Package ‘RankAggreg’

January 20, 2025

Type Package

Title Weighted Rank Aggregation

Version 0.6.6

Date 2020-05-09

Author Vasyl Pihur <vpihur@gmail.com>, Somnath Datta
<somnath.datta@louisville.edu>, Susmita Datta
<susmita.datta@louisville.edu>

Maintainer Vasyl Pihur <vpihur@gmail.com>

Depends R (>=2.12.0)

Imports gtools

Suggests xtable, kohonen, mclust, clValid

Description Performs aggregation of ordered lists based
on the ranks using several different algorithms:
Cross-Entropy Monte Carlo algorithm, Genetic algorithm, and a
brute force algorithm (for small problems).

License LGPL

NeedsCompilation yes

Repository CRAN

Date/Publication 2020-05-09 20:10:03 UTC

Contents
BruteAggreg . . . . . .. e
geneliSts . . ... L e e
PlOLIagEr . . . . . e e e e e e
RankAggreg . . . . . . . . e
Index



BruteAggreg

BruteAggreg

Weighted Rank Aggregation via brute force algorithm

Description

Weighted rank aggregation of ordered lists is performed using the brute force approach, i.e. gener-
ating all possible ordered lists and finding the list with the minimum value of the objective function

Usage

BruteAggreg(x, k, weights = NULL, distance = c("Spearman”, "Kendall"),
importance=rep(1,nrow(x)), standardizeWeights = TRUE)

Arguments
X a matrix of ordered lists to be combined (lists must be in rows)
k size of the top-k list
weights scores (weights) to be used in the aggregation process
distance distance which "measures" the similarity between the ordered lists
importance a vector of weights indicating the importance of each ordered list in x
standardizeWeights
boolean, default is true which standardizes weights to [0,1]
Details

The function performs rank aggregation using the old-fashion brute force approach. This approach
works for small problems only and should not be attempted if k is relatively large (k > 10). To
generate all possible ordered lists, the permutation function from the gtools package is used. Both
weighted and unweighted rank aggregation can be performed. Please refer to the documentation for
RankAggreg function as the same constraints on x and index.weights apply to both functions.

Value

top.list
optimal.value
distance
method
importance
lists

weights
sample
sample.size

summary

Top-k aggregated list

the minimum value of the objective function corresponding to the top-k list
distance used by the algorithm

method used: BruteForce

importance vector used

original lists to be combined

scaled weights used in aggregation

objective function values

number of all possible solutions

contains minimum and median values of sample



geneLists 3

Author(s)

Vasyl Pihur, Somnath Datta, Susmita Datta

References

Pihur, V., Datta, S., and Datta, S. (2007) "Weighted rank aggregation of cluster validation measures:
a Monte Carlo cross-entropy approach" Bioinformatics, 23(13):1607-1615

See Also

RankAggreg

Examples

require(gtools)

# rank aggregation without weights
x <- matrix(c("A", "B", "C", "D", "E",
"B", "D", "A", "E", "C",
"B", "A", "E", "C", "D",
"A", D", "B", "C", "E"), byrow=TRUE, ncol=5)

(toplist <- BruteAggreg(x, 5))

# weighted rank aggregation
set.seed(100)

w <- matrix(rnorm(20), ncol=5)
w <- t(apply(w, 1, sort))

(toplist <- BruteAggreg(x,5,w,"Spearman”)) # using the Spearman distance
(toplist <- BruteAggreg(x,5,w, "Kendall"”)) #using the Kendall distance
plot(toplist)

genelists Ordered Gene Lists from 5 microarray studies

Description

This dataset contains five lists of genes, each of size 25, from five independent microarray studies
on prostate cancer. The lists are given in Table 4 in the manuscript by DeConde et al. Lists form
the rows of the dataset with columns corresponding to the ranks of genes in each individual study.

Usage

data(genelLists)

Format

A matrix of size 5 by 25 containing 5 lists of genes.



4 plot.raggr

Source

R. DeConde, S. Hawley, S. Falcon, N. Clegg, B. Knudsen, and R. Etzioni. Combining results of
microarray experiments: a rank aggregation approach. Stat Appl Genet Mol Biol, 5(1):Articlel5,
2006.

Examples

data(genelLists)
topList <- RankAggreg(genelLists, 5, N=700, seed=100, convIn=3)
plot(toplList)

plot.raggr Plot function for raggr object returned by RankAggreg or BruteAggreg

Description

Plots individual ordered lists with the corresponding solution. Optionally, naive average rank ag-
gregation can be added.

Usage

## S3 method for class 'raggr'

plot(x, show.average = TRUE, show.legend = TRUE, colR="red"”, ...)
Arguments

X raggr object returned by RankAggreg

show.average  boolean if average aggregation to be plotted
show. legend boolean if the legend is to be displayed
colR specifies the color for the resulting list

additional plotting parameters

Details

The function plots individual lists and the solution using ranks only (weights are not used at any
time). Optional average rank aggregation can be performed and visualized. Average rank aggrega-
tion is a simple aggregation procedure which computes the average ranks for each unique element
accross and orders them from the smallest to the largest value.

Value

Nothing is returned

Author(s)

Vasyl Pihur, Somnath Datta, Susmita Datta



RankAggreg

References

Pihur, V., Datta, S., and Datta, S. (2007) "Weighted rank aggregation of cluster validation measures:
a Monte Carlo cross-entropy approach" Bioinformatics, 23(13):1607-1615

See Also

RankAggreg, BruteAggreg

Examples

# rank aggregation without weights
x <- matrix(c("A", "B", "C", "D", "E",
"B", "D", "A", "E", "C",
"B", "A", "E", "C", "D",
"A", D", "B", "C", "E"), byrow=TRUE, ncol=5)

(CES <- RankAggreg(x, 5, method="CE", distance="Spearman”, rho=.1, verbose=FALSE))

plot(CES)

RankAggreg

Weighted Rank Aggregation of partial ordered lists

Description

Performs aggregation of ordered lists based on the ranks (optionally with additional weights) via
the Cross-Entropy Monte Carlo algorithm or the Genetic Algorithm.

Usage

RankAggreg(x, k, weights=NULL, method=c("CE", "GA"),
distance=c("Spearman”, "Kendall"”), seed=NULL, maxIter = 1000,
convIn=ifelse(method=="CE", 7, 30), importance=rep(1,nrow(x)),
rho=.1, weight=.25, N=10xk*2, v1=NULL,

popSize=100, CP=.4, MP=.01, verbose=TRUE, standardizeWeights = TRUE, ...)
Arguments

X a matrix of ordered lists to be combined (lists must be in rows)

k size of the top-k list

weights a matrix of scores (weights) to be used in the aggregation process. Weights
in each row must be ordered either in decreasing or increasing order and must
correspond to the elements in x

method method to be used to perform rank aggregation: Cross Entropy Monte Carlo
(CE) or Genetic Algorithm (GA)

distance distance to be used which "measures" the similarity of ordered lists

seed a random seed specified for reproducability; default: NULL



RankAggreg

maxIter the maximum number of iterations allowed; default: 1000

convIn stopping criteria for both CE and GA algorithms. If the best solution does not
change in convln iterations, the algorithm converged; default: 7 for CE, 30 for
GA

importance vector of weights indicating the importance of each list in x; default: a vector of
1’s ( equal weights are given to all lists

rho (rho*N) is the "quantile" of candidate lists sorted by the function values. Used
only by the Cross-Entropy algorithm

weight a learning factor used in the probability update procedure of the CE algorithm

N a number of samples to be generated by the MCMC; default: 10nk, where n is
the number of unique elements in x. Used only by the Cross-Entropy algorithm

vl optional, can be used to specify the initial probability matrix; if vI=NULL, the
initial probability matrix is set to 1/n, where n is the number of unique elements
in x

popSize population size in each generation of Genetic Algorithm; default: 100

CP Cross-over probability for the GA; the default value is .4

MP Mutation probability for the GA. This value should be small and the number
of mutations in the population of size popSize and the number of features k is
computed as popSize*k*MP.

verbose boolean, if console output is to be displayed at each iteration

standardizeWeights
boolean, default is true which standardizes weights to [0,1]
additional arguments can be passed to the internal procedures:
— p - penalty for the Kendall’s tau distance; default: 0

Details

The function performs rank aggregation via the Cross-Entropy Monte Carlo algorithm or the Ge-
netic Algorithm. Both approaches can and should be used when k is relatively large (k > 10). If
k is small, one can enumerate all possible candidate lists and find the minimum directly using the
BruteAggreg function available in this package.

The Cross-Entropy Monte Carlo algorithm is an iterative procedure for solving difficult combinato-
rial problems in which it is computationally not feasable to find the solution directly. In the context
of rank aggregation, the algorithm searches for the "super”-list which is as close as possible to the
ordered lists in x. We use either the Spearman footrule distance or the Kendall’s tau to measure the
"closeness" of any two ordered lists (or modified by us the weighted versions of these distances).
Please refer to the paper in the references for further details.

The Genetic Algorithm requires setting CP and MP parameters which effect the rate of "evolution"
in the population. If both CP and MP are small, the algorithms is very conservative and may take a
long time to search the solution space of all ordered candidate lists. On the other hand, setting CP
and MP (especially MP) large will introduce a large number of mutations in the population which
can result in a local optima.

The convergence criteria used by both algorithms is the repetition of the same minimum value of
the objective function in convin consecutive iterations.



RankAggreg 7

Value
top.list Top-k aggregated list
optimal.value the minimum value of the objective function corresponding to the top-k list
sample.size the number of samples generated by the MCMC at each iteration
num.iter the number of iterations until convergence
method which algorithm was used
distance which distance was used
importance an importance vector used
lists the original ordered lists
weights scaled weights if specified
sample objective function scores from the last iteration
summary matrix containing minimum and median objective function scores for each iter-
ation
Author(s)

Vasyl Pihur, Somnath Datta, Susmita Datta

References

Pihur, V., Datta, S., and Datta, S. (2007) "Weighted rank aggregation of cluster validation measures:
a Monte Carlo cross-entropy approach" Bioinformatics, 23(13):1607-1615

See Also

BruteAggreg, plot

Examples

# rank aggregation without weights
x <- matrix(c("A", "B", "C", "D", "E",
"B", "D", "A", "E", "C",
"B", "A", "E", "C", "D",
"A", "D", "B", "C", "E"), byrow=TRUE, ncol=5)

(CESnoweights <- RankAggreg(x, 5, method="CE", distance="Spearman”, N=100, convIn=5, rho=.1))

# weighted rank aggregation
set.seed(100)

w <- matrix(rnorm(20), ncol=5)
w <- t(apply(w, 1, sort))

# using the Cross-Entropy Monte-Carlo algorithm

(CES <- RankAggreg(x, 5, w, "CE", "Spearman”, rho=.1, N=100, convIn=5))
plot(CES)

(CEK <- RankAggreg(x, 5, w, "CE", "Kendall”, rho=.1, N=100, convIn=5))



# using the Genetic algorithm

(GAS <- RankAggreg(x, 5, w, "GA", "Spearman"))
plot (GAS)

(GAK <- RankAggreg(x, 5, w, "GA", "Kendall"))

# more complex example (to get a better solution, increase maxIter)
data(genelists)

topGenes <- RankAggreg(genelLists, 25, method="GA"”, maxIter=100)
plot(topGenes)

RankAggreg



Index

* datasets
genelists, 3

* optimize
BruteAggreg, 2
plot.raggr, 4
RankAggreg, 5

* robust
BruteAggreg, 2
plot.raggr, 4
RankAggreg, 5

BruteAggreg, 2, 5,7
genelists, 3

plot, 7
plot.raggr, 4

RankAggreg, 3, 5,5



	BruteAggreg
	geneLists
	plot.raggr
	RankAggreg
	Index

