Package ‘Rvcg’

March 14, 2025

Type Package

Title Manipulations of Triangular Meshes Based on the 'VCGLIB' API
Version 0.25

Date 2025-03-14

Description Operations on triangular meshes based on 'VCGLIB'. This package
integrates nicely with the R-package 'rgl' to render the meshes processed by
'Rvcg'. The Visualization and Computer Graphics Library (VCG for short) is
an open source portable C++ templated library for manipulation, processing
and displaying with OpenGL of triangle and tetrahedral meshes. The library,
composed by more than 100k lines of code, is released under the GPL license,
and it is the base of most of the software tools of the Visual Computing Lab of
the Italian National Research Council Institute ISTI <https://vcg.isti.cnr.it/>,
like 'metro’ and 'MeshLab'. The "VCGLIB' source is pulled from trunk
<https://github.com/cnr-isti-vclab/vcglib> and patched to work with options
determined by the configure script as well as to work with the header files
included by RcppEigen'.

Depends R (>=3.1.0)

Imports Rcpp, grDevices, stats, utils

Suggests Morpho, rgl

LinkingTo Rcpp, RceppEigen, ReppArmadillo

License GPL (>=2) | file LICENSE

BugReports https://github.com/zarquon42b/Rvcg/issues
Copyright see files COPYRIGHTS for detailed information
LazyLoad yes

Biarch yes

URL https://github.com/zarquon42b/Rvcg,
https://github.com/cnr-isti-vclab/vcglib

Encoding UTF-8

RoxygenNote 7.2.3

NeedsCompilation yes

https://vcg.isti.cnr.it/
https://github.com/cnr-isti-vclab/vcglib
https://github.com/zarquon42b/Rvcg/issues
https://github.com/zarquon42b/Rvcg
https://github.com/cnr-isti-vclab/vcglib

2 Contents

Author Stefan Schlager [aut, cre, cph],
Girinon Francois [ctb],
Tim Schaefer [ctb],
Zhengjia Wang [ctb]

Maintainer Stefan Schlager <zarquon42@gmail.com>
Repository CRAN
Date/Publication 2025-03-14 18:10:02 UTC

Contents
Rveg-package 3
checkFaceOrientation 4
dummyhead 5
humface L 5
meshInfo 5
meshintegrity e e e e e e 6
nfaces e 6
NVEITS o ottt e e e e e e 7
raysearchMulti 7
setRays L 8
VCZATEA 9
vegBallPivotingo 9
vegBary ... L e 10
vegBordero 11
vegClean oL e 12
vegClost . . . L e e e 13
vegClostKD . . . o L e 15
vcgClostOnKDtreeFromBarycenters oo 17
vegCreateKDtree L 18
vegCreateKDtreeFromBarycenters oL 0oL 19
VCECUIVE . . . o o o e e e e e 20
vegDijkstra L 21
vegFaceNormals Lo 22
vegGeodesicPath 22
vegGeodiSt L. 23
vegGetEdge L 24
veglmport L e 25
veglsolated 26
veglsosurface L 27
veglsotropicRemeshingo 28
vegKDtree L e 29
vegKmeans 30
vegMeshres L e 31
vegMEetro e e e e 32
vegNonBorderEdge 34
vegObjWrite e 35

vegOffWrite e 35

Rvcg-package 3

vegPlyRead e e 36
vegPlyWrite L e e 37
vegQEdecim 38
vegRaySearch Lo 39
vegSample e 41
vegSearchKDtree 42
vegSmooth . . . L L e e e e 43
vegSmoothImplicit o 44
vegSphereo 46
vegSHWTrIte L e 47
vegSubdivide e 47
vegUniformRemesh L 48
vegUpdateNormals 49
vegVertexNeighbors 0oL 50
vegVFadj 51
vegVolume 52
vegWIIWrite o o e e e e e 53
Index 54
Rvcg-package Interface between R and vcglib libraries for mesh operations
Description

Provides meshing functionality from vcglib (meshlab) for R. E.g. mesh smoothing, mesh decima-
tion, closest point search.

Details
Package: Rvcg
Type: Package
Version: 0.25
Date: 2025-03-14
License: GPL
LazylLoad: yes

Author(s)

Stefan Schlager

Maintainer: Stefan Schlager <zarquon42 @ gmail.com>

References

To be announced

4 checkFaceOrientation

See Also
Useful links:
* https://github.com/zarquon42b/Rvcg

e https://github.com/cnr-isti-vclab/vcglib
* Report bugs at https://github.com/zarquon42b/Rvcg/issues

checkFaceOrientation check the orientation of a mesh

Description

check the orientation of a mesh assuming that expansion along normals increases centroid size

Usage

checkFaceOrientation(x, offset = NULL)

Arguments
X mesh of class mesh3d
offset numeric: amount to offset the mesh along the vertex normals. If NULL a rea-
sonable value will be estimated.
Details

assuming that a correctly (i.e outward) oriented mesh increases its centroid size when ’growing’
outwards, this function tests whether this is the case.

Value

returns TRUE if mesh is oriented correctly and FALSE otherwise

Examples

data(dummyhead)
now we invert faces inwards
checkFaceOrientation(dummyhead.mesh)

if (requireNamespace("Morpho”, quietly = TRUE)) {
dummyinward <- Morpho: :invertFaces(dummyhead.mesh)
checkFaceOrientation(dummyinward)

3

https://github.com/zarquon42b/Rvcg
https://github.com/cnr-isti-vclab/vcglib
https://github.com/zarquon42b/Rvcg/issues

dummyhead 5

dummyhead dummyhead - dummy head and landmarks

Description

A triangular mesh representing a dummyhead - called by data(dummyhead)

Format

dummyhead.mesh: triangular mesh representing a dummyhead.

dummyhead. 1m: landmarks on mesh ’"dummyhead’

humface Example mesh and landmarks

Description

A triangular mesh representing a human face - called by data(humface)

Format

humface: triangular mesh representing a human face. humfaceClean: triangular mesh representing
a human face but without errors or isolated pieces. humface.lm: landmarks on mesh "humface’-
called by data(humface)

meshInfo print number of vertices and triangular faces of a mesh

Description

print number of vertices and triangular faces of a mesh

Usage

meshInfo(x)

Arguments

X triangular mesh

6 nfaces

meshintegrity check if an object of class mesh3d contains valid data

Description

checks for existance and validity of vertices, faces and vertex normals of an object of class "mesh3d"

Usage

meshintegrity(mesh, facecheck = FALSE, normcheck = FALSE)

Arguments
mesh object of class mesh3d
facecheck logical: check the existence of valid triangular faces
normcheck logical: check the existence of valid normals

Value

if mesh data are valid, the mesh is returned, otherwise it stops with an error message.

nfaces get number of vertices from a mesh

Description

get number of vertices from a mesh

Usage

nfaces(x)

Arguments

X triangular mesh

Value

integer: number of triangular faces

nverts 7

nverts get number of vertices from a mesh

Description

get number of vertices from a mesh

Usage

nverts(x)

Arguments

X triangular mesh

Value

integer: number of vertices

raysearchMulti Find all intersections of rays and a mesh

Description

Find all intersections by tracing rays through mesh #

Usage

raysearchMulti(x, mesh, maxtol = 1le+15, threads = 1, offset = 0.001)

Arguments
X a triangular mesh of class “'mesh3d’ or a list containing vertices and vertex nor-
mals (fitting the naming conventions of *mesh3d’). In the second case x must
contain x$vb = 3 x n matrix containing 3D-coordinates and x$normals = 3 x n
matrix containing normals associated with x$vb.
mesh triangular mesh to be intersected.
maxtol maximum distance to search along ray
threads number of threads used during search.
offset amount to offset the hit points along the ray to find the next intersection. This is
needed to avoid finding the same intersection over and over again.
Details

This function iteratively uses vcgRaySearch to find all intersections of rays and a given surface
mesh.

8 setRays

Value

list with following items:

intersects a list containing the result of vcgRaySearch at each step of the intersection
search

hits Vector containging number of intersections for each ray
See Also

vcgRaySearch
Examples

Not run:

require(Morpho); require(rgl)

data(humface)

humfacel <- scalemesh(humface,size=1.1)

mesh <- mergeMeshes(humface, humfacel) #get normals of landmarks

x <- vcgClost(humface.lm, humface)
offset landmarks along their normals for a negative amount of -5mm
x$vb[1:3,] <= x$vb[1:3,]+x$normals[1:3,]*-5

myint <- raysearchMulti(x,mesh)

wire3d(mesh,col="white")

spheres3d(vert2points(x),radius=0.5,col=3)

plotNormals(x,length=55,1wd=2)

for (i in 1:length(myint$intersects)) {
spheres3d(vert2points(myint$intersects[[i]])[which(as.logical(myint$intersects[[i]]$quality)),]

,col=i)
3
End(Not run)
setRays helper function to create an object to be processed by vcgRaySearch

Description
create a search structure from a matrix of coordinates and one of directional vectors to be processed
by vcgRaySearch

Usage

setRays(coords, dirs)

Arguments
coords k x 3 matrix (or a vector of length 3) containing the starting points of the rays
dirs k x 3 matrix (or a vector of length 3) containing the directons of the rays. The

i-th row of dirs corresponds to the coordinate stored in the i-th row of coords

vcgArea 9

Value

an object of class "mesh3d" (without faces) and the vertices representing the starting points of the
rays and the normals storing the directions.

vcgArea compute surface area of a triangular mesh

Description

compute surface area of a triangular mesh

Usage
vcgArea(mesh, perface = FALSE)

Arguments
mesh triangular mesh of class mesh3d
perface logical: if TRUE, a list containing the overall area, as well as the individual
per-face area are reported.
Value

surface area of mesh

Examples

data(humface)
vcgArea(humface)

vcgBallPivoting Ball pivoting surface reconstruction

Description

Ball pivoting surface reconstruction

Usage

vcgBallPivoting(
X,
radius = 0,
clustering = 0.2,
angle = pi/2,
deleteFaces = FALSE

10

Arguments

X

radius

clustering

angle

deleteFaces

Value

vcgBary

k x 3 matrix or object of class mesh3d

The radius of the ball pivoting (rolling) over the set of points. Gaps that are
larger than the ball radius will not be filled; similarly the small pits that are
smaller than the ball radius will be filled. O = autoguess.

Clustering radius (fraction of ball radius). To avoid the creation of too small
triangles, if a vertex is found too close to a previous one, it is clustered/merged
with it.

Angle threshold (radians). If we encounter a crease angle that is too large we
should stop the ball rolling.

in case X is a mesh and deleteFaces=TRUE, existing faces will be deleted be-
forehand.

triangular face of class mesh3d

Examples

if (requireNamespace("Morpho”, quietly = TRUE)) {

require(Morpho)

data(nose)

nosereko <- vcgBallPivoting(shortnose.1lm)

}

vcgBary

get barycenters of all faces of a triangular mesh

Description

get barycenters of all faces of a triangular mesh

Usage

vcgBary (mesh)

Arguments

mesh

Value

triangular mesh of class "mesh3d"

n x 3 matrix containing 3D-coordinates of the barycenters (where n is the number of faces in mesh.

vcgBorder 11

Examples

data(humface)

bary <- vcgBary(humface)
Not run:

require(rgl)
points3d(bary,col=2)
wire3d(humface)

End(Not run)

vcgBorder find all border vertices and faces of a triangular mesh

Description

Detect faces and vertices at the borders of a mesh and mark them.

Usage

vcgBorder (mesh)

Arguments

mesh triangular mesh of class "mesh3d"

Value

bordervb logical: vector containing boolean value for each vertex, if it is a border vertex.
borderit logical: vector containing boolean value for each face, if it is a border vertex.

Author(s)

Stefan Schlager

See Also
vcgPlyRead

Examples

data(humface)

borders <- vcgBorder (humface)

view border vertices

Not run:

require(rgl)

points3d(t(humface$vb[1:3,]1)[which(borders$bordervb == 1),],col=2)
wire3d(humface)

require(rgl)

End(Not run)

12 vcgClean

vcgClean Clean triangular surface meshes

Description

Apply several cleaning algorithms to surface meshes

Usage
vcgClean(mesh, sel = @, tol = @, silent = FALSE, iterate = FALSE)

Arguments
mesh triangular mesh of class 'mesh3d’
sel integer vector selecting cleaning type (see "details"),
tol numeric value determining Vertex Displacement Ratio used for splitting non-
manifold vertices.
silent logical, if TRUE no console output is issued.
iterate logical: if TRUE, vcgClean is repeatedly run until nothing more is to be cleaned
(see details).
Details

the vector sel determines which operations are performed in which order. E.g. removing degenerate
faces may generate unreferenced vertices, thus the ordering of cleaning operations is important,
multiple calls are possible (sel=c(1,3,1) will remove unreferenced vertices twice). available options
are:

* 0 = only duplicated vertices and faces are removed
* 1 =remove unreferenced vertices

¢ 2 = Remove non-manifold Faces

* 3 = Remove degenerate faces

* 4 = Remove non-manifold vertices

* 5 = Split non-manifold vertices by threshold

* 6 = merge close vertices (radius=tol)

* 7 = coherently orient faces
CAVEAT: sel=6 will not work keep vertex colors
Value
cleaned mesh with an additional entry

remvert vector of length = number of vertices before cleaning. Entries = 1 indicate that
this vertex was removed; O otherwise.

vcgClost

Examples

data(humface)

13

cleanface <- humface

##add duplicated faces

cleanface$it <- cbind(cleanface$it, cleanface$it[,1:100])

add duplicated vertices

cleanface$vb <- cbind(cleanface$vb,cleanface$vb[,1:100])

ad unreferenced vertices

cleanface$vb <- cbind(cleanface$vb,rbind(matrix(rnorm(18),3,6),1))
cleanface <- vcgClean(cleanface, sel=1)

vcgClost

Project coordinates onto a target triangular surface mesh.

Description

For a set of 3D-coordinates/triangular mesh, the closest matches on a target surface are determined
and normals at as well as distances to that point are calculated.

Usage

vcgClost(
X’
mesh,

sign = TRUE,

barycentric

smoothNormals

FALSE,
= FALSE,

borderchk = FALSE,

tol = 0,
facenormals

Arguments

X
mesh

sign
barycentric
smoothNormals
borderchk

tol

facenormals

= FALSE,

k x 3 matrix containing 3D-coordinates or object of class "mesh3d".
triangular surface mesh stored as object of class "mesh3d".

logical: if TRUE, signed distances are returned.

logical: if TRUE, barycentric coordinates of the hit points are returned.
logical: if TRUE, laplacian smoothed normals are used.

logical: request checking if the hit face is at the border of the mesh.

maximum distance to search. If distance is beyond that, the original point will
be kept and the distance set to NaN. If tol = 0, tol is set to 2*diagonal of the
bounding box of mesh.

logical: if TRUE only the facenormal of the face the closest point has hit is
returned, the weighted average of the surrounding vertex normals otherwise.

additional parameters, currently unused.

14 vcgClost

Value

returns an object of class "mesh3d" with:

vb 4 x n matrix containing n vertices as homolougous coordinates.

normals 4 X n matrix containing vertex normals.

quality numeric vector containing distances to target.

it 3 x m integer matrix containing vertex indices forming triangular faces.Only

available, when x is a mesh.

border integer vector of length n: if borderchk = TRUE, for each clostest point the value
will be 1 if the hit face is at the border of the target mesh and 0 otherwise.

barycoords 3 x m Matrix containing barycentric coordinates of closest points; only available
if barycentric=TRUE.

faceptr vector of face indeces on which the closest points are located

Note
If large part of the reference mesh are far away from the target surface, calculation can become very
slow. In that case, the function vcgClostKD will be significantly faster.

Author(s)

Stefan Schlager

References
Baerentzen, Jakob Andreas. & Aanaes, H., 2002. Generating Signed Distance Fields From Triangle
Meshes. Informatics and Mathematical Modelling.

See Also

vcgPlyRead

Examples

data(humface)
clost <- vcgClost(humface.lm, humface)

vegClostKD

15

vcgClostKD

Project coordinates onto a target triangular surface mesh using KD-
tree search

Description

For a set of 3D-coordinates/triangular mesh, the closest matches on a target surface are determined
(by using KD-tree search) and normals at as well as distances to that point are calculated.

Usage

vcgClostKD(
X,
mesh,
sign = TRUE,
barycentric =
smoothNormals

k = 50,

FALSE

’

= FALSE,
borderchk = FALSE,

nofPoints = 16,
maxDepth = 64,

angdev = NULL
weightnorm =
facenormals =
threads = 1,

Arguments

X
mesh

sign
barycentric
smoothNormals
borderchk

k

nofPoints

maxDepth

angdev

’

FALSE,

FALSE

’

k x 3 matrix containing 3D-coordinates or object of class "mesh3d".

triangular surface mesh stored as object of class "mesh3d".

logical:
logical:
logical:
logical:
integer:

integer:

if TRUE, signed distances are returned.

if TRUE, barycentric coordinates of the hit points are returned.
if TRUE, laplacian smoothed normals are used.

request checking if the hit face is at the border of the mesh.
check the kdtree for thek closest faces (using faces’ barycenters.

number of points per cell in the kd-tree (don’t change unless you know

what you are doing!)

integer

: depth of the kd-tree (don’t change unless you know what you are doing!)

maximum deviation between reference and target normals. If the none of the k

closest

triangles match this criterion, the closest point on the closest triangle is

returned but the corresponding distance in $quality is set to 1e5.

16

weightnorm

facenormals

threads

Value

vegClostKD

logical if angdev is set, this requests the normal of the closest points to be esti-
mated by weighting the surrounding vertex normals. Otherwise, simply the hit
face’s normal is used (faster but slightly less accurate)

logical: if TRUE only the facenormal of the face the closest point has hit is
returned, the weighted average of the surrounding vertex normals otherwise.

integer: threads to use in closest point search.

additional parameters, currently unused.

returns an object of class "mesh3d" with:

vb
normals
quality

it

border

barycoords

Note

4 x n matrix containing n vertices as homolougous coordinates.
4 X n matrix containing vertex normals.
numeric vector containing distances to target.

3 x m integer matrix containing vertex indices forming triangular faces.Only
available, when x is a mesh.

integer vector of length n: if borderchk = TRUE, for each clostest point the value
will be 1 if the hit face is at the border of the target mesh and 0 otherwise.

3 x m Matrix containing barycentric coordinates of closest points; only available
if barycentric=TRUE.

Other than vcgClost this does not search a grid, but first uses a KD-tree search to find the k closest
barycenters for each point and then searches these faces for the closest match.

Author(s)

Stefan Schlager

References

Baerentzen, Jakob Andreas. & Aanaes, H., 2002. Generating Signed Distance Fields From Triangle
Meshes. Informatics and Mathematical Modelling.

See Also

vcgPlyRead

vcgClostOnKDtreeFromBarycenters 17

vcgClostOnKDtreeFromBarycenters

search a KD-tree from Barycenters for multiple closest point searches
on a mesh

Description

search a KD-tree from Barycenters for multiple closest point searches on a mesh

Usage

vcgClostOnKDtreeFromBarycenters(
X!
query,
k = 50,
sign = TRUE,
barycentric = FALSE,
borderchk = FALSE,
angdev = NULL,
weightnorm = FALSE,
facenormals = FALSE,

threads = 1
)
Arguments

X object of class "vcgKDtreeWithBarycenters"

query matrix or triangular mesh containing coordinates

k integer: check the kdtree for thek closest faces (using faces’ barycenters).

sign logical: if TRUE, signed distances are returned.

barycentric logical: if TRUE, barycentric coordinates of the hit points are returned.

borderchk logical: request checking if the hit face is at the border of the mesh.

angdev maximum deviation between reference and target normals. If the none of the k
closest triangles match this criterion, the closest point on the closest triangle is
returned but the corresponding distance in $quality is set to 1e5.

weightnorm logical if angdev is set, this requests the normal of the closest points to be esti-
mated by weighting the surrounding vertex normals. Otherwise, simply the hit
face’s normal is used (faster but slightly less accurate)

facenormals logical: if TRUE only the facenormal of the face the closest point has hit is

returned, the weighted average of the surrounding vertex normals otherwise.

threads integer: threads to use in closest point search.

18 vegCreateKDtree

Value

returns an object of class "mesh3d" with:

vb 4 x n matrix containing n vertices as homolougous coordinates.

normals 4 X n matrix containing vertex normals.

quality numeric vector containing distances to target.

it 3 X m integer matrix containing vertex indices forming triangular faces.Only

available, when x is a mesh.

border integer vector of length n: if borderchk = TRUE, for each clostest point the value
will be 1 if the hit face is at the border of the target mesh and 0 otherwise.

barycoords 3 x m Matrix containing barycentric coordinates of closest points; only available
if barycentric=TRUE.

Author(s)

Stefan Schlager

See Also

vcgCreateKDtreeFromBarycenters, vcgSearchKDtree, vcgCreateKDtree

vcgCreateKDtree create a KD-tree

Description

create a KD-tree

Usage

vcgCreateKDtree(mesh, nofPointsPerCell = 16, maxDepth = 64)

Arguments
mesh matrix or triangular mesh containing coordinates
nofPointsPerCell
number of points per kd-cell
maxDepth maximum tree depth
Value

returns an object of class vegKDtree containing external pointers to the tree and the target points

See Also

vcgSearchKDtree

vcgCreateKDtreeFromBarycenters 19

Examples

data(humface)
mytree <- vcgCreateKDtree(humface)

vcgCreateKDtreeFromBarycenters

create a KD-tree from Barycenters for multiple closest point searches
on a mesh

Description

create a KD-tree from Barycenters for multiple closest point searches on a mesh

Usage

vcgCreateKDtreeFromBarycenters(mesh, nofPointsPerCell = 16, maxDepth = 64)

Arguments
mesh matrix or triangular mesh containing coordinates
nofPointsPerCell
number of points per kd-cell
maxDepth maximum tree depth
Value

returns an object of class vegKDtreeWithBarycenters containing external pointers to the tree, the
barycenters and the target mesh

See Also

vcgClostOnKDtreeFromBarycenters, vcgSearchKDtree, vcgCreateKDtree

Examples

Not run:

data(humface) ;data(dummyhead)

barytree <- vcgCreatekDtreeFromBarycenters(humface)

closest <- vcgClostOnKDtreeFromBarycenters(barytree,dummyhead.mesh, k=50, threads=1)

End(Not run)

20 vegCurve

vcgCurve calculate curvature of a triangular mesh

Description

calculate curvature of faces/vertices of a triangular mesh using various methods.

Usage
vcgCurve(mesh)
Arguments
mesh triangular mesh (object of class *'mesh3d’)
Value
gaussvb per vertex gaussian curvature
meanvb per vertex mean curvature
RMSvb per vertex RMS curvature
gaussitmax per face maximum gaussian curvature of adjacent vertices
borderit per face information if it is on the mesh’s border (0=FALSE, 1=TRUE)
bordervb per vertex information if it is on the mesh’s border (0=FALSE, 1=TRUE)
meanitmax per face maximum mean curvature of adjacent vertices
K1 Principal Curvature 1
K2 Principal Curvature 2
Examples
data(humface)

curv <- vcgCurve(humface)

##visualise per vertex mean curvature

Not run:

require(Morpho)

meshDist (humface,distvec=curv$meanvb, from=-0.2,t0=0.2,t01=0.01)

End(Not run)

vegDijkstra 21

vcgDijkstra Compute pseudo-geodesic distances on a triangular mesh

Description

Compute pseudo-geodesic distances on a triangular mesh

Usage

vcgDijkstra(x, vertpointer, maxdist = NULL)

Arguments
X triangular mesh of class mesh3d
vertpointer integer: references indices of vertices on the mesh, typically only a single query
vertex.
maxdist positive scalar double, the maximal distance to travel along the mesh when com-
puting distances. Leave at NULL to traverse the full mesh. This can be used to
speed up the computation if you are only interested in geodesic distances to
neighbors within a limited distance around the query vertices.
Value

returns a vector of shortest distances for each of the vertices to one of the vertices referenced in
vertpointer. If maxdist is in use (not NULL), the distance values for vertices outside the requested
maxdist are not computed and appear as @.

Note

Make sure to have a clean manifold mesh. Note that this computes the length of the pseudo-geodesic
path (following the edges) between the two vertices.

Examples

Compute geodesic distance between all mesh vertices and the first vertex of a mesh
data(humface)

geo <- vcgDijkstra(humface,1)

if (interactive()) {

require(Morpho) ;require(rgl)

meshDist (humface,distvec = geo)

spheres3d(vert2points(humface)[1,],col=2)

3

22 vegGeodesicPath

vcgFaceNormals Compute normalized face normals for a mesh.

Description

Compute normalized face normals for a mesh.

Usage

vcgFaceNormals(mesh)
Arguments

mesh triangular mesh of class *'mesh3d’, from rgl
Value

3xn numeric matrix of face normals for the mesh, where n is the number of faces.

Examples

data(humface);
hf_facenormals <- vcgFaceNormals(humface);

vcgGeodesicPath Compute geodesic path and path length between vertices on a mesh

Description

Compute geodesic path and path length between vertices on a mesh

Usage

vcgGeodesicPath(x, source, targets, maxdist = 1e+06)

Arguments
X triangular mesh of class mesh3d from the rgl package.
source scalar positive integer, the source vertex index.
targets positive integer vector, the target vertex indices.
maxdist numeric, the maximal distance to travel along the mesh edges during geodesic

distance computation.

vegGeodist 23

Value

named list with two entries as follows. 'paths': list of integer vectors, representing the paths.
'geodist': double vector, the geodesic distances from the source vertex to all vertices in the graph.

Note

Currently no reachability checks are performed, so you have to be sure that the mesh is connected,
or at least that the source and target vertices are reachable from one another.

Examples

data(humface)

p = vcgGeodesicPath(humface,50,c(500,5000))
p$paths[[1]]1; # The path 50..500
p$geodist[500]; # Its path length.

vcgGeodist Compute pseudo-geodesic distance between two points on a mesh

Description

Compute pseudo-geodesic distance between two points on a mesh

Usage
vcgGeodist(x, ptl, pt2)

Arguments
X triangular mesh of class mesh3d
ptl 3D coordinate on mesh or index of vertex
pt2 3D coordinate on mesh or index of vertex
Value

returns the geodesic distance between pt1 and pt2.

Note

Make sure to have a clean manifold mesh. Note that this computes the length of the pseudo-geodesic
path (following the edges) between the two vertices closest to these points.

Examples

data(humface)

pt1 <- humface.1lm[1,]

pt2 <- humface.lm[5,]
vcgGeodist (humface,ptl,pt2)

24 vegGetEdge

vcgGetEdge Get all edges of a triangular mesh

Description

Extract all edges from a mesh and retrieve adjacent faces and vertices

Usage

vcgGetEdge (mesh, unique = TRUE)

Arguments
mesh triangular mesh of class mesh3d’
unique logical: if TRUE each edge is only reported once, if FALSE, all occurences are
reported.
Value

returns a dataframe containing:

vertil integer indicating the position of the first vertex belonging to this edge
vert?2 integer indicating the position of the second vertex belonging to this edge
facept integer pointing to the (or a, if unique = TRUE) face adjacent to the edge
border integer indicating if the edge is at the border of the mesh. 0 = no border, 1 =
border
Examples
require(rgl)
data(humface)
edges <-vcgGetEdge (humface)
Not run:

show first edge
lines3d(t(humface$vb[1:3,]1)[c(edges$verti[1],edges$vert2[2]),],col=2,1wd=3)
shade3d(humface, col=3)

now find the edge - hint: it is at the neck.

End(Not run)

veglmport

25

vcgImport

Import common mesh file formats.

Description

Import common mesh file formats and store the results in an object of class "mesh3d" - momentarily
only triangular meshes are supported.

Usage
vegImport(
file,
updateNormals = TRUE,
readcolor = FALSE,
clean = TRUE,
silent = FALSE
)
Arguments
file character: file to be read.
updateNormals logical: if TRUE and the imported file contais faces, vertex normals will be
(re)calculated. Otherwise, normals will be a matrix containing zeros.
readcolor if TRUE, vertex colors and texture (face and vertex) coordinates will be pro-
cessed - if available, otherwise all vertices will be colored white.
clean if TRUE, duplicated and unreferenced vertices as well as duplicate faces are
removed (be careful when importing point clouds).
silent logical, if TRUE no console output is issued.
Value

Object of class "mesh3d"

with:

vb 4 X n matrix containing n vertices as homolougous coordinates
it 3 x m matrix containing vertex indices forming triangular faces
normals 4 x n matrix containing vertex normals (homologous coordinates)

in case the imported files contains face or vertex quality, these will be stored as vectors named
$quality (for vertex quality) and $facequality

if the imported file contains vertex colors and readcolor = TRUE, these will be saved in $mate-
rial$color according to "mesh3d" specifications.

Note

currently only meshes with either color or texture can be processed. If both are present, the function
will mark the mesh as non-readable.

26 veglsolated

Author(s)

Stefan Schlager

See Also

vcgSmooth

Examples

data(humface)
vcgPlyWrite (humface)
readit <- vcgImport("humface.ply”)

vcglsolated Remove isolated pieces from a surface mesh or split into connected
components

Description

Remove isolated pieces from a surface mesh, selected by a minimum amount of faces or of a
diameter below a given threshold. Also the option only to keep the largest piece can be selected or
to split a mesh into connected components.

Usage

vcglsolated(
mesh,
facenum = NULL,
diameter = NULL,
split = FALSE,

keep = 0,
silent = FALSE
)
Arguments
mesh triangular mesh of class "mesh3d".
facenum integer: all connected pieces with less components are removed. If not specified
or 0 and diameter is NULL, then only the component with the most faces is kept.
diameter numeric: all connected pieces smaller diameter are removed removed. diameter
= @ removes all component but the largest ones. This option overrides the option
facenum.
split logical: if TRUE, a list with all connected components (optionally matching
requirements facenum/diameter) of the mesh will be returned.
keep integer: if split=T, keep specifies the number of largest chunks (number of faces)

to keep.

silent logical, if TRUE no console output is issued.

veglsosurface

Value

returns the reduced mesh.

Author(s)

Stefan Schlager

See Also
vcgPlyRead

Examples

Not run:
data(humface)
cleanface <- vcglsolated(humface)

End(Not run)

27

vcgIsosurface Create Isosurface from 3D-array

Description

Create Isosurface from 3D-array using Marching Cubes algorithm

Usage

veglsosurface(
vol,
threshold,
from = NULL,
to = NULL,
spacing = NULL,
origin = NULL,
direction = NULL,
IJK2RAS = diag(c(-1, -1, 1, 1)),
as.int = FALSE

)
Arguments
vol an integer valued 3D-array
threshold threshold for creating the surface
from numeric: the lower threshold of a range (overrides threshold)

to numeric: the upper threshold of a range (overrides threshold)

28 veglsotropicRemeshing
spacing numeric 3D-vector: specifies the voxel dimensons in x,y,z direction.
origin numeric 3D-vector: origin of the original data set, will transpose the mesh onto
that origin.
direction a 3x3 direction matrix
IJK2RAS 4x4 TJK2RAS transformation matrix
as.int logical: if TRUE, the array will be stored as integer (might decrease RAM us-
age)
Value
returns a triangular mesh of class "mesh3d"
Examples

#this is the example from the package "misc3d”
x <- seq(-2,2,len=50)

g <- expand.grid(x = x, y = X, z = X)

v <- array(g$x*4 + g$y*4 + g$z*4, rep(length(x),3))
storage.mode(v) <- "integer"

Not run:

mesh <- vcglsosurface(v,threshold=10)
require(rgl)

wire3d(mesh)

##now smooth it a little bit
wire3d(vcgSmooth(mesh, "HC",iteration=3),col=3)

End(Not run)

vcglsotropicRemeshing Isotropically remesh a triangular surface mesh

Description

Isotropically remesh a triangular surface mesh

Usage

vcglsotropicRemeshing(
X!
TargetLen = 1,
FeatureAngleDeg = 10,
MaxSurfDist = 1,
iterations = 3,
Adaptive = FALSE,
split = TRUE,
collapse = TRUE,
swap = TRUE,

vcgKDtree

smooth = TRUE,
project = TRUE,
surfDistCheck = TRUE

)

Arguments
X mesh of class mesh3d
TargetLen numeric: edge length of the target surface
FeatureAngleDeg

define Crease angle (in degree).

MaxSurfDist Max. surface distance
iterations ToDo
Adaptive enable adaptive remeshing
split enable refine step
collapse enable collapse step
swap enable dge swap
smooth enable smoothing
project enable reprojection step

surfDistCheck check distance to surface

Value

returns the remeshed surface mesh

Examples

Not run:
data(humface)
resampledMesh <- vcglsotropicRemeshing(humface,TargetlLen=2.5)

End(Not run)

vcgKDtree perform kdtree search for 3D-coordinates.

Description

perform kdtree search for 3D-coordinates.

Usage

vcgKDtree(target, query, k, nofPoints = 16, maxDepth = 64, threads = 1)

30 vcgKmeans
Arguments
target n x 3 matrix with 3D coordinates or mesh of class "mesh3d". These coordinates
are to be searched.
query m X 3 matrix with 3D coordinates or mesh of class "mesh3d". We seach the
closest coordinates in target for each of these.
k number of neighbours to find
nofPoints integer: number of points per cell in the kd-tree (don’t change unless you know
what you are doing!)
maxDepth integer: depth of the kd-tree (don’t change unless you know what you are doing!)
threads integer: threads to use in closest point search.
Value
a list with
index integer matrices with indeces of closest points
distances corresponding distances
vcgKmeans fast Kmean clustering for 1D, 2D and 3D data
Description

fast Kmean clustering for 1D, 2D and 3D data

Usage

vcgKmeans(x, k =

Arguments

X
k

iter.max
getClosest
threads

Value

10, iter.max = 10, getClosest = FALSE, threads = 0)

matrix containing coordinates or mesh3d

number of clusters

maximum number of iterations

logical: if TRUE the indices of the points closest to the k-centers are sought.

integer: number of threads to use

returns a list containing

centers

class

cluster center

vector with cluster association for each coordinate

If getClosest=TRUE

selected

vector with indices of points closest to the centers

vcgMeshres 31

See Also

vcgSample

Examples

require(Rvcg);require(rgl)

data(humface)

set.seed(42)

clust <- vcgKmeans(humface,k=1000,threads=1)

vcgMeshres calculates the average edge length of a triangular mesh

Description

calculates the average edge length of a triangular mesh, iterating over all faces.

Usage
vcgMeshres(mesh)
Arguments
mesh triangular mesh stored as object of class "mesh3d"
Value
res average edge length (a.k.a. mesh resolution)
edgelength vector containing lengths for each edge
Author(s)

Stefan Schlager

Examples

data(humface)

mres <- vcgMeshres(humface)

#histogram of edgelength distribution
hist(mres$edgelength)

#visualise average edgelength

points(mres$res, 1000, pch=20, col=2, cex=2)

32

vegMetro

vcgMetro

evaluate the difference between two triangular meshes.

Description

Implementation of the command line tool "metro" to evaluate the difference between two triangular

meshes.
Usage

vcgMetro(
mesh1,
mesh2,
nSamples = 0,
nSamplesArea = 0,
vertSamp = TRUE,
edgeSamp = TRUE,
faceSamp = TRUE,
unrefVert = FALSE,

samplingType = c("SS", "MC", "SD"),
searchStruct = c(”"SGRID”, "AABB”, "OCTREE”, "HGRID"),

from = 0,
to =0,

colormeshes = FALSE,
silent = FALSE

Arguments

mesh1
mesh?2

nSamples

nSamplesArea
vertSamp
edgeSamp
faceSamp
unrefVert

samplingType

searchStruct

from

triangular mesh (object of class *'mesh3d’).
triangular mesh (object of class *'mesh3d’).

set the required number of samples if 0, this will be set to approx. 10x the face
number.

set the required number of samples per area unit, override nSamples.
logical: if FALSE, disable vertex sampling.

logical: if FALSE, disable edge sampling.

logical: if FALSE, disable face sampling.

logical: if FALSE, ignore unreferred vertices.

set the face sampling mode. options are: SS (similar triangles sampling), SD
(subdivision sampling), MC (montecarlo sampling).

set search structures to use. options are: SGIRD (static Uniform Grid), OC-
TREE, AABB (AxisAligned Bounding Box Tree), HGRID (Hashed Uniform
Grid).

numeric: minimum value for color mapping.

vegMetro 33

to numeric: maximum value for color mapping.
colormeshes if TRUE, meshes with vertices colored according to distance are returned
silent logical: if TRUE, output to console is suppressed.

Value

ForwardSampling, BackwardSampling
lists containing information about forward (meshl to mesh2) and backward
(mesh?2 to mesh1) sampling with the following entries

* maxdist maximal Hausdorff distance

* meandist mean Hausdorff distance

* RMSdist RMS of the Hausdorff distances

* area mesh area (of mesh1 in ForwardSampling and mesh2 in BackwardSampling)
* RMSdist RMS of the Hausdorff distances

* nvbsamples number of vertices sampled

* nsamples number of samples

distances1, distances?

vectors containing vertex distances from mesh1 to mesh2 and mesh2 to meshl.
forward_hist, backward_hist

Matrices tracking the sampling results

if colormeshes == TRUE

mesh1, mesh2 meshes with color coded distances and an additional entry called quality con-
taining the sampled per-vertex distances

Note

this is a straightforward implementation of the command line tool metro http://vcglib.net/
metro.html

References

P. Cignoni, C. Rocchini and R. Scopigno. Metro: measuring error on simplified surfaces. Computer
Graphics Forum, Blackwell Publishers, vol. 17(2), June 1998, pp 167-174

Examples

if (requireNamespace("Morpho”, quietly = TRUE)) {

require(Morpho)

data(humface)

data(dummyhead)

align humface to dummyhead.mesh

humfalign <- rotmesh.onto(humface,humface.lm,dummyhead.1lm)

samp <- vcgMetro(humfalign$mesh,dummyhead.mesh, faceSamp=FALSE,edgeSamp=FALSE)
create heatmap using Morpho's meshDist function

}

http://vcglib.net/metro.html
http://vcglib.net/metro.html

34 vcgNonBorderEdge

Not run:
create custom heatmaps based on distances
mD <- meshDist(humfalign$mesh,distvec=samp$distances1)

End(Not run)

vcgNonBorderEdge Get all non-border edges

Description

Get all non-border edges and both faces adjacent to them.

Usage

vcgNonBorderEdge(mesh, silent = FALSE)

Arguments

mesh triangular mesh of class mesh3d

silent logical: suppress output of information about number of border edges
Value

returns a dataframe containing:

vertil integer indicating the position of the first vertex belonging to this edge
vert2 integer indicating the position of the second vertex belonging to this edge
border integer indicating if the edge is at the border of the mesh. 0 = no border, 1 =
border
facel integer pointing to the first face adjacent to the edge
face2 integer pointing to the first face adjacent to the edge
See Also
vcgGetEdge
Examples
data(humface)

edges <-vcgNonBorderEdge (humface)

show first edge (not at the border)

Not run:

require(Morpho)

require(rgl)
lines3d(t(humface$vb[1:3,])[c(edges$verti[1],edges$vert2[2]),],col=2,1wd=3)

vegObjWrite 35

plot barycenters of adjacent faces

bary <- barycenter(humface)
points3d(bary[c(edges$facel[1],edges$face2[1]1),])
shade3d(humface, col=3)

now find the edge - hint: it is at the neck.

End(Not run)

vcgObjWrite Export meshes to OBJ-files

Description

Export meshes to OBJ-files

Usage

vcgObjWrite(mesh, filename = dataname, writeNormals = TRUE)

Arguments
mesh triangular mesh of class “mesh3d’ or a numeric matrix with 3-columns
filename character: filename (file extension *.obj’ will be added automatically.

writeNormals write existing normals to file

Examples

data(humface)
vcgObjWrite(humface,filename = "humface”)
unlink("humface.obj")

vegOffWrite Export meshes to OFF-files

Description

Export meshes to OFF-files

Usage

vcgOffWrite(mesh, filename = dataname)

Arguments

mesh triangular mesh of class “'mesh3d’ or a numeric matrix with 3-columns

filename character: filename (file extension ’.off” will be added automatically.

36 vcgPlyRead

Examples

data(humface)
vcgOffWrite(humface,filename = "humface”)
unlink("humface.off")

vcgPlyRead Import ascii or binary PLY files.

Description
Reads Polygon File Format (PLY) files and stores the results in an object of class "mesh3d" -
momentarily only triangular meshes are supported.

Usage

vcgPlyRead(file, updateNormals = TRUE, clean = TRUE)

Arguments

file character: file to be read.

updateNormals logical: if TRUE and the imported file contais faces, vertex normals will be
(re)calculated.

clean logical: if TRUE, duplicated and unreference vertices will be removed.

Value

Object of class "mesh3d"

with:

vb 3 x n matrix containing n vertices as homolougous coordinates
normals 3 X n matrix containing vertex normals

it 3 x m integer matrix containing vertex indices forming triangular faces

material$color Per vertex colors if specified in the imported file

Note

from version 0.8 on this is only a wrapper for vcglmport (to avoid API breaking).

Author(s)

Stefan Schlager

See Also

vcgSmooth,

vcgPlyWrite 37

vcgPlyWrite Export meshes to PLY-files

Description

Export meshes to PLY-files (binary or ascii)

Usage

vcgPlyWrite(mesh, filename, binary = TRUE, ...)

S3 method for class 'mesh3d’
vegPlyWrite(

mesh,

filename = dataname,

binary = TRUE,

addNormals = FALSE,

writeCol = TRUE,

writeNormals = TRUE,

)

S3 method for class 'matrix’

vcgPlyWrite(mesh, filename = dataname, binary = TRUE, addNormals = FALSE, ...)
Arguments

mesh triangular mesh of class “mesh3d’ or a numeric matrix with 3-columns

filename character: filename (file extension .ply’ will be added automatically, if missing.

binary logical: write binary file

additional arguments, currently not used.
addNormals logical: compute per-vertex normals and add to file
writeCol logical: export existing per-vertex color stored in mesh$material$color

writeNormals write existing normals to file

Examples

data(humface)
vcgPlyWrite(humface,filename = "humface”)
remove it

unlink("humface.ply”)

38

vcgQEdecim

vcgQEdecim Performs Quadric Edge Decimation on triangular meshes.

Description

Decimates a mesh by adapting the faces of a mesh either to a target face number, a percentage or an
approximate mesh resolution (a.k.a. mean edge length

Usage

vcgQEdecim(
mesh,
tarface = NULL,
percent = NULL,
edgeLength = NULL,
topo = FALSE,
quality = TRUE,
bound = FALSE,
optiplace = FALSE,
scaleindi = TRUE,
normcheck = FALSE,
gweightFactor = 100,
qthresh = 0.3,
boundweight = 1,
normalthr = pi/2,
silent = FALSE

)
Arguments

mesh Triangular mesh of class "mesh3d"

tarface Integer: set number of target faces.

percent Numeric: between 0 and 1. Set amount of reduction relative to existing face
number. Overrides tarface argument.

edgelLength Numeric: tries to decimate according to a target mean edge length. Under the as-
sumption of regular triangles, the edges are half as long by dividing the triangle
into 4 regular smaller triangles.

topo logical: if TRUE, mesh topology is preserved.

quality logical: if TRUE, vertex quality is considered.

bound logical: if TRUE, mesh boundary is preserved.

optiplace logical: if TRUE, mesh boundary is preserved (may lead to unwanted distortions
in some cases).

scaleindi logical: if TRUE, decimatiion is scale independent.

normcheck logical:

if TRUE, normal directions are considered.

vcgRaySearch

gweightFactor

gthresh
boundweight
normalthr

silent

Details

39

numeric: >= 1. Quality range is mapped into a squared 01 and than into the 1 -
QualityWeightFactor range.

numeric: Quality threshold for decimation process.
numeric: Weight assigned to mesh boundaries.
numeric: threshold for normal check in radians.

logical, if TRUE no console output is issued.

This is basically an adaption of the cli tridecimator from vcglib

Value

Returns a reduced mesh of class mesh3d.

Author(s)

Stefan Schlager

See Also

vcgSmooth

Examples

data(humface)

##reduce faces to 50%
decimface <- vcgQEdecim(humface, percent=0.5)

view
Not run:
require(rgl)

shade3d(decimface, col=3)

some light smoothing
decimface <- vcgSmooth(decimface,iteration = 1)

End(Not run)

vcgRaySearch

check if a mesh is intersected by a set of rays

Description

check if a mesh is intersected by a set of rays (stored as normals)

Usage

vcgRaySearch(x, mesh, mintol = @, maxtol = 1e+15, mindist = FALSE, threads = 1)

40 vcgRaySearch

Arguments
X a triangular mesh of class *'mesh3d’ or a list containing vertices and vertex nor-
mals (fitting the naming conventions of “mesh3d’). In the second case x must
contain x$vb = 3 x n matrix containing 3D-coordinates and x$normals = 3 x n
matrix containing normals associated with x$vb.
mesh triangular mesh to be intersected.
mintol minimum distance to target mesh
maxtol maximum distance to search along ray
mindist search both ways (ray and -ray) and select closest point.
threads number of threads used during search.
Details

vcgRaySearch projects a mesh (or set of 3D-coordinates) along a set of given rays (stored as nor-
mals) onto a target and return the hit points as well as information if the target mesh was hit at all.
If nothing is hit along the ray(within the given thresholds), the ordinary closest point’s value will be
returned and the corresponding entry in quality will be zero.

Value

list with following items:

vb 4 x n matrix containing intersection points

normals 4 X n matrix containing homogenous coordinates of normals at intersection
points

quality integer vector containing a value for each vertex of x: 1 indicates that a ray has
intersected mesh’ , while O means not

distance numeric vector: distances to intersection

Examples
data(humface)

#get normals of landmarks

Ims <- vcgClost(humface.lm, humface)

offset landmarks along their normals for a negative amount of -5mm
Ims$vb[1:3,] <- Ims$vb[1:3,]+Ims$normals[1:3,]*-5

intersect <- vcgRaySearch(lms, humface)

Not run:

require(Morpho)

require(rgl)

spheres3d(vert2points(lms),radius=0.5,col=3)
plotNormals(1lms,long=5)
spheres3d(vert2points(intersect),col=2) #plot intersections
wire3d(humface,col="white")#'

End(Not run)

vegSample 41

vcgSample Subsamples points on a mesh surface

Description

Subsamples surface of a triangular mesh and returns a set of points located on that mesh

Usage

vcgSample(
mesh,
SampleNum = 100,
type = c("km", "pd", "mc"),
MCsamp = 20,
geodes = TRUE,
strict = FALSE,
iter.max = 100,

threads = 0
)
Arguments
mesh triangular mesh of class "'mesh3d’
SampleNum integer: number of sampled points (see details below)
type character: seclect sampling type ("mc"=MonteCarlo Sampling, "pd"=PoissonDisk
Sampling,"km"=kmean clustering)
MCsamp integer: MonteCarlo sample iterations used in PoissonDisk sampling.
geodes logical: maximise geodesic distance between sample points (only for Poisson
Disk sampling)
strict logical: if type="pd" and the amount of coordinates exceeds SampleNum, the
resulting coordinates will be subsampled again by kmean clustering to reach the
requested number.
iter.max integer: maximum iterations to use in k-means clustering.
threads integer number of threads to use for k-means clustering
Details

Poisson disk subsampling will not generate the exact amount of coordinates specified in SampleNum,
depending on MCsamp the result will contain more or less coordinates.

Value

sampled points

42 vegSearchKDtree

Examples

data(humface)

ss <- vcgSample(humface,SampleNum = 500, type="km",threads=1)
Not run:

require(rgl)

points3d(ss)

End(Not run)

vcgSearchKDtree search an existing KD-tree

Description

search an existing KD-tree

Usage
vcgSearchKDtree(kdtree, query, k, threads = 0)

Arguments
kdtree object of class vegKDtree
query atrix or triangular mesh containing coordinates
k number of k-closest neighbours to query
threads integer: number of threads to use

Value
a list with
index integer matrices with indeces of closest points
distances corresponding distances

See Also
vcgCreateKDtree

Examples
Not run:

data(humface) ;data(dummyhead)

mytree <- vcgCreateKDtree(humface)

get indices and distances for 10 closest points.

closest <- vcgSearchKDtree(mytree,dummyhead.mesh,k=10,threads=1)

End(Not run)

vegSmooth 43

vcgSmooth Smoothes a triangular mesh

Description

Applies different smoothing algorithms on a triangular mesh.

Usage

vegSmooth (
mesh,
type = c("taubin”, "laplace”, "HClaplace"”, "fujiLaplace”, "angWeight",
"surfPreservelLaplace”),
iteration = 10,

lambda = 0.5,
mu = -0.53,
delta = 0.1
)
Arguments
mesh triangular mesh stored as object of class "mesh3d".
type character: select smoothing algorithm. Available are "taubin", "laplace"”, "HClaplace",
"fujiLaplace", "angWeight" (and any sensible abbreviations).
iteration integer: number of iterations to run.
lambda numeric: parameter for Taubin smooth (see reference below).
mu numeric:parameter for Taubin smooth (see reference below).
delta numeric: parameter for Scale dependent laplacian smoothing (see reference be-
low).and maximum allowed angle (in radians) for deviation between normals
Laplacian (surface preserving).
Details

The algorithms available are Taubin smoothing, Laplacian smoothing and an improved version
of Laplacian smoothing ("HClaplace"). Also available are Scale dependent laplacian smoothing
("fujiLaplace") and Laplacian angle weighted smoothing ("angWeight")

Value

returns an object of class "mesh3d" with:

vb 4xn matrix containing n vertices as homolougous coordinates.
normals 4xn matrix containing vertex normals.
quality vector: containing distances to target.

it 4xm matrix containing vertex indices forming triangular faces.

44 vegSmoothImplicit

Note

The additional parameters for taubin smooth are hardcoded to the default values of meshlab, as they
appear to be the least distorting

Author(s)

Stefan Schlager

References
Taubin G. 1995. Curve and surface smoothing without shrinkage. In Computer Vision, 1995.
Proceedings., Fifth International Conference on, pages 852 - 857.

Vollmer J., Mencl R. and Mueller H. 1999. Improved Laplacian Smoothing of Noisy Surface
Meshes. Computer Graphics Forum, 18(3):131 - 138.

Schroeder, P. and Barr, A. H. (1999). Implicit fairing of irregular meshes using diffusion and cur-
vature flow: 317-324.

See Also

vcgPlyRead, vcgClean

Examples

data(humface)

smoothface <- vcgSmooth(humface)
view

Not run:

require(rgl)

shade3d(smoothface, col=3)

End(Not run)

vcgSmoothImplicit Implicit Smoothes a triangular mesh

Description

Applies implicit smoothing algorithms on a triangular mesh.

Usage
vcgSmoothImplicit(
mesh,
lambda = 0.2,

useMassMatrix = TRUE,
fixBorder = FALSE,

vegSmoothImplicit 45

useCotWeight = FALSE,
degree = 1L,
lapWeight = 1,
SmoothQ = FALSE

)
Arguments
mesh triangular mesh stored as object of class "mesh3d".
lambda numeric: the amount of smoothness, useful only if useMassMatrix is TRUE;

defaultis 0.2

useMassMatrix logical: whether to use mass matrix to keep the mesh close to its original position
(weighted per area distributed on vertices); default is TRUE

fixBorder logical: whether to fix the border vertices of the mesh; default is FALSE

useCotWeight logical: whether to use cotangent weight; default is FALSE (using uniform "Lapla-
cian’)

degree integer: degrees of ’Laplacian’; default is 1

lapWeight numeric: weight when useCotWeight is FALSE; defaultis 1.0

SmoothQ logical: whether to smooth the quality (distances to target).

Value

returns an object of class "mesh3d" with:

vb 4xn matrix containing n vertices as homolougous coordinates.
normals 4xn matrix containing vertex normals.
it 4xm matrix containing vertex indices forming triangular faces.
Author(s)
Zhengjia Wang
See Also

vcgPlyRead, vcgClean, vegSmooth

Examples

data(humface)

smoothface <- vcgSmoothImplicit(humface)
view

Not run:

require(rgl)

shade3d(smoothface, col=3)

End(Not run)

46

vcgSphere

vcgSphere create platonic objects as triangular meshes

Description

create platonic objects as triangular meshes

Usage

vcgSphere(subdivision = 3, normals = TRUE)
vcgSphericalCap(angleRad = pi/2, subdivision = 3, normals = TRUE)
vcgTetrahedron(normals = TRUE)

vcgDodecahedron(normals = TRUE)

vcgOctahedron(normals = TRUE)

vcglcosahedron(normals = TRUE)

vcgHexahedron(normals = TRUE)

vcgSquare(normals = TRUE)

vcgBox(mesh = vcgSphere(), normals = TRUE)

vcgCone(rl, r2, h, normals = TRUE)

Arguments
subdivision subdivision level for sphere (the larger the denser the mesh will be)
normals if TRUE vertex normals are calculated
angleRad angle of the spherical cap
mesh mesh to take the bounding box from
ri radius] of the cone
r2 radius2 of the cone

h height of the cone

vegStIWrite 47

vcgStlWrite Export meshes to STL-files

Description

Export meshes to STL-files (binary or ascii)

Usage

vcgStlWrite(mesh, filename = dataname, binary = FALSE)

Arguments
mesh triangular mesh of class 'mesh3d’ or a numeric matrix with 3-columns
filename character: filename (file extension ’.stl’ will be added automatically.
binary logical: write binary file

Examples
data(humface)
vcgStlWrite(humface,filename = "humface”)

unlink("humface.stl")

vcgSubdivide subdivide the triangles of a mesh

Description

subdivide the triangles of a mesh

Usage

vcgSubdivide(
X,
threshold = NULL,
type = c("Butterfly”, "Loop"),
looptype = c("loop”, "regularity”, "continuity"),
iterations = 3,
silent = FALSE

48 vegUniformRemesh

Arguments
X triangular mesh of class "mesh3d"
threshold minimum edge length to subdivide
type character: algorithm used. Options are Butterfly and Loop (see notes)
looptype character: method for type = loop options are "loop","regularity","continuity"
(see notes)
iterations integer: number of iterations
silent logical: suppress output.
Value

returns subdivided mesh

Note
The different algorithms are (from meshlab description):

* Butterfly Subdivision: Apply Butterfly Subdivision Surface algorithm. It is an interpolated
method, defined on arbitrary triangular meshes. The scheme is known to be C1 but not C2 on
regular meshes

* Loop Subdivision: Apply Loop’s Subdivision Surface algorithm. It is an approximant subdi-
vision method and it works for every triangle and has rules for extraordinary vertices. Options
are "loop" a simple subdivision, "regularity" to enhance the meshe’s regularity and "continu-
ity" to enhance the mesh’s continuity.

Examples

data(humface)
subdivide <- vcgSubdivide(humface,type="Loop",looptype="regularity”)

vcgUniformRemesh Resample a mesh uniformly

Description

Resample a mesh uniformly

Usage
vcgUniformRemesh(
X)
voxelSize = NULL,
offset = 0,

discretize = FALSE,
multiSample = FALSE,

vegUpdateNormals 49

absDist = FALSE,
mergeClost = FALSE,
silent = FALSE

)
Arguments
X triangular mesh
voxelSize voxel size for space discretization
offset Offset of the created surface (i.e. distance of the created surface from the original
one).
discretize If TRUE, the position of the intersected edge of the marching cube grid is not

computed by linear interpolation, but it is placed in fixed middle position. As
a consequence the resampled object will look severely aliased by a stairstep
appearance.

multiSample If TRUE, the distance field is more accurately compute by multisampling the
volume (7 sample for each voxel). Much slower but less artifacts.

absDist If TRUE, an unsigned distance field is computed. In this case you have to choose
a not zero Offset and a double surface is built around the original surface, inside
and outside.

mergeClost logical: merge close vertices
silent logical: suppress messages
Value

resampled mesh

Examples

Not run:

data(humface)

humresample <- vcgUniformRemesh(humface,voxelSize=1,multiSample = TRUE)
require(rgl)

shade3d(humresample, col=3)

End(Not run)

vcgUpdateNormals updates vertex normals of a triangular meshes or point clouds

Description

update vertex normals of a triangular meshes or point clouds

Usage

vcgUpdateNormals(mesh, type = @, pointcloud = c(10, @), silent = FALSE)

50 veg VertexNeighbors

Arguments
mesh triangular mesh of class “mesh3d’ or a n x 3 matrix containing 3D-coordinates.
type select the method to compute per-vertex normals: O=area weighted average of
surrounding face normals; 1 = angle weighted vertex normals.
pointcloud integer vector of length 2: containing optional parameters for normal calculation
of point clouds. The first enty specifies the number of neighbouring points to
consider. The second entry specifies the amount of smoothing iterations to be
performed.
silent logical, if TRUE no console output is issued.
Value

mesh with updated/created normals, or in case mesh is a matrix, a list of class "mesh3d" with

vb 4 x n matrix containing coordinates (as homologous coordinates

normals 4 X n matrix containing normals (as homologous coordinates
Examples

data(humface)

humface$normals <- NULL # remove normals

humface <- vcgUpdateNormals(humface)

Not run:

pointcloud <- t(humface$vb[1:3,]) #get vertex coordinates
pointcloud <- vcgUpdateNormals(pointcloud)

require(Morpho)
plotNormals(pointcloud)#plot normals

End(Not run)

vcgVertexNeighbors Compute mesh adjacency list representation or the vertex neighbor-
hoods of specific mesh vertices.

Description

Compute the k-ring vertex neighborhood for all query vertex indices vi. If only a mesh is passed
(parameter x) and the other parameters are left at their default values, this compute the adjacency
list representation of the mesh.

Usage

vcgVertexNeighbors(x, vi = NULL, numstep = 1L, include_self = FALSE)

veg VFadj

Arguments

X

vi

numstep

include_self

Value

51

tmesh3d instance from the rgl package

optional, vector of positive vertex indices for which to compute the neighbor-
hoods. All vertices are used if left at the default value NULL.

positive integer, the number of times to extend the neighborhood from the source
vertices (the k for computing the k-ring neighborhood). Setting this to high
values significantly increases the computational cost.

logical, whether the returned neighborhood for a vertex i should include 1i itself.

list of positive integer vectors, the neighborhoods.

Examples

data(humface)

adjacency_list <- vcgVertexNeighbors(humface)
v500_5ring = vcgVertexNeighbors(humface, vi=c(500), numstep = 5)

vcgVFadj

find all faces belonging to each vertex in a mesh

Description

find all faces belonging to each vertex in a mesh and report their indices

Usage

vcgVFadj(mesh)

Arguments

mesh

Value

triangular mesh of class "mesh3d"

list containing one vector per vertex containgin the indices of the adjacent faces

52 vceg Volume

vcgVolume Compute volume for manifold meshes

Description

Compute volume for manifold meshes

Usage

vcgVolume (x)

Arguments

X triangular mesh of class mesh3d

Value

returns volume

Note

Please note, that this function only works reliably on watertight, coherently oriented meshes that
constitute a manifold. In case your mesh has some issues regarding non-manifoldness or there are
isolated pieces flying around, you can use vcglsolated and vcgClean to remove those.

Examples

mysphere <- vcgSphere()

vcgVolume (mysphere)

Not run:

here is an example where the mesh has some non-manifold vertices

mysphere <- vcgSphere(normals=FALSE)

add a degenerate face

mysphere$it <- cbind(mysphere$it,c(1,2,1))
try(vcgVolume(mysphere))

fix the error using vcgClean():
vcgVolume(vcgClean(mysphere,sel=0:6,iterate=TRUE))

End(Not run)

vegWrlWrite 53

vegWrlWrite Export meshes to WRL-files

Description

Export meshes to WRL-files

Usage

vcgWriWrite(mesh, filename = dataname, writeCol = TRUE, writeNormals = TRUE)

Arguments
mesh triangular mesh of class “mesh3d’ or a numeric matrix with 3-columns
filename character: filename (file extension *.wrl’ will be added automatically.
writeCol logical: export existing per-vertex color stored in mesh$material$color

writeNormals write existing normals to file

Examples

data(humface)
vcgWrlWrite(humface,filename = "humface”)
unlink("humface.wrl™)

Index

+ datasets
dummyhead, 5
humface, 5

+ package
Rvcg-package, 3

checkFaceOrientation, 4
dummyhead, 5

humface, 5
humfaceClean (humface), 5

meshInfo, 5
meshintegrity, 6

nfaces, 6
nverts, 7

raysearchMulti, 7
Rvcg (Rvcg-package), 3
Rvcg-package, 3

setRays, 8

vcgArea, 9

vcgBallPivoting, 9

vcgBary, 10

vcgBorder, 11

vcgBox (vegSphere), 46
vcgClean, 12, 44, 45

vcgClost, 13

vcgClostKD, 15
vcgClostOnKDtreeFromBarycenters, 17, 19
vcgCone (vcgSphere), 46
vcgCreateKDtree, 18, 18, 19, 42
vcgCreateKDtreeFromBarycenters, 18, 19
vecgCurve, 20

vcgDijkstra, 21

vcgDodecahedron (vcgSphere), 46
vcgFaceNormals, 22

54

vcgGeodesicPath, 22
vcgGeodist, 23
vcgGetEdge, 24, 34
vcgHexahedron (vcgSphere), 46
vcglcosahedron (vcgSphere), 46
vcglImport, 25

vcglsolated, 26
vcglsosurface, 27
vcglsotropicRemeshing, 28
vcgKDtree, 29

vcgKmeans, 30

vcgMeshres, 31

vcgMetro, 32
vcgNonBorderEdge, 34
vcgObjWrite, 35

vcgOctahedron (vcgSphere), 46
vcgOffWrite, 35
vcgPlyRead, 11, 14, 16, 27, 36, 44, 45
vcgPlyWrite, 37

vcgQEdecim, 38
vcgRaySearch, 7, 8, 39
vcgSample, 31, 41
vcgSearchKDtree, 18, 19,42
vcgSmooth, 26, 36, 39, 43, 45
vcgSmoothImplicit, 44
vcgSphere, 46

vcgSphericalCap (vcgSphere), 46
vcgSquare (vcgSphere), 46
vcgStlWrite, 47
vcgSubdivide, 47
vcgTetrahedron (vcgSphere), 46
vcgUniformRemesh, 48
vcgUpdateNormals, 49
vcgVertexNeighbors, 50
vcgVFadj, 51

vcgVolume, 52

vegWrlWrite, 53

	Rvcg-package
	checkFaceOrientation
	dummyhead
	humface
	meshInfo
	meshintegrity
	nfaces
	nverts
	raysearchMulti
	setRays
	vcgArea
	vcgBallPivoting
	vcgBary
	vcgBorder
	vcgClean
	vcgClost
	vcgClostKD
	vcgClostOnKDtreeFromBarycenters
	vcgCreateKDtree
	vcgCreateKDtreeFromBarycenters
	vcgCurve
	vcgDijkstra
	vcgFaceNormals
	vcgGeodesicPath
	vcgGeodist
	vcgGetEdge
	vcgImport
	vcgIsolated
	vcgIsosurface
	vcgIsotropicRemeshing
	vcgKDtree
	vcgKmeans
	vcgMeshres
	vcgMetro
	vcgNonBorderEdge
	vcgObjWrite
	vcgOffWrite
	vcgPlyRead
	vcgPlyWrite
	vcgQEdecim
	vcgRaySearch
	vcgSample
	vcgSearchKDtree
	vcgSmooth
	vcgSmoothImplicit
	vcgSphere
	vcgStlWrite
	vcgSubdivide
	vcgUniformRemesh
	vcgUpdateNormals
	vcgVertexNeighbors
	vcgVFadj
	vcgVolume
	vcgWrlWrite
	Index

