## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", error=TRUE, warning=FALSE ) ## ----echo=T,results='hide'---------------------------------------------------- library(bmabart) ## ----echo=T,results='hide'---------------------------------------------------- data(weight_behavior) try0= bma.bart(pred=weight_behavior[,3], m=weight_behavior[,c(2,4:14)], y=weight_behavior[,15], refy = 0, predref = "F",nskip=10,ndpost=100) summary(try0) ## ----echo=T------------------------------------------------------------------- summary(try0) ## ----------------------------------------------------------------------------- summary(try0,method=2,RE=F) ## ----echo=T,results='hide'---------------------------------------------------- try1= bma.bart(pred=weight_behavior[,3], m=weight_behavior[,c(5:12)], cova=weight_behavior[,2], y=weight_behavior[,1], refy = 0, predref = "F",nskip=10,ndpost=20) summary(try1) ## ----echo=T, results='hide'--------------------------------------------------- try2= bma.bart(pred=weight_behavior[,3], m=weight_behavior[,c(5:12)], cova=weight_behavior[,2], mcov=weight_behavior[,13:14], mclist=c(list(var=1:7),rep(NA,6),list(1)), y=weight_behavior[,1], refy = 0, predref = "F",nskip=0,ndpost=2) ## ----fig.show='hold'---------------------------------------------------------- summary(try2) ## ----echo=T, results='hide'--------------------------------------------------- try3= bma.bart(pred=weight_behavior[,c(1,4)], m=weight_behavior[,c(2:3,5:14)], y=weight_behavior[,15], refy = 0, predref = "OTHER",nskip=0,ndpost=2) ## ----------------------------------------------------------------------------- summary(try3) ## ----------------------------------------------------------------------------- try0$DIC$D_bar try0$DIC$var_D try0$DIC$p_D #calculated using two methods try0$DIC$DIC ## ----results='hide'----------------------------------------------------------- #generating the data set.seed(123) n <- 1000 X <- rnorm(n) M <- 0.5 + 0.5 * X^2 + rnorm(n) Y <- 0.6 * M^3 + 0.5* X + rnorm(n) data <- data.frame(X = X, M = M, Y = Y) try4= bma.bart(pred=X, m=M, y=Y, ndpost=10L, nskip=100L) #use the sd/10 for X and M summary(try4) ## ----------------------------------------------------------------------------- summary(try4) #Associations between X and M plot(X, M, main = "BART Model: X vs M", ylab = "M", xlab = "", pch = 16, col = "blue") points(X, try4$m.models[[1]]$yhat.train.mean, col = "red", pch = 16) ie2.apart=try4$apart.ie[,,1] plot(X,apply(ie2.apart,2,mean), main = "X vs apart", ylab = "apart",xlab = "", pch = 16, col = "red") #Association between M and Y plot(M, Y, main = "BART Model: M vs Y", ylab = "Y", xlab = "", pch = 16, col = "blue") # points(M, try4$y.model$yhat.train.mean, col = "red", pch = 16) legend("topleft", legend = c("Observed", "BART Predictions"), col = c("blue", "red"), pch = c(16,16), bty="n") ie2.bpart=try4$bpart.ie[,,1] plot(M, apply(ie2.bpart,2,mean), main = "M vs bpart", ylab = "bpart", xlab = "", col = "red", pch = 16)