam3CRAN @ gmail.com>

Examples

## Not run:

# Sunspot counts can be somewhat Gaussianized by the

# Freeman-Tukey transform.

x <- freemanTukey(sunspot.month)

par(mfrow=c(1,1)) # just in case multiplots were left over.
plot(x, type="1")

# Embed x using elag

# Since the base period of sunspots is 11%12 months,
# pick the lags to be fractions of this.

myLags <- seq(from=0,to=200,by=1)

X <- eTrim(eLag(x,myLags))

Y <- X[,+1,drop=FALSE]

X <- X[,-1,drop=FALSE]

# matplot (X, type="1",1ty=1)

# OLS fitting on the lag feature set

ImObj <- Im(y ~ .,data = data.frame(x=X,y=Y))
coefPlot(1mObj, type="b")
summary (1mObj)

Yhat <- predict(ImObj, newdata = data.frame(x=X))
Ydiagnostics(Y, Yhat)

# LASSO fitting on the lag feature set

lassoObj <- easyLASSO(X,Y,criterion="lambda.min")
coefPlot(lassoObj, type="b")

Yhat <- predict(lassoObj,newx = X)
Ydiagnostics(Y, Yhat)

# Reduce the lag feature set using non-zero

# LASSO coefficients

useCoef <- coef(lassoObj)[-1]!=0

myLags <- seq(from=0,to=200,by=1)[c(TRUE,useCoef)]
X <- eTrim(elLag(x,myLags))

Y <- X[,+1,drop=FALSE]

X <= X[,-1,drop=FALSE]
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# OLS fitting on the reduced lag feature set
ImObj <- 1lm(y ~ .,data = data.frame(x=X,y=Y))
summary (1mOb3j)

coefPlot(1mObj)

Yhat <- predict(lmObj, newdata = data.frame(x=X))
Ydiagnostics(Y, Yhat)

# 1st nonlinear feature set

# Apply a few Chebyshev functions to the columns of the

# lag matrix. Note these exclude the constant values,

# but include the linear.

chebyFUN <- polywrapper (basePoly=orthopolynom: :chebyshev.t.polynomials,
kMax=5)

Z <- eMatrixOuter(X,1:5,chebyFUN)

# OLS fitting on the 1st nonlinear feature set
ImObj <- Im(y ~ .,data = data.frame(z=Z,y=Y))
summary (1mOb3j)

Yhat <- predict(1mObj, newdata = data.frame(z=Z))
Ydiagnostics(Y,Yhat)

# LASSO fitting on the 1st nonlinear feature set
lassoObj <- easyLASSO(Z,Y)

coefPlot(lassoObj)

Yhat <- predict(lassoObj,newx = Z)
Ydiagnostics(Y,Yhat)

# 2nd nonlinear feature set
# Use eQuad as an alternative expansion of the lags
Z <- eQuad(X)

# OLS fitting on the 2nd nonlinear feature set
ImObj <- Im(y ~ .,data = data.frame(z=Z,y=Y))
summary (1mObj)

Yhat <- predict(1lmObj, newdata = data.frame(z=Z))
Ydiagnostics(Y, Yhat)

# LASSO fitting on the 2nd nonlinear feature set
lassoObj <- easyLASSO(Z,Y)

coefPlot(lassoObj)

Yhat <- predict(lassoObj,newx = Z)
Ydiagnostics(Y, Yhat)

## End(Not run)

freemanTukey

freemanTukey Freeman-Tukey transform
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Description
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This transform takes Poisson (count) information and makes it more Gaussian, then z-scales (stan-

dardizes by centering and scaling to var = 1) the results.

Usage

freemanTukey (x)

Arguments

X Data vector

Value

The transformed vector

References

Taken from https://en.wikipedia.org/wiki/Anscombe_transform

Examples

x <- freemanTukey(sunspot.month)

lagshift Helper function for eLag.

Description

Generates shifted columns.

Usage
lagshift(x, i, lagMax, pad)

Arguments
X Input vector
i Shift (integer)
lagMax Maximum lag that will be needed
pad Scalar used for padding.
Value

vector padded front and back with padding appropriate for generating lag.

Examples

lagshift(1:3,0,1,NA)


https://en.wikipedia.org/wiki/Anscombe_transform
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polywrapper Generate special functions using orthonormal functions

Description

orthopolynom can be used to generate special functions, but for expansion they should be modified.
As of this writing, orthopolynom generates polynomials for Chebyshev, Hermite, Legendre and
many other functions, their integrals and derivatives, and more.

Usage

polywrapper(basePoly = orthopolynom::chebyshev.t.polynomials, kMax = @)

Arguments

basePoly A polynomial list from orthopoly

kMax Integer. The maximum order of the function generated.
Details

The function polywrapper does 2 things:

* Generate functions from polynomial coefficients.

» Uses x as the Ist argument, and the order as the second; this means the generated functions
can be used in eOuter and eMatrixOuter.

The functions so generated can be used as simple special functions, as well as being useful in feature
building.

Since the coefficients from orthopolynom are generated by recursion, an upper limit of the function
order needs to be set when calling polywrapper. This is the main limitation of polywrapper. For-
tunately, since the functions are compactly stored, kMax can be set quite high if desired. Note that
usually the kMax is known, and is relatively small.

NB: The input x may need to be normalized. orthopolynom has the function scaleX for just such a
purpose.

Value

Function which is compatible with eOuter and eMatrixOuter

Examples

# Generate a Chebyshev function of the form

# chebyFUN(x,k), where x is the input and k is the order.

# In this case, k must be no more than 5 (since that

# is the value passed to kMax), although it is

# easy to set this to a higher order if desired.

chebyFUN <- polywrapper(basePoly=orthopolynom: :chebyshev.t.polynomials,
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kMax=5)
# Now the function chebyFUN
# can be used as any other function:
x <- seq(-1,+1,0.01)
plot(x,chebyFUN(x,5),type="1")
eOuter(seq(-1,+1,0.01),0:3,chebyFUN)

rapt Expand an input matrix X using raptObj.

Description

Expand an input matrix X using a Random Affine Projection Transformation (RAPT) object. Such
objects use random affine projection transformation to the resulting matrix. This allows RAPT
objects serve as a basis for a large number of kinds of expansions. If p are the number of features
of X, and q are number of expanded features, the applications fall into two broad categories:

* p > q using the Johnson-Lindenstrauss theorem:

— Compressed sensing.

Manifold learning.
Dimension reduction.

Graph embedding.

* p < qusing Bochner’s theorem:

Approximate kernel projection.

Fast approximate SVD.

Estimation of dependence.

Usage
rapt(X, raptObj)

Arguments

X Input data matrix
raptObj raptObj generated by raptMake

Details
Computes
XW+1b

where
W = raptObj$W
b = raptObj$b
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Value

A matrix of randomly (but repeatable) features.

References

https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma, https://en.wikipedia.
org/wiki/Bochner%27s_theorem

See Also

Details of how the rapt object is built are in raptMake.

Examples

# Toy problem

set.seed(1)

nObs <- 100 # Number of observations

X <- matrix(seq(-4,+4,length.out = nObs),ncol=1)

Ytrue <- sin(5*X) + 2xcos(2*X) # True value Ytrue = g(X)
Y <- Ytrue + rnorm(nObs) # Noisy measurement Y

# Standardize X
Xstd <- scale(X)
attributes(Xstd) <- attributes(X)

# Bochner (random Fourier) projection object
nDim <- NCOL (X)
h <- 10 # Estimated by goodness of fit Adj R*2.
# Normally this would be fit by cross validation.
raptObj <- raptMake(nDim,nDim*200,WdistOpt = list(sd=h),
bDistOpt=1list(min=-pi,max=+pi))

# Apply raptObj to Xstd to generate features,
# keeping unaltered features Xstd as well.
Xrapt <- cbind( Xstd, cos( rapt(Xstd,raptObj) ) )

# Standardize results
XraptStd <- scale(Xrapt)
attributes(XraptStd) <- attributes(Xrapt)

# A linear fitting of Y to the features XraptStd
ImObj <- Im(Y ~ XraptStd)
summary (1mObj)

# Plot measurements (Y), predictions (Yhat),

# Kernel smoothing with Gaussian kernel and same bandwidth,
# true Y without noise.

Yhat <- predict(1mObj)

plot (X,Y ,main="Linear Fitting", ylim=c(-6,10))
lines(X,Yhat,col="red",lty=1, lwd=2)

grid(col="darkgray")

kFit <- ksmooth(X,Y,kernel="normal”, bandwidth=1/h)


https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
https://en.wikipedia.org/wiki/Bochner%27s_theorem
https://en.wikipedia.org/wiki/Bochner%27s_theorem
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lines(kFit$x,kFit$y,lty=1,col="green"”,lwd=2)
lines(X,Ytrue,lty=1,col="blue", lwd=2)
legend("topleft”,
legend=c("Noisy measurements”,
"Estimated Y from RAPT",
"Estimated Y from Kernel Smooth”,
"True Y"),
col=1:4,
pch=c( 1,NA,NA,NA),
lty=c(NA, 1, 1, 1),
1wd=2,
bty="n")

Fit sparse model w/LASSO and

lambda criteria = 1 standard deviation.

This avoids overgeneralization errors usually
associated with fitting large numbers of features

to relatively few data points. It also improves

the end effects, which are of paramount importance

in high dimensional problems (since by the curse

of dimensionality, almost all points are close an edge
in high dimensional problems).

lassoObj <- easyLASSO(XraptStd,Y)

Yhat <- predict(lassoObj, newx = XraptStd)

# Use linear fit of prediction Yhat as goodness of fit.
summary (Im(Y ~ Yhat))

B A

# Plot results of LASSO fitting
# These show LASSO does a better job fitting edges.
plot(X,Y,main="LASSO Fitting",ylim=c(-6,10))
lines(X,Yhat,col="red",lty=1, 1lwd=2)
grid(col="darkgray")
kFit <- ksmooth(X,Y,kernel="normal"”,bandwidth=1/h)
lines(kFit$x,kFit$y,lty=1,col="green"”,lwd=2)
lines(X,Ytrue,lty=1,col="blue"”,lwd=2)
legend("topleft”,
legend=c("Noisy measurements”,
"Estimated Y from RAPT",
"Estimated Y from Kernel Smooth"”,
"True Y"),
col=1:4,
pch=c( 1,NA,NA,NA),
l1ty=c(NA, 1, 1, 1),
lwd=2,
bty="n")
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raptMake Define a Random Affine Projection Transformation (RAPT) object
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Description

Create a Random Affine Projection Transformation (RAPT) object. Such objects use random affine
projection transformation to the resulting matrix. This allows RAPT objects serve as a basis for a
large number of kinds of expansions.

Usage

raptMake(p, g, Wdist = rnorm, WdistOpt = NULL, bDist = runif,
bDistOpt = list(min = @, max = 0))

Arguments
p Number of input features (columns of X).
q Number of output features,
Wdist W distribution function. Coefficients for the random projection matrix W are
drawn from this distribution. The default is rnorm.
WdistOpt List of optional parameters for Wdist. If this is NULL (default), then only de-
faults of the distribution are used.
bDist b distribution function. Coefficients for the offset vector b are drawn from this
distribution. The default is runif.
bDistOpt List of optional parameters for bDist. If this is NULL then only defaults of
the distribution are used. The default is bDistOpt=1ist(min=0,max=0), which
results in b = 0, with no offset.
Details

This initializes a eRAPTobj, which holds all the parameters needed to perform a random projection
transformation expansion (RAPT).

An RAPT of X is defined as
XW+b

where

X is the input matrix

W is a matrix of coefficients drawn from Wdist with options WdistOpt

b is a column matrix of coefficients drawn from bDist with options bDistOpt

If there is a need for multiple W or b distributions, then make multiple raptObj. This makes each
raptObj fairly simple, while allowing arbitrary complexity through multiple expansion and compo-
sition.

A simple way to get a linear feature, in addition to the RAPT features, is to simply cbind the original
matrix X in with the raptObj matrix.

Value

An expand object, which defines the following fields: W Input weighting matrix b Input offset
matrix
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Examples

raptObj <- raptMake(21,210,bDistOpt=1ist(min=-pi,max=+pi))

reset.warnings Reset annoyingly persistent warning messages.

Description

Reset annoyingly persistent warning messages.

Usage

reset.warnings()

Value

Returns TRUE invisibly. Used for side effects only.

References
This function is built around the snippet found here: http://stackoverflow.com/questions/
5725106/r-how-to-clear-all-warnings

Examples

## reset.warnings()

Ydiagnostics Informative plots for Y and Yhat

Description

This function presents diagnostic plots of estimate Yhat and response Y.

Usage
Ydiagnostics(Y, Yhat, ...)
Arguments
Y R object representing response, coercible to a vector.
Yhat R object representing estimate, coercible to a vector. The length of Y and Yhat

must be equal.

Options for cor function. The defaults are use = "everything" and method =
"pearson".


http://stackoverflow.com/questions/5725106/r-how-to-clear-all-warnings
http://stackoverflow.com/questions/5725106/r-how-to-clear-all-warnings
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Details

The plots shown are:

* Y vs Yhat. Under a perfect noise-free fitting, this would be a straight line with the points lined
up on the red line, and the correlation wpuld be 1.0000.

* Y, Yhat and Y-Yhat (residual) time domain plots. The time steps are in samples.

» These show the ACF for the original Y, the residual, and Iresiduall. The latter helps identify
nonlinearity in the residual.

Value

Invisibly returns TRUE; this routine is only used for its graphical side effects described in Details.

See Also

cor

Examples

# The order here looks backwards, but is chosen to

# simulate a typical pair - Yhat will normally have

# a smaller range than Y.

set.seed(2)

nObs <- 100 # Number of observations

x <- stats::filter(rnorm(nObs),c(-0.99),
method="recursive")

X <= x + (x*2) # Nonlinear component

myLags <- 0:2

X <- eTrim(elLag(x,myLags))

Y <- X[,+1,drop=FALSE]

X <- X[,-1,drop=FALSE]

1mObj <- Im(Y ~ X)

Yhat <- predict(1mObj)

Ydiagnostics(Y,Yhat)

yyHatPlot Plot y and yHat on the same scale w/reference line

Description
Plots y and yHat on the same scale as a scatterplot with a 1:1 reference line in red. This is useful
for visually comparing actual data y with estimates yHat, determining outliers, etc.

Usage

yyHatPlot(y, yHat, ...)
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Arguments
y Vector or matrix coercible to vector. Typically will be the quantity to be pre-
dicted.
yHat Vector or matrix coercible to vector, same length as y. Typically will be the
prediction.
Optional additional graph parameters.
Details

Normally only makes sense with vectors, column matrices, or row matrices.

Value

Returns invisibly - only used for graphic side effects.

Examples

set.seed(1)

nObs <- 80

X <- distMat(nObs,2)

A <= cbind(c(1,-1))

Y <= X %*% A + rnorm(nObs) # Response data
1mObj <- 1Im(Y ~ X)

Yhat <- predict(1lmObj) # Estimated response
yyHatPlot(Y,Yhat)
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