Package 'countTransformers'

October 12, 2022

Type Package
Title Transform Counts in RNA-Seq Data Analysis
Version 0.0.6
Date 2019-03-20
Maintainer Zeyu Zhang <zhzyvv@gmail.com></zhzyvv@gmail.com>
Depends R (>= 3.4.0), Biobase, limma
Imports MASS, graphics, stats
biocViews Bioinformatics, DifferentialExpression
Description Provide data transformation functions to transform counts in RNA-seq data analysis. Please see the reference: Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. (2019) <doi.org 10.1038="" s41598-019-41315-w="">.</doi.org>
License GPL (>= 2)
NeedsCompilation no
Author Zeyu Zhang [aut, cre], Danyang Yu [aut, ctb], Minseok Seo [aut, ctb], Craig P. Hersh [aut, ctb], Scott T. Weiss [aut, ctb], Weiliang Qiu [aut, ctb]
Repository CRAN
Date/Publication 2019-03-20 12:56:43 UTC
R topics documented:
es

es es

es	A Simulated Data Set	
Index		19
	rvTransformer	16
	r2Transformer	12

Description

A simulated data set based on the R code provided by Law et al.'s (2014) paper.

Usage

```
data("es")
```

Format

The format is: Formal class 'ExpressionSet' [package "Biobase"]

Details

The simulated data set contains RNA-seq counts of 1000 genes for 6 samples (3 cases and 3 controls). The library sizes of the 6 samples are not equal.

Source

The dataset was generated based on the R code Simulation_Full.R from the website http://bioinf.wehi.edu.au/voom/.

References

Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology. 2014; 15:R29

```
library(Biobase)

data(es)
print(es)

# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])
```

getJaccard 3

```
# phenotype data
pDat = pData(es)
print(dim(pDat))
print(pDat[1:2,])

# feature data
fDat = fData(es)
print(dim(fDat))
print(fDat[1:2,])
```

getJaccard

Calculate Jaccard Index for Two Binary Vectors

Description

Calculate Jaccard index for two binary vectors.

Usage

```
getJaccard(cl1, cl2)
```

Arguments

c11 n by 1 binary vector of classification 1 for the n subjects
 c12 n by 1 binary vector of classification 2 for the n subjects

Details

Jaccard Index is defined as the ratio

$$d/(b+c+d$$

, where d is the number of subjects who were classified to group 1 by both classification rules, b is the number of subjects who were classified to group 1 by classification rule 1 and were classified to group 0 by classification rule 2, c is the number of subjects who were classified to group 0 by classification rule 1 and were classified to group 1 by classification rule 2.

Value

The Jaccard Index

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5

4 12Transformer

Examples

```
n = 10
set.seed(1234567)

# generate two random binary vector of size n
cl1 = sample(c(1,0), size = n, prob = c(0.5, 0.5), replace = TRUE)
cl2 = sample(c(1,0), size = n, prob = c(0.5, 0.5), replace = TRUE)
cat("\n2x2 contingency table >>\n")
print(table(cl1, cl2))

JI = getJaccard(cl1, cl2)
cat("Jaccard index = ", JI, "\n")
```

12Transformer

Log Based Count Transformation Minimizing Sum of Sample-Specific Squared Difference

Description

Log based count transformation minimizing sum of sample-specific squared difference.

Usage

```
12Transformer(mat, low = 1e-04, upp = 1000)
```

Arguments

mat	$G\ x\ n$ data matrix, where G is the number of genes and n is the number of subjects
low	lower bound for the model parameter
upp	upper bound for the model parameter

Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the log transformation

$$y_{gi} = \log_2\left(x_{gi} + \frac{1}{\delta}\right)$$

. The optimal value for the parameter δ is to minimize the sum of the squared difference between the sample mean and the sample median across n subjects

$$\sum_{i=1}^{n} \left(\bar{y}_i - \tilde{y}_i \right)^2$$

, $\bar{y}_i = \sum_{g=1}^G y_{gi}/G$ and \tilde{y}_i is the median of y_{1i}, \dots, y_{Gi} , and where G is the number of genes and n is the number of subjects.

12Transformer 5

Value

A list with 3 elements:

res.delta An object returned by optimize function

delta model parameter

mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5

```
library(Biobase)
data(es)
print(es)
# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])
# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, "\n")
res = 12Transformer(mat = ex)
# estimated model parameter
print(res$delta)
# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")
```

6 ITransformer

1Transformer Log-based transformation	tion
---------------------------------------	------

Description

Log-based transformation.

Usage

```
lTransformer(mat, low = 1e-04, upp = 100)
```

Arguments

mat G x n data matrix, where G is the number of genes and n is the number of

subjects

low lower bound for the model parameter upp upper bound for the model parameter

Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the log transformation

$$y_{gi} = \log_2\left(x_{gi} + \frac{1}{\delta}\right)$$

. The optimal value for the parameter δ is to minimize the squared difference between the sample mean and the sample median of the pooled data y_{gi} , $g=1,\ldots,G$, $i=1,\ldots,n$, where G is the number of genes and n is the number of subjects.

Value

A list with 3 elements:

res.delta An object returned by optimize function

delta model parameter

mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5

Iv2Transformer 7

Examples

```
library(Biobase)
data(es)
print(es)
# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])
# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, "\n")
res = lTransformer(mat = ex)
# estimated model parameter
print(res$delta)
# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")
```

lv2Transformer

Log and VOOM Based Count Transformation Minimizing Sum of Sample-Specific Squared Difference

Description

Log and VOOM based count transformation minimizing sum of sample-specific squared difference.

Usage

```
lv2Transformer(mat, lib.size = NULL, low = 0.001, upp = 1000)
```

Arguments

mat	G x n data matrix, where G is the number of genes and n is the number of subjects
lib.size	By default, lib.size is a vector of column sums of mat
low	lower bound for the model parameter
upp	upper bound for the model parameter

8 lv2Transformer

Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the log transformation

$$y_{gi} = \log_2\left(t_{gi} + \frac{1}{\delta}\right)$$

, where

$$t_{gi} = \frac{(x_{gi} + 0.5)}{X_i + 1} \times 10^6$$

and $X_i = \sum_{g=1}^G x_{gi}$ is the column sum for the *i*-th column of the matrix mat. The optimal value for the parameter δ is to minimize the sum of the squared difference between the sample mean and the sample median across n subjects

$$\sum_{i=1}^{n} \left(\bar{y}_i - \tilde{y}_i\right)^2$$

, $\bar{y}_i = \sum_{g=1}^G y_{gi}/G$ and \tilde{y}_i is the median of y_{1i}, \dots, y_{Gi} , and where G is the number of genes and n is the number of subjects.

Value

A list with 3 elements:

res.delta An object returned by optimize function

delta model parameter

mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5

```
library(Biobase)

data(es)
print(es)

# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])

# mean-median before transformation
vec = c(ex)
m = mean(vec)
```

IvTransformer 9

```
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, "\n")

res = lv2Transformer(mat = ex)

# estimated model parameter
print(res$delta)

# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")
```

1vTransformer

Log and VOOM Transformation

Description

Log and VOOM Transformation.

Usage

lvTransformer(mat, lib.size=NULL, low=0.001, upp=1000)

Arguments

mat	G x n data matrix, where G is the number of genes and n is the number of subjects
lib.size	By default, lib.size is a vector of column sums of mat
low	lower bound for the model parameter
upp	upper bound for the model parameter

Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the log transformation

$$y_{gi} = \log_2\left(t_{gi} + \frac{1}{\delta}\right)$$

, where

$$t_{gi} = \frac{(x_{gi} + 0.5)}{X_i + 1} \times 10^6$$

and $X_i = \sum_{g=1}^G x_{gi}$ is the column sum for the *i*-th column of the matrix mat. The optimal value for the parameter δ is to minimize the squared difference between the sample mean and the sample median of the pooled data y_{gi} , $g=1,\ldots,G$, $i=1,\ldots,n$, where G is the number of genes and n is the number of subjects.

10 IvTransformer

Value

A list with 3 elements:

res.delta An object returned by optimize function

delta model parameter

mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5

```
library(Biobase)
data(es)
print(es)
# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])
# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
\mathtt{cat}("\mathtt{m=",\ m,\ ",\ md=",\ md,\ ",\ diff=",\ diff,\ "\n"})
res = lvTransformer(mat = ex)
# estimated model parameter
print(res$delta)
# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")
```

r2Transformer

r2Transformer Root Based Count Transformation Minimizing Sum of Sample-Specific Squared Difference

Description

Root based count transformation minimizing sum of sample-specific squared difference.

Usage

```
r2Transformer(mat, low = 1e-04, upp = 1000)
```

Arguments

mat G x n data matrix, where G is the number of genes and n is the number of

subjects

low lower bound for the model parameter upp upper bound for the model parameter

Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the root and voom transformation

 $y_{gi} = \frac{x_{gi}^{(1/\eta)}}{(1/\eta)}$

, The optimal value for the parameter η is to minimize the sum of the squared difference between the sample mean and the sample median across n subjects

$$\sum_{i=1}^{n} \left(\bar{y}_i - \tilde{y}_i \right)^2$$

, $\bar{y}_i = \sum_{g=1}^G y_{gi}/G$ and \tilde{y}_i is the median of y_{1i}, \dots, y_{Gi} , and where G is the number of genes and n is the number of subjects.

Value

A list with 3 elements:

res.delta An object returned by optimize function

eta model parameter

mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

12 rTransformer

References

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5

Examples

```
library(Biobase)
data(es)
print(es)
# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])
# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, "\n")
res = r2Transformer(mat = ex)
# estimated model parameter
print(res$eta)
# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")
```

rTransformer

Root Based Transformation

Description

Root based transformation.

Usage

```
rTransformer(mat, low = 1e-04, upp = 100)
```

rTransformer 13

Arguments

mat G x n data matrix, where G is the number of genes and n is the number of

subjects

low lower bound for the model parameter upp upper bound for the model parameter

Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the root transformation

 $y_{gi} = \frac{x_{gi}^{(1/\eta)}}{(1/\eta)}$

. The optimal value for the parameter η is to minimize the squared difference between the sample mean and the sample median of the pooled data y_{gi} , $g=1,\ldots,G$, $i=1,\ldots,n$, where G is the number of genes and n is the number of subjects.

Value

res.eta An object returned by optimize function

eta model parameter

mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5

```
library(Biobase)

data(es)
print(es)

# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])

# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, "\n")
```

14 rv2Transformer

```
res = rTransformer(mat = ex)

# estimated model parameter
print(res$eta)

# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")
```

rv2Transformer

Root and VOOM Based Count Transformation Minimizing Sum of Sample-Specific Squared Difference

Description

Root and VOOM based count transformation minimizing sum of sample-specific squared difference.

Usage

```
rv2Transformer(mat, low = 1e-04, upp = 1000, lib.size = NULL)
```

Arguments

mat G x n data matrix, where G is the number of genes and n is the number of

subjects

lib.size By default, lib.size is a vector of column sums of mat

low lower bound for the model parameter upp upper bound for the model parameter

Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the root and voom transformation

 $y_{gi} = \frac{t_{gi}^{(1/\eta)}}{(1/\eta)}$

, where

$$t_{gi} = \frac{(x_{gi} + 0.5)}{X_i + 1} \times 10^6$$

and $X_i = \sum_{g=1}^G x_{gi}$ is the column sum for the *i*-th column of the matrix mat. The optimal value for the parameter η is to minimize the sum of the squared difference between the sample mean and the sample median across n subjects

$$\sum_{i=1}^{n} \left(\bar{y}_i - \tilde{y}_i \right)^2$$

rv2Transformer 15

, $\bar{y}_i = \sum_{g=1}^G y_{gi}/G$ and \tilde{y}_i is the median of y_{1i}, \dots, y_{Gi} , and where G is the number of genes and n is the number of subjects.

Value

A list with 3 elements:

res.delta An object returned by optimize function eta model parameter

mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5

```
library(Biobase)
data(es)
print(es)
# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])
# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, "\n")
res = rv2Transformer(mat = ex)
# estimated model parameter
print(res$eta)
# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")
```

16 rvTransformer

rvTransformer

Root and VOOM Transformation

Description

Root and vOOM transformation.

Usage

```
rvTransformer(mat, lib.size = NULL, low = 0.001, upp = 1000)
```

Arguments

mat G x n data matrix, where G is the number of genes and n is the number of

subjects

lib.size By default, lib.size is a vector of column sums of mat

low lower bound for the model parameter upp upper bound for the model parameter

Details

Denote x_{gi} as the expression level of the g-th gene for the i-th subject. We perform the root transformation

$$y_{gi} = \frac{t_{gi}^{(1/\eta)}}{(1/\eta)}$$

, where

$$t_{gi} = \frac{(x_{gi} + 0.5)}{X_i + 1} \times 10^6$$

and $X_i = \sum_{g=1}^G x_{gi}$ is the column sum for the *i*-th column of the matrix mat. The optimal value for the parameter δ is to minimize the squared difference between the sample mean and the sample median of the pooled data y_{gi} , $g=1,\ldots,G$, $i=1,\ldots,n$, where G is the number of genes and n is the number of subjects.

Value

A list with 3 elements:

res.eta An object returned by optimize function

eta model parameter

mat2 transformed data matrix having the same dimension as mat

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

wilcoxWrapper 17

References

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5

Examples

```
library(Biobase)
data(es)
print(es)
# expression set
ex = exprs(es)
print(dim(ex))
print(ex[1:3,1:2])
# mean-median before transformation
vec = c(ex)
m = mean(vec)
md = median(vec)
diff = m - md
cat("m=", m, ", md=", md, ", diff=", diff, "\n")
res = rvTransformer(mat = ex)
# estimated model parameter
print(res$eta)
# mean-median after transformation
vec2 = c(res$mat2)
m2 = mean(vec2)
md2 = median(vec2)
diff2 = m2 - md2
cat("m2=", m2, ", md2=", md2, ", diff2=", diff2, "\n")
```

wilcoxWrapper

Wrapper Function for Wilcoxon Rank Sum Test

Description

Wrapper function for wilcoxon rank sum test.

Usage

```
wilcoxWrapper(mat, grp)
```

18 wilcoxWrapper

Arguments

mat G x n data matrix, where G is the number of genes and n is the number of

subjects

grp n x 1 vector of subject group info

Details

For each row of mat, we perform Wilcoxon rank sum test.

Value

A G x 1 vector of p-values.

Author(s)

Zeyu Zhang, Danyang Yu, Minseok Seo, Craig P. Hersh, Scott T. Weiss, Weiliang Qiu

References

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for RNA-seq Differential Expression Analysis. (2019) 9:4820 https://rdcu.be/brDe5

Index

```
* datasets
    es, 2
* method
    getJaccard, 3
    12Transformer, 4
    1Transformer, 6
    1v2Transformer, 7
    1vTransformer, 9
    r2Transformer, 11
    rTransformer, 12
    rv2Transformer, 14
    rvTransformer, 16
    wilcoxWrapper, 17
es, 2
getJaccard, 3
12Transformer, 4
1Transformer, 6
1v2Transformer, 7
1vTransformer, 9
r2Transformer, 11
rTransformer, 12
rv2Transformer, 14
rvTransformer, 16
wilcoxWrapper, 17
```