Package ‘Ramble’

January 20, 2025
Type Package

Title Parser Combinator for R

Version 0.1.1

Date 2016-10-23

Author Chapman Siu

Maintainer Chapman Siu <chpmn.siu@gmail.com>

Description Parser generator for R using combinatory parsers. It
is inspired by combinatory parsers developed in Haskell.

License MIT + file LICENSE
Imports methods

Suggests testthat, knitr, rmarkdown
VignetteBuilder knitr

LazyData true

RoxygenNote 5.0.1

URL https://github.com/chappers/Ramble
NeedsCompilation no

Repository CRAN

Date/Publication 2016-10-29 10:48:13

Contents

Alpha e

alt . . e e e

eI . . L v o e e e

Lower e

https://github.com/chappers/Ramble

2 Alpha
00 10 7
maybe e e e e e 8
0 1 8
natural L L e e e e e e e e 9
Ramble e 9
Satisfy . . . e e 10
SOME . . v v v v e e e e e e e e e e e e e e e e e 10
SPACE . o vt e e e e e e e 11
SpaceCheck L 11
SIING . . . o e 12
succeed ... L. 12
Symbol e e e e 13
then e e 13
thentree L e e e e e e e 14
tOKEN . . . e e e e e 15
Unlist o e 15
UPPET . . o o e e e e e 16
USINEZ . o v o e e e e e e e e e e e e e e e e e e e 16
GoaltTo e e 17
Jothen%o e e e e e 17
Jothentree%o e 18
JouSINGTo o e e e 18
Index 20
Alpha Alpha checks for single alphabet character
Description
Alpha checks for single alphabet character
Usage
Alpha(...)
Arguments
additional arguments for the primitives to be parsed
See Also
Digit, Lower, Upper, AlphaNum, SpaceCheck, String, ident, nat, space, token, identifier,
natural, symbol
Examples

Alpha()("abc™)

AlphaNum 3

AlphaNum AlphaNum checks for a single alphanumeric character

Description

AlphaNum checks for a single alphanumeric character

Usage
AlphaNum(...)

Arguments

additional arguments for the primitives to be parsed

See Also

Digit, Lower, Upper, Alpha, SpaceCheck, String, ident, nat, space, token, identifier,
natural, symbol

Examples

AlphaNum() ("123")
AlphaNum() ("abc123")

alt alt combinator is similar to alternation in BNF. the parser (alt(p1,
p2)) recognises anything that p1 or p2 would. The approach taken in
this parser follows (Fairbairn86), in which either is interpretted in a
sequential (or exclusive) manner, returning the result of the first parser
to succeed, and failure if neither does.

Description

%alt% is the infix notation for the alt function, and it is the preferred way to use the alt operator.

Usage

alt(pl, p2)

Arguments

pl the first parser

p2 the second parser

Value

Returns the first parser if it suceeds otherwise the second parser

See Also

then

Examples

(item() %alt% succeed("2")) ("abcdef")

Digit

Digit Digit checks for single digit

Description

Digit checks for single digit

Usage

Digit(...)

Arguments

additional arguments for the primitives to be parsed

See Also

Lower, Upper, Alpha, AlphaNum, SpaceCheck, String, ident, nat, space, token, identifier,

natural, symbol

Examples

Digit()("123")

ident 5

ident ident is a parser which matches zero or more alphanumeric charac-
ters.

Description

ident is a parser which matches zero or more alphanumeric characters.

Usage

ident()

See Also
Digit, Lower, Upper, Alpha, AlphaNum, SpaceCheck, String, nat, space, token, identifier,

natural, symbol

Examples

ident() ("variablel = 123")

identifier identifier creates an identifier

Description

identifier creates an identifier

Usage

identifier(...)

Arguments

takes in token primitives

See Also

Digit, Lower, Upper, Alpha, AlphaNum, SpaceCheck, String, ident, nat, space, token, natural,
symbol

6 literal

item item is a parser that consumes the first character of the string and re-
turns the rest. If it cannot consume a single character from the string,
it will emit the empty list, indicating the parser has failed.

Description

item is a parser that consumes the first character of the string and returns the rest. If it cannot
consume a single character from the string, it will emit the empty list, indicating the parser has
failed.

Usage

item(...)

Arguments

additional arguments for the parser

Examples

item() ("abc")
item() ("")

literal literal is a parser for single symbols. It will attempt to match the
single symbol with the first character in the string.

Description
literal is a parser for single symbols. It will attempt to match the single symbol with the first
character in the string.

Usage

literal(char)

Arguments

char is the character to be matched

Examples

literal(”a") ("abc™)

Lower 7

Lower Lower checks for single lower case character

Description

Lower checks for single lower case character

Usage

Lower(...)

Arguments

additional arguments for the primitives to be parsed

See Also
Digit, Upper, Alpha, AlphaNum, SpaceCheck, String, ident, nat, space, token, identifier,

natural, symbol

Examples

Lower() ("abc")

many many matches 0 or more of pattern p. In BNF notation, repetition oc-
curs often enough to merit its own abbreviation. When zero or more
repetitions of a phrase p are admissible, we simply write px. The
many combinator corresponds directly to this operator, and is defined
in much the same way.

Description

This implementation of many differs from (Hutton92) due to the nature of R’s data structures. Since
R does not support the concept of a list of tuples, we must revert to using a list rather than a vector,
since all values in an R vector must be the same datatype.

Usage

many (p)

Arguments

p is the parser to match O or more times.

8 nat

See Also

maybe, some

Examples

Digit <- function(...) {satisfy(function(x) {return(!!length(grep("[0-9]1", x)))})}
many(Digit()) ("123abc")
many(Digit()) ("abc")

maybe maybe matches 0 or 1 of pattern p. In EBNF notation, this corresponds
to a question mark (°?’).

Description

maybe matches O or 1 of pattern p. In EBNF notation, this corresponds to a question mark (*?°).

Usage

maybe (p)

Arguments

p is the parser to be matched O or 1 times.

See Also

many, some

Examples

maybe(Digit()) ("123abc")
maybe(Digit()) ("abc123")

nat nat is a parser which matches one or more numeric characters.

Description

nat is a parser which matches one or more numeric characters.

Usage

nat()

natural 9

See Also
Digit, Lower, Upper, Alpha, AlphaNum, SpaceCheck, String, ident, space, token, identifier,

natural, symbol

Examples

nat() (123 + 456")

natural natural creates a token parser for natural numbers

Description

natural creates a token parser for natural numbers

Usage

natural(...)

Arguments

additional arguments for the parser

See Also

Digit, Lower, Upper, Alpha, AlphaNum, SpaceCheck, String, ident, nat, space, token, identifier,
symbol

Ramble Ramble is a parser generator using combinatory parsers.

Description

Ramble allows you to write parsers in a functional manner, inspired by Haskell’s Parsec library.

10 some

satisfy satisfy is a function which allows us to make parsers that recognise
single symbols.

Description

satisfy is a function which allows us to make parsers that recognise single symbols.

Usage
satisfy(p)
Arguments
p is the predicate to determine if the arbitrary symbol is a member.
some some matches 1 or more of pattern p. in BNF notation, repetition oc-
curs often enough to merit its own abbreviation. When zero or more
repetitions of a phrase p are admissible, we simply write p+. The
some combinator corresponds directly to this operator, and is defined
in much the same way.
Description

some matches 1 or more of pattern p. in BNF notation, repetition occurs often enough to merit its

own abbreviation. When zero or more repetitions of a phrase p are admissible, we simply write p+.

The some combinator corresponds directly to this operator, and is defined in much the same way.
Usage

some(p)

Arguments

p is the parser to match 1 or more times.

See Also

maybe, many

Examples

Digit <- function(...) {satisfy(function(x) {return(!!length(grep(”"[0-91", x)))})}
some(Digit()) ("123abc")

space 11

space space matches zero or more space characters.

Description

space matches zero or more Space characters.

Usage

space()

See Also
Digit, Lower, Upper, Alpha, AlphaNum, SpaceCheck, String, ident, nat, token, identifier,

natural, symbol

Examples

space() (" abc")

SpaceCheck SpaceCheck checks for a single space character

Description

SpaceCheck checks for a single space character

Usage
SpaceCheck(...)

Arguments

additional arguments for the primitives to be parsed

See Also
Digit, Lower, Upper, Alpha, AlphaNum, String, ident, nat, space, token, identifier, natural,
symbol

Examples

SpaceCheck () (" 123")

12 succeed

String String is a combinator which allows us to build parsers which recog-
nise strings of symbols, rather than just single symbols

Description

String is a combinator which allows us to build parsers which recognise strings of symbols, rather
than just single symbols

Usage
String(string)

Arguments

string is the string to be matched

See Also

Digit, Lower, Upper, Alpha, AlphaNum, SpaceCheck, ident, nat, space, token, identifier,
natural, symbol

Examples

String(”123")("123 abc™)

succeed succeed is based on the empty string symbol in the BNF notation The
succeed parser always succeeds, without actually consuming any in-
put string. Since the outcome of succeed does not depend on its input,
its result value must be pre-detemined, so it is included as an extra
parameter.

Description

succeed is based on the empty string symbol in the BNF notation The succeed parser always
succeeds, without actually consuming any input string. Since the outcome of succeed does not
depend on its input, its result value must be pre-detemined, so it is included as an extra parameter.

Usage

succeed(string)

Arguments

string the result value of succeed parser

symbol 13

Examples

succeed("1") ("abc")

symbol symbol creates a token for a symbol

Description

symbol creates a token for a symbol

Usage
symbol(xs)

Arguments

XS takes in a string to create a token

See Also
Digit, Lower, Upper, Alpha, AlphaNum, SpaceCheck, String, ident, nat, space, token, identifier,

natural

Examples

Symbol(u[n) (n [123]1:>

then then combinator corresponds to sequencing in BNF. The parser
(then(p1, p2)) recognises anything that p1 and p2 would if placed
in succession.

Description
%then% is the infix operator for the then combinator, and it is the preferred way to use the then
operator.

Usage
then(p1, p2)

Arguments

p1 the first parser

p2 the second parser

14 thentree

Value

recognises anything that p1 and p2 would if placed in succession.

See Also

alt, thentree

Examples

(item() %then% succeed(”123")) ("abc")

thentree thentree keeps the full tree representation of the results of parsing.
Otherwise, it is identical to then.

Description

thentree keeps the full tree representation of the results of parsing. Otherwise, it is identical to
then.

Usage

thentree(pl, p2)

Arguments

p1 the first parser

p2 the second parser
Value

recognises anything that p1 and p2 would if placed in succession.

See Also

alt, thentree

Examples

(item() %thentree% succeed(”123")) ("abc")

token 15

token token is a new primitive that ignores any space before and after ap-
plying a parser to a token.

Description

token is a new primitive that ignores any space before and after applying a parser to a token.

Usage

token(p)

Arguments

p is the parser to have spaces stripped.

See Also
Digit, Lower, Upper, Alpha, AlphaNum, SpaceCheck, String, ident, nat, space, identifier,

natural, symbol

Examples

token(ident()) (" variablel ")

Unlist Unlist is the same as unlist, but doesn’t recurse all the way to preserve
the type. This function is not well optimised.

Description
Unlist is the same as unlist, but doesn’t recurse all the way to preserve the type. This function is not
well optimised.

Usage

Unlist(obj)

Arguments

obj is a list to be flatten

16 using

Upper Upper checks for a single upper case character

Description

Upper checks for a single upper case character
Usage

Upper(...)
Arguments

additional arguments for the primitives to be parsed

See Also
Digit, Lower, Alpha, AlphaNum, SpaceCheck, String, ident, nat, space, token, identifier,
natural, symbol

Examples

Upper () ("Abc")

using using combinator allows us to manipulate results from a parser, for
example building a parse tree. The parser (p %using% f) has the same
behaviour as the parser p, except that the function f is applied to each
of its result values.

Description

%using% is the infix operator for using, and it is the preferred way to use the using operator.

Usage
using(p, f)
Arguments
p is the parser to be applied
is the function to be applied to each result of p.
Value

The parser (p %using% f) has the same behaviour as the parser p, except that the function f is
applied to each of its result values.

%alt%

Examples

(item() %using% as.numeric) ("1labc")

17

%alt% %alt% is the infix notation for the alt function.

Description

%alt% is the infix notation for the alt function.

Usage
pl %altk p2

Arguments

p1 the first parser

p2 the second parser
Value

Returns the first parser if it suceeds otherwise the second parser

Examples

(item() %alt% succeed("2")) ("abcdef”)

%then% %then% is the infix operator for the then combinator.

Description

%then% is the infix operator for the then combinator.

Usage
pl %then% p2

Arguments

p1 the first parser

p2 the second parser
Value

recognises anything that p1 and p2 would if placed in succession.

18 %using %

Examples

(item() %then% succeed(”123")) ("abc")

%thentree% %thentree% is the infix operator for the then combinator, and it is the
preferred way to use the thentree operator.

Description
%thentree% is the infix operator for the then combinator, and it is the preferred way to use the
thentree operator.

Usage

pl %thentree% p2

Arguments

pl the first parser

p2 the second parser
Value

recognises anything that p1 and p2 would if placed in succession.

See Also

alt, thentree

Examples

(item() %thentree% succeed(”123")) ("abc")

%using% %using% is the infix operator for using

Description

%using% is the infix operator for using

Usage

p %using% f

%using %

Arguments

is the parser to be applied

is the function to be applied to each result of p.

Examples

(item() %using% as.numeric) ("1abc")

19

Index

%altk%, 17 Unlist, 15
%then%, 17 Upper, 2-5,7,9,11-13,15, 16
%thentree%, 18 using, 16

%using%, 18

Alpha, 2,3-5,7,9,11-13, 15, 16
AlphaNum, 2,3,4, 5,7,9,11-13, 15, 16
alt, 3, 14,18

Digit, 2, 3,4,5,7,9,11-13, 15, 16

ident, 2-5,5,7,9, 11-13, 15, 16
identifier, 2-5,5,7,9,11-13,15, 16
item, 6

literal, 6
Lower, 2-5,7,9, 11-13, 15, 16

many, 7, 8, 10
maybe, 8, 8, 10

nat, 2-5,7,8,9,11-13, 15, 16
natural, 2-5,7,9,9, 11-13, 15, 16

package-ramble (Ramble), 9

Ramble, 9
ramble (Ramble), 9
Ramble-package (Ramble), 9

satisfy, 10

some, 8, 10

space, 2-5,7,9,11,11,12, 13,15, 16
SpaceCheck, 2-5,7,9,11,11,12, 13,15, 16
String,2-5,7,9,11,12,13,15, 16
succeed, 12

symbol, 2-5,7,9,11, 12,13, 15, 16

then, 4, 13

thentree, 14, 14, 18
token, 2-5,7,9, 11-13, 15, 16

20

	Alpha
	AlphaNum
	alt
	Digit
	ident
	identifier
	item
	literal
	Lower
	many
	maybe
	nat
	natural
	Ramble
	satisfy
	some
	space
	SpaceCheck
	String
	succeed
	symbol
	then
	thentree
	token
	Unlist
	Upper
	using
	alt
	then
	thentree
	using
	Index

