Package 'KSD'

January 20, 2025

Type Package

Title Goodness-of-Fit Tests using Kernelized Stein Discrepancy

Version 1.0.1

Date 2021-01-11

Description An adaptation of Kernelized Stein Discrepancy, this package provides a goodness-offit test of whether a given i.i.d. sample is drawn from a given distribution. It works for any distribution once its score function (the derivative of log-density) can be provided. This method is based on ``A Kernelized Stein Discrepancy for Goodness-offit Tests and Model Evaluation" by Liu, Lee, and Jordan, available at <arXiv:1602.03253>.

License MIT + file LICENSE

LazyData TRUE

RoxygenNote 7.1.1

Imports pryr, graphics, stats

Suggests datasets, ggplot2, gridExtra, mclust, mvtnorm

NeedsCompilation no

Author Min Hyung Kang [aut, cre], Qiang Liu [aut]

Maintainer Min Hyung Kang <Minhyung.Daniel.Kang@gmail.com>

Repository CRAN

Date/Publication 2021-01-11 08:50:16 UTC

Contents

demo_gmm	2
demo_gmm_multi	2
demo_iris	2
demo_normal_performance	3
demo_simple_gamma	3
demo_simple_gaussian	4
gmm	4
KSD	5

likelihoodgmm .					•															6
perturbgmm																				7
plotgmm																				8
posteriorgmm																				8
rgmm																				9
scorefunctiongmm																				10
																				11

Index

demo_gmm

Tests 1-dimensional Gaussian Mixture Models.

Description

Tests 1-dimensional Gaussian Mixture Models.

Usage

demo_gmm()

demo_gmm_multi Tests multidimensional Gaussian Mixture Models.

Description

Tests multidimensional Gaussian Mixture Models.

Usage

```
demo_gmm_multi()
```

demo_iris

Fits Gaussian Mixture model and computes the KSD value for the model

Description

We fit a Gaussian Mixture Model for a given dataset (Fisher's Iris), and we compute the KSD Pvalue on the hold-out test dataset. User may tune the parameters and observe the change in results. Reports average of p-values obtained during each k-fold. It also plots the contour for each k-fold iteration if only 2 dimensions of data are used. If a vector is specified for nClust, the code tries each element as the number of clusters and reports the optimal parameter by choosing one with highest p-value.

Usage

demo_iris(cols = c(1, 2), nClust = 3, kfold = 5)

Arguments

cols	: Columns of iris data set to use. If 2 dimensions, plots the contour for each k-fold.
nClust	: Number of clusters want to estimate with If vector, use each element as number of clusters and reports the optimal number.
kfold	: Number of k to use for k-fold

```
demo_normal_performance
```

Shows KSD p value change with respect variation in noise

Description

We generate a standard normal distribution, and add varying gaussian noise to this dataset and see the change in pvalues.

Usage

```
demo_normal_performance()
```

demo_simple_gamma Tests 1-dimensional Gamma Distribution with customized parameters

Description

We generate a gamma distribution with given parameters, and add gaussian noise to this dataset. We then compute the score of each dataset for the original true distribution.

Usage

```
demo_simple_gamma(
   trueshape = 10,
   truescale = 3,
   noisemu = 5,
   noisesd = 2,
   n = 100
)
```

Arguments

trueshape	shape of true gamma distribution
truescale	scale of true gamma distribution
noisemu	mean of gaussian noise to add
noisesd	standard deviation of gaussian noise to add
n	number of samples to generate

demo_simple_gaussian Tests 1-dimensional Gaussian Distribution with customized parameters

Description

We generate a gaussian distribution with given parameters, and add noise to this dataset. We then compute the score of each dataset for the original true distribution.

Usage

demo_simple_gaussian(truemu = 5, truesd = 1, noisemu = 0, noisesd = 2, n = 100)

Arguments

truemu	mean of true distribution
truesd	standard deviation of true distribution
noisemu	mean of gaussian noise to add
noisesd	standard deviation of gaussian noise to add
n	number of samples to generate

Returns a Gaussian Mixture Model

Description

Returns a Gaussian Mixture Model

Usage

```
gmm(nComp = NULL, mu = NULL, sigma = NULL, weights = NULL, d = NULL)
```

KSD

Arguments

nComp	(scalar) : number of components
mu	(d by k): mean of each component
sigma	(d by d by k): covariance of each component
weights	(1 by k) : mixing weight of each proportion (optional)
d	: number of dimensions of vector (optional)

Value

model : A Gaussian Mixture Model generated from the given parameters

Examples

```
# Default 1-d gaussian mixture model
model <- gmm()
# 1-d Gaussian mixture model with 3 components
model <- gmm(nComp = 3)
# 3-d Gaussian mixture model with 3 components, with specified mu,sigma and weights
mu <- matrix(c(1,2,3,2,3,4,5,6,7),ncol=3)
sigma <- array(diag(3),c(3,3,3))
model <- gmm(nComp = 3, mu = mu, sigma=sigma, weights = c(0.2,0.4,0.4), d = 3)</pre>
```

KSD

Estimate Kernelized Stein Discrepancy (KSD)

Description

Estimate kernelized Stein discrepancy (KSD) using U-statistics, and use bootstrap to test H0: x_i is drawn from p(X) (via KSD=0).

Usage

```
KSD(x, score_function, kernel = "rbf", width = -1, nboot = 1000)
```

Arguments

х	Sample of size Num_Instance x Num_Dimension
score_function	$(\nabla_x \log p(x))$ Score function : takes x as input and output a column vector of size Num_Instance X Dimension. User may use pryr package to pass in a function that only takes in dataset as parameter, or user may also pass in computed score for a given dataset.
kernel	Type of kernel (default = 'rbf')
width	Bandwidth of the kernel (when width = -1 or 'median', set it to be the median distance between data points)
nboot	Bootstrap sample size

Value

A list which includes the following variables :

- "ksd" : Estimated Kernelized Stein Discrepancy (KSD)
- "p" : p-Value for rejecting the null hypothesis that ksd = 0
- "bootstrapSamples" : the bootstrap sample
- "info": other information, including : bandwidth, M, nboot, ksd_V

Examples

```
# Pass in a dataset generated by Gaussian distribution,
# use pryr package to pass in score function
model <- gmm()</pre>
X \leq rgmm(model, n=100)
score_function = pryr::partial(scorefunctiongmm, model=model)
result <- KSD(X,score_function=score_function)</pre>
# Pass in a dataset generated by Gaussian distribution,
# pass in computed score rather than score function
model <- gmm()</pre>
X \leq rgmm(model, n=100)
score_function = scorefunctiongmm(model=model, X=X)
result <- KSD(X,score_function=score_function)</pre>
# Pass in a dataset generated by Gaussian distribution,
# pass in computed score rather than score function
# Use median_heuristic by specifying width to be -2.0
model <- gmm()</pre>
X \leq rgmm(model, n=100)
score_function = pryr::partial(scorefunctiongmm, model=model)
result <- KSD(X,score_function=score_function, 'rbf',-2.0)</pre>
# Pass in a dataset generated by specific Gaussian distribution,
# pass in computed score rather than score function
# Use median_heuristic by specifying width to be -2.0
model <- gmm()</pre>
X \leq rgmm(model, n=100)
score_function = pryr::partial(scorefunctiongmm, model=model)
result <- KSD(X,score_function=score_function, 'rbf',-2.0)</pre>
```

likelihoodgmm

Calculates the likelihood for a given dataset for a GMM

Description

Calculates the likelihood for a given dataset for a GMM

perturbgmm

Usage

likelihoodgmm(model = NULL, X = NULL)

Arguments

model	: The Gaussian Mixture Model
Х	(n by d): The dataset of interest, where n is the number of samples and d is the dimension

Value

P(n by k): The likelihood of each dataset belonging to each of the k component

Examples

```
# compute likelihood for a default 1-d gaussian mixture model
# and dataset generated from it
model <- gmm()
X <- rgmm(model)
p <- likelihoodgmm(model=model, X=X)</pre>
```

perturbgmm Returns a perturbed model of given GMM

Description

Returns a perturbed model of given GMM

Usage

```
perturbgmm(model = NULL)
```

Arguments

model : The base Gaussian Mixture Model

Value

perturbedModel : Perturbed model with added noise to the supplied GMM

Examples

```
#Add noise to default 1-d gaussian mixture model
model <- gmm()
noisymodel <- perturbgmm(model)</pre>
```

plotgmm

Description

Plots histogram for 1-d GMM given the dataset

Usage

plotgmm(data, mu = NULL)

Arguments

data	(n by 1): The dataset of interest, where n is the number of samples.
mu	: True mean of the GMM (optional)

Examples

```
# Plot pdf histogram for a given dataset
model <- gmm()
X <- rgmm(model)
plotgmm(data=X)
# Plot pdf histogram for a given dataset, with lines that indicate the mean
model <- gmm()
mu <- model$mu</pre>
```

```
X <- rgmm(model)
plotgmm(data=X, mu=mu)
```

posteriorgmm

Calculates the posterior probability for a given dataset for a GMM

Description

Calculates the posterior probability for a given dataset for a GMM

Usage

posteriorgmm(model = NULL, X = NULL)

Arguments

model	: The Gaussian Mixture Model
Х	(n by d): The dataset of interest, where n is the number of samples and d is the dimension

rgmm

Value

P (n by k) : The posterior probability of each dataset belonging to each of the k component

Examples

```
# compute posterior probability for a default 1-d gaussian mixture model
# and dataset generated from it
model <- gmm()
X <- rgmm(model)
p <- posteriorgmm(model=model, X=X)</pre>
```

rgmm

Generates dataset from Gaussian Mixture Model

Description

Generates dataset from Gaussian Mixture Model

Usage

rgmm(model = NULL, n = 100)

Arguments

model	: Gaussian Mixture Model defined by gmm()
n	: number of samples desired

Value

data (n by d): Random dataset generated from given the Gaussian Mixture Model

Note

Requires library mvtnorm

Examples

```
#Generate 100 samples from default gaussian mixture model
model <- gmm()
X <- rgmm(model)
#Generate 300 samples from 3-d gaussian mixture model
model <- gmm(d=3)
X <- rgmm(model,n=300)</pre>
```

scorefunctiongmm

Score function for given GMM : calculates score function dlogp(x)/dx for a given Gaussian Mixture Model

Description

Score function for given GMM : calculates score function dlogp(x)/dx for a given Gaussian Mixture Model

Usage

```
scorefunctiongmm(model = NULL, X = NULL)
```

Arguments

model	: The Gaussian Mixture Model
Х	(n by d): The dataset of interest, where n is the number of samples and d is the dimension

Value

y : The score computed by the given function

Examples

```
# Compute score for a given gaussianmixture model and dataset
model <- gmm()
X <- rgmm(model)
score <- scorefunctiongmm(model=model, X=X)</pre>
```

Index

demo_gmm, 2
demo_gmm_multi, 2
demo_iris, 2
demo_normal_performance, 3
demo_simple_gamma, 3
demo_simple_gaussian, 4

gmm, 4

KSD, 5

likelihoodgmm, 6

perturbgmm,7 plotgmm,8 posteriorgmm,8

rgmm,9

scorefunctiongmm, 10