
Examples: Nonlinear continuous-time models

Lu Ou, Michael D. Hunter, Sy-Miin Chow

November 27, 2023

This �le demonstrates the utilization of dynr in �tting single-regime and
regime-switching nonlinear dynamic models. As extensions of linear models,
nonlinear dynamic models incorporate nonlinearities into the change processes.
Such nonlinearities may take the form of interactions between components of a
system, and have many useful applications across di�erent scienti�c disciplines.
In the study of human dynamics, for instance, many processes are character-
ized by changes that are dependent on interactions with other processes. Non-
linear ordinary di�erential equations have been used to model, among other
phenomena, ovulatory regulation [2], circadian rhythms [3], cerebral develop-
ment [16], substance use [1], cognitive aging [5], parent-child interactions [17],
couple dynamics [4, 7]; and sudden transitions in attitudes [18]. To facilitate
the speci�cation of more complex dynamic models, especially those that involve
the use of specialized mathematical functions (e.g., trigonometric, power, lo-
gistic and exponential functions), or those for which the user would rather not
specify in matrix form, dynr provides users with a formula interface that can
accommodate nonlinear as well as linear dynamic functions.

1 Single-regime nonlinear continuous-time model

To illustrate the use of the formula interface in dynr, we use a benchmark
nonlinear ordinary di�erential equation model, the predator-prey model [13, 19,
9]. The predator-prey model is a classic model for representing the nonlinear
dynamics of interacting populations or components of any system of interest. In
this model, there are two populations, one of predators (e.g., foxes) and another
of prey (e.g., rabbits). The food supply of the prey is assumed to be unbounded,
but the food supply of the predators is the prey. As the predator population
grows, they decrease the prey population. Consequently, as the prey population
shrinks, the predator population must also decrease with its diminishing food
supply. The most often cited behavior of the predator-prey system while in
a particular parameter range is ongoing oscillations in the predator and prey
populations with a phase lag between them.

The utility of the predator-prey model extends far beyond the area of popu-
lation dynamics. Direct applications or extensions of this predator-prey system
include the epidemic models of the onset of social activities (EMOSA) used
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to study the spread of smoking, drinking, delinquency, and sexual behaviors
among adolescents [14, 15], the cognitive aging model [5], and the model of
couples' a�ect dynamics [4]. In the EMOSA, smokers (predators) may interact
with non-smokers (prey) to produce varying numbers of smokers and nonsmok-
ers over time depending on the parameters of the system. Likewise, romantic
couples may mutually drive their partners' a�ective states through ongoing in-
teractions with each other, creating novel and testable hypotheses about human
behavior.

Written as a di�erential equation, the predator-prey model is expressed as:

d(prey(t)) = (a prey(t)− b prey(t) predator(t)) dt (1)

d(predator(t)) = (−c predator(t) + d prey(t) predator(t)) dt (2)

where the parameters a, b, c, d are all constrained to be greater than or equal to
0. These equations make up the continuous-time dynamics for this system (i.e.,
the special case of Equation 3 for this model). Examining the prey equation
(Equation 1), the prey population would increase exponentially without bound if
there were zero predators. Similarly, examining the predator equation (Equation
2), if the prey population was zero, then the predator population would decrease
exponentially to zero (i.e., go extinct).

For demonstration purposes, we have included with the dynr package a set
of simulated data generated with true parameter values: a = 2, b = 1, c = 4, d =
1, e = .25, f = 5. A fully functional demo script can be found as one of the
demos in dynr using:

> file.edit(system.file("demo", "NonlinearODE.R", package = "dynr"))

1.1 Prepare the data

The �rst step in dynr modeling is to structure the data. This is done with the
dynr.data() function.

> #------------------------------------------------------------------------------

> # Example 1: Nonlinear Continuous-time Models

> #------------------------------------------------------------------------------

> require(dynr)

> # ---- Read in the data ----

> data(PPsim)

> PPdata <- dynr.data(PPsim, id = "id", time = "time", observed = c("x", "y"))

The �rst argument of this function is either a ts class object of single-subject
time series or a data.frame structured in a long (relational) format (i.e., with
di�erent measurement occasions from the same subject appearing as di�erent
rows in the data frame). Missing values in the observed variables should be
indicated by NA. When a ts class object is passed to dynr.data(), no other
inputs are needed. Otherwise, the id argument needs the name of the ID vari-
able as input, and allows multiple people to be estimated in a single model by
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distinguishing di�erent individuals with the ID variable. That is, it indicates
which rows should be modeled together as a time series. Thus, multi-subject
modeling is as easy as single-subject modeling; only the data di�er. The time
argument needs the name of the TIME variable that indicates subject-speci�c
measurement occasions. If a discrete-time model is desired, the TIME variable
should contain subject-speci�c sequences of (subsets of) consecutively equally
spaced numbers (e.g, 1, 2, 3, · · · ). In other words, the program assumes that
the input data.frame is equally spaced with potential missingness. If the mea-
surement occasions for a subject are a subset of an arithmetic sequence but are
not consecutive, NAs will be inserted automatically to create an equally spaced
data set before estimation. If a continuous-time model is being speci�ed, the
TIME variable can contain subject-speci�c increasing sequences of irregularly
spaced real numbers. That is, the data may be input at their original, irregu-
larly spaced intervals without the need to insert missingness. In this particular
example, a discrete time model is used.

The observed and covariates arguments are used to indicate the names of the
observed variables and covariates in the data. Covariates are de�ned as �xed
predictors that are hypothesized to a�ect the modeling functions in one or more
ways, but are otherwise not of interest (i.e., not modeled as dependent variables)
to the user. Missing values in covariates are not allowed. That is, missing values
in the covariates, if there are any, should be imputed �rst. The dynr.data()
function lets users include data sets with many variables, but only use a few.
The output of the function combines with the model recipe information later to
map the model onto the data.

1.2 Prepare the recipes

The next step in dynr modeling is to build the recipes for the various parts of
a model. The recipes are created with prep.*() functions.

1.2.1 Model speci�cation: the dynamic functions

The dynamic model can take on the form of continuous-time models as

dηi(t) = fSi(t) (ηi(t), t,xi(t)) dt+ dwi(t), (3)

or the form of discrete-time state-space models [6] as

ηi(ti,j+1) = fSi(t) (ηi(ti,j), ti,j ,xi(ti,j)) +wi(ti,j+1), (4)

where i indexes person, t indexes time, ηi(t) is the r×1 vector of latent variables
at time t, xi(t) is the vector of covariates at time t, and fSi(t)(.) is the vector of
(possibly nonlinear) dynamic functions. fSi(t)(.) depends on the latent regime
indicator, Si(t), the discrete-valued latent variable that indexes the operating
regime at time t.

The dynamic functions, fSi(t)() in Equations 3 and 4, can be speci�ed
using one of two possible functions in dynr: prep.formulaDynamics() and
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prep.matrixDynamics(). While prep.matrixDynamics() can only be used for
linear dynamic functions, prep.formulaDynamics() supports all native mathe-
matical functions available in R and can be of use for both linear and nonlinear
dynamic functions. Using the formula interface in dynr, the predator-prey
model can be speci�ed as:

> # dynamics

> preyFormula <- prey ~ a * prey - b * prey * predator

> predFormula <- predator ~ - c * predator + d * prey * predator

> ppFormula <- list(preyFormula, predFormula)

> ppDynamics <- prep.formulaDynamics(formula = ppFormula,

+ startval = c(a = 2.1, c = 0.8, b = 1.9, d = 1.1),

+ isContinuousTime = TRUE)

The �rst argument of the prep.formulaDynamics() function is formula. More
speci�cally, this is a list of formulas. Each element in the list is a single, uni-
variate, formula that de�nes a di�erential (if isContinuousTime = TRUE) or
di�erence (if isContinuousTime = FALSE) equation. There should be one for-
mula for every latent variable, in the order in which the latent variables are
speci�ed by using the state.names argument in prep.measurement(). The left-
hand side of each formula is either the one-step-ahead projection of the latent
variable (in the discrete-time case) or the di�erential of the latent variable (in
the continuous-time case), namely, the left-hand-side of the respective dynamic
equations. In both cases, users only need to specify the names of the latent
variables that match the speci�cation in prep.measurement() on the left-hand
side of the formulas. The right-hand side of each formula gives a (linear or pos-
sibly nonlinear) function that may involve free or �xed parameters, numerical
constants, exogenous covariates, and other arithmetic/mathematical functions
that de�ne the dynamics of the latent variables. The startval argument is a
named vector giving the names of the free parameters and their starting values.
Just as in the prep.matrixDynamics() function, the isContinuousTime argument
is a binary �ag that de�nes the switch between continuous- and discrete-time
modeling.

With the formula interface, it is important to note that dynr uses the D()
function from the stats package to automatically and symbolically di�erentiate
the formulas provided. Hence, dynr uses the analytic Jacobian of the dynamics
in its extended Kalman �lter, greatly increasing its speed and accuracy. The
D() function can handle the di�erentiation of functions involving parentheses,
arithmetic operators (e.g., +, −, ∗, /, and �) and numerous mathematical func-
tions (e.g., exp, log , sin, cos, tan, sinh, cosh, sqrt , pnorm, dnorm, asin, acos,
atan, gamma, and so on). Thus, for a very large class of nonlinear functions,
the user is spared from the need to supply the analytic Jacobian of the dynamic
functions of interest to use the extended Kalman �lter functionality in dynr.
However, symbolic di�erentiation will not work for all formulas. For instance,
formulas involving the absolute value function cannot be symbolically di�er-
entiated. For formulas that cannot be di�erentiated automatically using the
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stats package, the user must provide the analytic �rst derivatives through the
jacobian argument. One can use the following code to �nd an example.

> file.edit(system.file("demo", "RSNonlinearDiscrete.R", package = "dynr"))

1.2.2 Model speci�cation: the linear measurement function

We often assume that we have a simplest discrete-time measurement model in
which ηi(ti,j) at discrete time point ti,j is indicated by a r × 1 vector of manifest
observations, yi(ti,j) as

yi(ti,j) = ηi(ti,j) + ϵi(ti,j), ϵi(ti,j) ∼ N
(
0,RSi(ti,j)

)
, (5)

which includes a r × 1 vector of measurement errors ϵi(ti,j) assumed to be
serially uncorrelated over time and normally distributed with zero means and
(possibly) regime-speci�c covariance matrix, RSi(ti,j). In this simplest case, the
measurement model has the following two speci�cations.

> # Measurement (factor loadings)

> meas <- prep.measurement(

+ values.load = diag(1, 2),

+ obs.names = c('x', 'y'),

+ state.names = c('prey', 'predator'))

> # alternatively, use prep.loadings

> meas <- prep.loadings(

+ map = list(

+ prey = "x",

+ predator = "y"),

+ params = NULL)

1.2.3 Model speci�cation: the latent and observed noise covariance

structures

The noise recipe is created with prep.noise(). wi(t) in Equation 3 is an r-
dimensional Wiener process (i.e., continuous-time analog of a random walk pro-
cess). The di�erentials of the Wiener processes have zero means and regime-
speci�c covariance matrix, QSi(t), often called the di�usion matrix. In Equa-
tion 4, however, wi(t) denotes a vector of Gaussian distributed process noise
with regime-speci�c covariance matrix,QSi(t). In both continuous- and discrete-
time models, QSi(t) can be speci�ed by the *.latent arguments in prep.noise().
In ordinary di�erential equation models, QSi(t) = 0. The *.observed arguments
are used to specify RSi(ti,j) in Equation 5.

> #measurement and dynamics covariances

> mdcov <- prep.noise(

+ values.latent = diag(0, 2),

+ params.latent = diag(c("fixed", "fixed"), 2),

+ values.observed = diag(rep(0.3, 2)),
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+ params.observed = diag(c("var_1", "var_2"), 2)

+ )

1.2.4 Model speci�cation: the initial condition

In both the discrete- and continuous-time cases, the initial conditions for the dy-
namic functions are de�ned explicitly to be the latent variables at an individual-
speci�c initial time point, ti,1 (i.e., the �rst observed time point), denoted as
ηi(ti,1), and are speci�ed to be normally distributed with means µη1 and co-
variance matrix, Ση1 :

ηi(ti,1) ∼ N (µη1 ,Ση1) . (6)

> # Initial conditions on the latent state and covariance

> initial <- prep.initial(

+ values.inistate = c(3, 1),

+ params.inistate = c("fixed", "fixed"),

+ values.inicov = diag(c(0.01, 0.01)),

+ params.inicov = diag("fixed", 2)

+ )

1.2.5 Model speci�cation: the transformation function

Many dynamic models may only lead to permissible (e.g., �nite) values in par-
ticular parameter ranges. As such, we often need to add constraints to model
parameters in �tting dynamic models. One way of doing this in dynr is to
apply unconstrained optimization while transforming the parameters onto their
constrained scales during function evaluations. This can be accomplished in
dynr through the function prep.tfun(). For example, based on the nature of
the predator and prey dynamics, the a-d parameters should, by right, take on
positive values. Thus, we may choose to optimize their log-transformed values
and exponentiate the unconstrained parameter values during likelihood evalua-
tions to ensure that the values of these parameter estimates are always positive.
To achieve this, we supply a list of transformation formulas to the formula.trans
argument in the prep.tfun() function as follows:

> #constraints

> trans <- prep.tfun(formula.trans = list(a ~ exp(a), b ~ exp(b),

+ c ~ exp(c), d ~ exp(d)),

+ formula.inv = list(a ~ log(a), b ~ log(b),

+ c ~ log(c), d ~ log(d)))

In cases involving the use of such constraint functions, the delta method is
used to perform appropriate transformations to the covariance matrix of the
parameter estimates at convergence to yield standard error estimates for the
parameters on the constrained scales. If the starting values of certain parameters
are indicated on a constrained scale, the formula.inv argument should give a
list of inverse transformation formulas to transform the speci�ed starting values
to unconstrained scales for optimization.
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1.3 Create and cook the model

After the recipes for all parts of the model are de�ned, the dynr.model() func-
tion creates the model and stores it in the dynrModel object. Each recipe
(i.e., objects of class dynrRecipe created by prep.*()) and the data prepared by
dynr.data() are given to this function. The function requires dynamics, measure-
ment , noise, initial , and data as mandatory inputs for all models. When there
are multiple regimes in the model, the regimes argument should be provided
as shown below. When parameters are subject to transformation functions, a
transform argument can be added. The dynr.model() function takes the recipes
and the data and combines information from both. In doing so, this function
uses the information from each recipe to write the text for a C function. Op-
tionally, the C functions can be written to a �le named by the out�le argument
so that the user can inspect the automatically generated C code. Ideally of
course, there is no need to ever examine this �le; however, it is sometimes useful
for debugging purposes and may be helpful for specifying models that extend
those supported by the R interface functions. More frequently, inspecting the
dynrModel object and �serving it� will provide the needed information.

> #------------------------------------------------------------------------------

> # Cooking materials

>

> # Put all the recipes together in a Model Specification

> model2.1 <- dynr.model(dynamics = ppDynamics,

+ measurement = meas, noise = mdcov,

+ initial = initial, transform = trans,

+ data = PPdata,

+ outfile = "NonlinearODE.c")

> # Check the model specification

> printex(model2.1,

+ ParameterAs = model2.1$param.names,

+ show = FALSE, printInit = TRUE,

+ outFile = "NonlinearODE.tex")

> #tools::texi2pdf("NonlinearODE.tex")

> #system(paste(getOption("pdfviewer"), "NonlinearODE.pdf"))

>

> # Estimate free parameters

> res2.1 <- dynr.cook(dynrModel = model2.1)

>

In the last line above, the model is �cooked� with the dynr.cook() function to
estimate the free parameters and their standard errors. When cooking, the C
code that was written by dynr.model() is compiled and dynamically linked to
the rest of the compiled dynr code. Then the C is executed to optimize the free
parameters while calling the dynamically linked C functions that were created
from the user-speci�ed recipes. There are two points worth emphasizing in this
regard. First, the user never has to write C functions. Second, the user bene�ts
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from the C functions because of their speed. In this way, dynr provides an R

interface for dynamical systems modeling while maintaining much of the speed
associated with C.

1.4 Serve the results

The �nal step associated with dynr modeling is serving results (a dynrCook
object) after the model has been cooked. To this end, several standard, popu-
lar S3 methods are de�ned for the dynrCook class, including coef(), con�nt(),
deviance(), logLik() (and thus implicitly AIC() and BIC()), names(), nobs(),
summary(), and vcov(). These methods perform the same tasks as their coun-
terparts for regression models (i.e., lm class objects). The summary() method
provides a table of free parameter names, estimates, standard errors, t-values,
and Wald-type con�dence intervals.

> # Examine results

> # True parameter values a = 2, b = 2, c = 1, d = 1

> summary(res2.1)

> # names parameters s.e. t-value ci.lower ci.upper

> # a a 1.9637320 0.06946322 28.27010 1.8275866 2.0998774

> # c c 1.0023304 0.03062620 32.72788 0.9423042 1.0623567

> # b b 1.9327832 0.06216237 31.09250 1.8109472 2.0546192

> # d d 0.9608279 0.02628627 36.55246 0.9093078 1.0123481

> # var_1 var_1 0.2399578 0.01089095 22.03277 0.2186119 0.2613036

> # var_2 var_2 0.2380317 0.01072899 22.18585 0.2170033 0.2590601

> #

> # -2 log-likelihood value at convergence = 2843.19

> # AIC = 2855.19

> # BIC = 2884.64

2 Regime-switching extension

2.1 Prepare the data

> #------------------------------------------------------------------------------

> # Example 2: Regime-Switching Nonlinear Continuous-time Model

> #------------------------------------------------------------------------------

> # ---- Read in the data ----

> data("RSPPsim")

> useIds <- 1:10 #

> data <- dynr.data(RSPPsim[RSPPsim$id %in% useIds, ], id = "id", time = "time",

+ observed = c("x", "y"), covariate = "cond")

8



2.2 Prepare the recipes

Just as with the prep.matrixDynamics(), the formula interface also allows for
regime-switching functionality. Consider an extension of the classical predator-
prey model. It is likely that the prey and predator interaction follow seasonal
patterns. Hypothetically, we assume that in warmer seasons (i.e., �summer� en-
vironment), the interactions follow a classical predator-prey model, but in colder
seasons (i.e., �winter� environment), the food source (e.g., grass) of the prey be-
comes limited and the predator species is able to �nd an additional food source
due to the weather. So in the colder seasons the prey or predator population will
not go to extreme values in absence of the other species. We thus consider the
following regime-switching version of the predator-prey model to capture the po-
tential seasonal changes in the interaction patterns. In the Summer regime, we
have the predator-prey model as previously described, but in the Winter regime
we now have a predator-prey model characterized by within-species competi-
tion and limiting growth/decay. In this competitive predator-prey model, the
two populations do not grow/decline exponentially without bound in absence
of the other, but rather, they grow logistically up to some �nite carrying capac-
ity. This logistic growth adds to the between-species interactions with the other
population. This model can be speci�ed by combining the predator and prey
equations as:

> cPreyFormula <- prey ~ a * prey - e * prey ^ 2 - b * prey * predator

> cPredFormula <- predator ~ f * predator - c * predator ^ 2 + d * prey * predator

> cpFormula <- list(cPreyFormula, cPredFormula)

To specify the regime-switching predator-prey model, we combine the clas-
sical predator-prey model and the predator-prey model with within-species com-
petition into a list of lists. Then we provide this list to the usual prep.formulaDynamics()
function as the formula argument.

> rsFormula <- list(ppFormula, cpFormula)

> dynm <- prep.formulaDynamics(formula = rsFormula,

+ startval = c(a = 2.1, c = 3, b = 1.2, d = 1.2, e = 1, f = 2),

+ isContinuousTime = TRUE)

The phase portraits of the classical predator-prey model (Summer regime)
and the cometitive predator-prey model (i.e., Winter regime) are shown in Fig-
ure 1 created by the phaseR R package [8], where the two axes respectively
represent the population size of the two species. In Figure 1(A), there is a
reciprocal relation between the prey and predator population, whereas in Fig-
ure 1(B), there is an attractor or equilibrium state at (1.5, 1.625), toward which
the system tends to evolve.

2.2.1 Model speci�cation: the regime-switching model

The initial class (or regime) probabilities for Si(ti,1) and the probabilities of
transitions between regimes are represented using multinomial regression models
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Figure 1: The phase portraits of (A) a classical predator-prey model and
(B) a predator-prey model with within-species competition and limiting
growth/decay.

as

Pr
(
Si(ti,1) = m|xi(ti,1)

) ∆
= πm,i1 =

exp(am+bT
mxi(ti,1))∑M

k=1 exp(ak+bT
k xi(ti,1))

, (7)

Pr
(
Si(ti,j) = m|Si(ti,j−1) = l,xi(ti,j)

) ∆
= πlm,it =

exp(clm+dT
lmxi(ti,j)∑M

k=1 exp(clk+dT
lkxi(ti,j))

,(8)

where M denotes the total number of regimes, am denotes the logit intercept for
themth regime and bm is a nb×1 vector of regression slopes linked to a vector of
covariates used to explain possible interindividual di�erences in initial log-odds
(LO) of being in a regime relative to the reference regime selected by the user,
operationalized as the regime where am and all entries in bm are set to zero.
Setting these entries to be zero in at least the reference regime is necessary for
identi�cation purposes: this ensures that the initial regime probabilities across
all the hypothesized regimes sum to 1.0. πlm,it denotes individual i's probability
of transitioning from class l at time ti,j−1 to class m at time ti,j (i.e., the entry
in the lth row andmth column of the transition probability matrix), clm denotes
the logit intercept for the transition probability, and dlm is a nd × 1 vector of
logit slopes summarizing the e�ects of the covariates in xi(ti,j) on that transition
probability. The coe�cients in dlm are LO parameters representing the e�ects
of the covariates on the LO of transitioning from the lth regime into the mth
regime relative to transitioning into the reference regime - namely, the regime
in which all LO parameters (including clM and all elements in dT

lM ) are set to 0.
One regime, again, has to be speci�ed as the reference regime for identi�cation
purposes to ensure that conditional on being in a particular regime at time
ti,j−1, the probabilities of transitioning to each of the M regimes sum to 1.0

(i.e.,
∑M

m=1 πlm = 1).
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The prep.initial() function is used to specify the model for the initial regime
probabilities (i.e., Equation 7), in addition to the µη1 and Ση1 in Equation 6.
The prep.regimes() function speci�es the structure of the regime switching func-
tions shown in Equation 8. These two functions adopt similar structures for
specifying the parameters in the multinomial logistic regressions. Here we only
focus on the speci�cation of Equation 8 using the prep.regimes() function.

Note that based on Equation 8, a total of nd + 1 parameters, including an
intercept, clm, and nd regression slopes in dlm, have to be de�ned for each of
the functions governing the transition from the lth regime (l = 1, . . . ,M) to
the mth regime (m = 1, . . . ,M). In total, there are M ×M of such transition
functions, corresponding to entries in an M ×M transition probability matrix.
The function prep.regimes() requires the user to provide the starting values
(through the values argument) and names (through the params argument) for
these M × (nd +1) parameters as a matrix whose number of rows equals to the
number of regimes (i.e., M) and number of columns equals to the product of
the number of regimes and the total number of parameters (i.e., (nd +1)M) as:

c11 d⊤
11 c12 d⊤

12 · · · c1M d⊤
1M

c21 d⊤
21 c22 d⊤

22 · · · c2M d⊤
2M

...
...

...
...

...
...

...
cM1 d⊤

M1 cM2 d⊤
M2 · · · cMM d⊤

MM

 . (9)

In cases where covariates are involved in the multinomial logistic regression, a
covariates argument allows us to provide the names of the covariates according
to the order of the elements in dlm.

The example below shows equations and code that illustrate how covariates
can be incorporated into the multinomial logistic regression (e.g., Equations
10 and 11 and neighboring blocks of code). In our hypothetical example, we
have discussed how the weather condition may govern the regime switching
processes. Speci�cally, we assume a covariate cond (with a value of 0 indicat-
ing the warmer weather and 1 indicating the colder weather) has an e�ect on
the regime-switching transition probabilities. Then, we can specify the logistic
regression model by

> # Regime-switching function

> # The RS model assumes that each element of the transition probability

> # matrix (TPM) can be expressed as a linear predictor (lp).

> # LPM =

> # lp(p11) ~ 1 + x1 + x2 + ... + xn, lp(p12) ~ 1 + x1 + x2 + ... + xn

> # lp(p21) ~ 1 + x1 + x2 + ... + xn, lp(p22) ~ 1 + x1 + x2 + ... + xn

> # Here I am specifying lp(p12) and lp(p22); the remaining elements

> # lp(p11) and lp(p21) are fixed at zero.

> # nrow = numRegimes, ncol = numRegimes*(numCovariates+1)

>

> regimes <- prep.regimes(

+ values = matrix(c(0, 0, -1, 1.5,
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+ 0, 0, -1, 1.5),

+ nrow = 2, ncol = 4, byrow = T),

+ params = matrix(c("fixed", "fixed", "int_1", "slp_1",

+ "fixed", "fixed", "int_2", "slp_2"),

+ nrow = 2, ncol = 4, byrow = T),

+ covariates = "cond")

In essence, the above code creates the following matrix in the form of[
c11 = 0 d11 = 0 c12 = int1 = −1 d12 = slp1 = 1.5
c21 = 0 d21 = 0 c22 = int2 = −1 d22 = slp2 = 1.5

]
, (10)

which in turn creates the following transition probability matrix.


Summerti,j+1 Winterti,j+1

Summerti,j
exp(0+0×cond)

exp(0+0×cond)+exp(int1+slp1×cond)
exp(int1+slp1×cond)

exp(0+0×cond)+exp(int1+slp1×cond)

Winterti,j
exp(0+0×cond)

exp(0+0×cond)+exp(int2+slp2×cond)
exp(int2+slp2×cond)

exp(0)+exp(int2+slp2×cond)


(11)

Here we consider the Summer regime as the reference regime, so the �rst two
columns of the transition LO matrix (Equation 10) are �xed at zero. The third
and fourth columns of the transition LO matrix respectively correspond to the
regression intercepts and slopes associated with the covariate, whose starting
values are respectively set at -1 and 1.5. With this set of starting values, the
transition probability from any regime to the Summer regime is .73 when cond
= 0, and .38 when cond = 1. The negative intercept implies that in warmer
days (cond = 0), there is a greater chance of the process transitioning into the
Summer regime, and the regression slope greater than the absolute value of the
intercept suggests that in colder days (cond = 1), the transition into the Winter
regime is more likely.

2.2.2 Model speci�cation: the other components

A complete modeling script for this example can be retrieved using the code
below.

> file.edit(system.file("demo", "RSNonlinearODE.R", package = "dynr"))

The rest of preparation before model �tting is shown below.

> # Measurement (factor loadings)

> meas <- prep.measurement(

+ values.load = diag(1, 2),

+ obs.names = c('x', 'y'),

+ state.names = c('prey', 'predator'))

> # Initial conditions on the latent state and covariance

> initial <- prep.initial(

+ values.inistate = c(3, 1),
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+ params.inistate = c("fixed", "fixed"),

+ values.inicov = diag(c(0.01, 0.01)),

+ params.inicov = diag("fixed", 2),

+ values.regimep = c(.8473, 0),

+ params.regimep = c("fixed", "fixed"))

> #measurement and dynamics covariances

> mdcov <- prep.noise(

+ values.latent = diag(0, 2),

+ params.latent = diag(c("fixed","fixed"), 2),

+ values.observed = diag(rep(0.5,2)),

+ params.observed = diag(rep("var_epsilon",2),2)

+ )

> # dynamics

> preyFormula <- prey ~ a * prey - b * prey * predator

> predFormula <- predator ~ - c * predator + d * prey * predator

> ppFormula <- list(preyFormula, predFormula)

> cPreyFormula <- prey ~ a * prey - e * prey ^ 2 - b * prey * predator

> cPredFormula <- predator ~

+ f * predator - c * predator ^ 2 + d * prey * predator

> cpFormula <- list(cPreyFormula, cPredFormula)

> rsFormula <- list(ppFormula, cpFormula)

> dynm <- prep.formulaDynamics(formula = rsFormula,

+ startval = c(a = 2.1, c = 3, b = 1.2, d = 1.2, e = 1, f = 2),

+ isContinuousTime = TRUE)

> #constraints

> tformList <- list(a ~ exp(a), b ~ exp(b), c ~ exp(c),

+ d ~ exp(d), e ~ exp(e), f ~ exp(f))

> tformInvList <- list(a ~ log(a), b ~ log(b), c ~ log(c),

+ d ~ log(d), e ~ log(e), f ~ log(f))

> trans <- prep.tfun(

+ formula.trans = tformList,

+ formula.inv = tformInvList)

2.3 Create and cook the model

We �tted the speci�ed model to the simulated data. In parameter estimation,
dynr utilizes a sequential quadratic programming algorithm [11, 12] available
from an open-source library for nonlinear optimization � NLOPT [10]. By de-
fault, we do not set boundaries on the parameters to be estimated. However,
one can set the upper and lower boundaries of the estimated parameter val-
ues by respectively modifying the ub and lb slots of the model object of class
dynrModel . An example is given as below to constrain the int_1 and int_2
parameters to be negative between -10 and 0, while limiting the values of slp_1
and slp_2 to positive within a range from 0 to 10. Similarly, the stopping cri-
teria of the optimization algorithm can be modi�ed through the options slot
of the dynrModel object, which is a list consisting of speci�cations on the rel-

13



ative tolerance on optimization parameters (xtol_rel), the stopping threshold
of the objective value (stopval), the absolute and relative tolerance on function
value (i.e., ftol_abs and ftol_rel), the maximum number of function evaluations
(maxeval), the maximum optimization time (in seconds; maxtime).

The output of the estimation function, dynr.cook(), is an object of class
dynrCook . It not only includes estimation results that can be displayed in
the summary table produced by summary(), but also contains information on
posterior regime probabilities (i.e., the pr_t_given_T slot), smoothed state
estimates of the latent variables (i.e., η̂i(ti,j |Ti) = E(ηi(ti,j)|Yi(Ti)) in the
eta_smooth_�nal slot), and smoothed error covariance matrices of the latent
variables (i.e., Pi(ti,j |Ti) in the error_cov_smooth_�nal slot) at all available
time points. They can be retrieved by using the $ operator.

> # Cooking materials

>

> # Put all the recipes together in a Model Specification

> model2.2 <- dynr.model(dynamics = dynm, measurement = meas,

+ noise = mdcov, initial = initial,

+ regimes = regimes, transform = trans,

+ data = data,

+ outfile = "RSNonlinearODE_1.c")

> # Check the model specification using LaTeX

> printex(model2.2, ParameterAs = names(model2.2), printInit = TRUE, printRS = TRUE,

+ outFile = "RSNonlinearODE_1.tex")

> #tools::texi2pdf("RSNonlinearODE_1.tex")

> #system(paste(getOption("pdfviewer"), "RSNonlinearODE_1.pdf"))

>

> model2.2$ub[ c("int_1", "int_2", "slp_1", "slp_2") ] <- c(0, 0, 10, 10)

> model2.2$lb[ c("int_1", "int_2", "slp_1", "slp_2") ] <- c(-10, -10, 0, 0)

> # Estimate free parameters

> res2.2 <- dynr.cook(model2.2)

> # Examine results

> summary(res2.2)

2.4 Serve the results

Figure 2 is created from the dynr.ggplot() (or autoplot()) method with style set
to 2, and shows that the predicted trajectories match with the observed values
and alternate between di�erent regimes.

> dynr.ggplot(res2.2, model2.2, style = 2,

+ names.regime = c("Summer", "Winter"),

+ title = "", idtoPlot = 9,

+ text = element_text(size = 16))

Figure 3 is created by the plotFormula() method and presents the model
equations with parameter names and estimated parameter values.
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Figure 2: Built-in plotting feature for the predicted trajectories with observed
values for the regime-switching nonlinear ODE model.

> plotFormula(model2.2, ParameterAs = names(model2.2)) +

+ ggtitle("(A)") +

+ theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))

> plotFormula(model2.2, ParameterAs = coef(res2.2)) +

+ ggtitle("(B)") +

+ theme(plot.title = element_text(hjust = 0.5, vjust = 0.01, size = 16))
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