Package ‘HMC’

May 2, 2025
Title High-Dimensional Mean Comparison with Projection and
Cross-Fitting
Version 1.2
Date 2025-05-02

Description Provides interpretable high-dimensional mean comparison methods (HMC).
For example, users can apply these methods to assess the difference in
gene expression between two treatment groups. It is not a gene-by-gene
comparison. Instead, the methods focus on the interplay between features
and identify those that are predictive of the group label. The tests are
valid frequentist procedures and yield sparse estimates indicating which
features contribute to the group differences.

License GPL-2

Encoding UTF-8

RoxygenNote 7.3.2

Imports glmnet, irlba, PMA, MASS, stats, grpreg

URL https://github.com/terrytianyuzhang/HMC/tree/main/HMC_package
NeedsCompilation no

Author Tianyu Zhang [aut, cre, cph]

Maintainer Tianyu Zhang <tianyuz3@andrew.cmu.edu>

Repository CRAN

Date/Publication 2025-05-02 17:00:02 UTC

Contents

anchored_lasso_testing
check data_for folds
check non_null and_identical colnames
collect_active_features_proj
combine_folds_mean_diff
compute_predictive_contributions L.
debiased_pc_testing e

https://github.com/terrytianyuzhang/HMC/tree/main/HMC_package

2 anchored_lasso_testing
estimate_leading_pc e e e 9
estimate_nuisance_parameter_lasso Lo e 9
estimate_NUIiSANCE_PC . . .« v v v v v e vt e e e e e e e e e e e 11
evaluate_influence_function_multi_factor 12
evaluate_pca_lasso_plug_in 13
evaluate_pca_plug_in e 14
extract_lasso_coef L 15
EXITACT_PC .« « o o vt e e e e e e e e e 15
At 1assO 16
index_spliter e e 17
mean_comparison_anchor Lo oL 17
normalize_and_split. L 19
process_fold_mean_diff. Lo 20
simple_pc_testing e e e e e 21
summarize_feature Name e e e e e e 22
SUMMATrIZE_PC_NAME« o v oo v v e e e et e e e e e e e e 23
validate_and_convert_data e 24

Index 25

anchored_lasso_testing
Anchored test for two-sample mean comparison.
Description
Anchored test for two-sample mean comparison.
Usage
anchored_lasso_testing(
sample_1,
sample_2,
pca_method = "sparse_pca”,
mean_method = "lasso”,
lasso_tuning_method = "min",
num_latent_factor = 1,
n_folds = 5,
verbose = TRUE
)
Arguments
sample_1 Group 1 sample. Each row is a subject and each column corresponds to a feature.
sample_2 Group 2 sample. Each row is a subject and each column corresponds to a feature.
pca_method Methods used to estimate principle component The default is "sparse_pca", us-

ing sparse PCA from package PMA. Other choices are "dense_pca"—the regular
PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.

anchored_lasso_testing 3

mean_method Methods used to estimate the discriminant direction. Default is logistic Lasso
"lasso". Can also take value "lasso_no_truncation"

lasso_tuning_method
Method for Lasso penalty hyperparameter tuning. Default is "min", the mini-
mizer of cross-validation error; users can also use "1se" for more sparse solu-
tions.

num_latent_factor
The principle component that lasso coefficient anchors at. The default is PC1 =

1.
n_folds Number of splits when performing cross-fitting. The default is 5, if computa-
tional time allows, you can try to set it to 10.
verbose Print information to the console. Default is TRUE.
Value

A list of test statistics.

test_statistics
Test statistics. Each entry corresponds to the test result of one principle compo-
nent.

standard_error Estimated standard error of test_statistics_before studentization.

test_statistics_before_studentization
Similar to test_statistics but does not have variance = 1.

split_data Intermediate quantities needed for further assessment and interpretation of the
test results.

Examples

sample_size_1 <- sample_size_2 <- 300
true_mean_1 <- matrix(c(rep(1, 10), rep(@, 90)), ncol = 1)
true_mean_2 <- matrix(c(rep(1.5, 10), rep(@, 90)), ncol = 1)

sample_1 <- data.frame(MASS: :mvrnorm(sample_size_1,
mu = true_mean_1,
Sigma = diag(1, 100)))
sample_2 <- data.frame(MASS: :mvrnorm(sample_size_2,
mu = true_mean_2,
Sigma = diag(1, 100)))
result <- anchored_lasso_testing(sample_1, sample_2)
result$test_statistics
##the test statistic. It should follow normal(@,1) when there is no difference between the groups.
summarize_feature_name(result)
#summarize which features contribute to discriminant vectors (i.e. logistic lasso)
extract_pc(result) # extract the estimated discriminant coefficients

4 check _non_null_and_identical_colnames

check_data_for_folds Check that data has enough rows for cross-validation folds

Description

Validates that the input data has at least as many rows as the number of desired folds.

Usage
check_data_for_folds(data, n_folds)

Arguments

data A data frame or matrix.

n_folds Integer. The number of folds to check for.
Value

NULL (called for its side effect). Throws an error if the number of rows is too small.

Examples

check_data_for_folds(matrix(1:20, nrow = 5), n_folds = 5)
Not run:
check_data_for_folds(matrix(1:4, nrow = 2), n_folds = 5) # This will throw an error

End(Not run)

check_non_null_and_identical_colnames
Check non-null and consistent column names across datasets

Description

Ensures all input datasets have non-null, non-empty, and identical column names.

Usage

check_non_null_and_identical_colnames(data_list)

Arguments

data_list A list of matrices or data frames to be checked.

collect_active_features_proj 5

Value

NULL (called for side-effect). Throws an error if validation fails.

Examples

dl <- data.frame(a = 1:2, b = 3:4)
d2 <- data.frame(a = 5:6, b = 7:8)
check_non_null_and_identical_colnames(list(d1, d2))

collect_active_features_proj
Collect active features and groups based on projection directions

Description

Identifies consistently non-zero features across cross-validation folds using a voting scheme and
returns active groups if a grouping vector is provided.

Usage

collect_active_features_proj(
test_result,
voting_method = c("majority_voting"),

group = NULL,
group_threshold = 1
)
Arguments
test_result A result object from mean_comparison_anchor() containing fold_data.

voting_method Character. Method to determine active features. Only "majority_voting” is
currently supported.

group Optional grouping vector with feature names. Must match the feature dimension
of classifier_coef.

group_threshold
Integer. Minimum number of active features required to declare a group active.
Default is 1.

Value

If group is provided, returns a list with:

active_features Character vector of consistently non-zero features.

active_groups Character vector of active groups.

If group is NULL, returns a character vector of active features only.

6 compute_predictive_contributions

combine_folds_mean_diff
Combine fold-level test statistics from cross-validation

Description

Aggregates fold-level test statistics and variances to compute an overall test statistic and p-value.

Usage

combine_folds_mean_diff(fold_data, verbose = FALSE)

Arguments
fold_data A list of results from process_fold_mean_diff (), one for each fold.
verbose Logical. Whether to print diagnostic messages. Default is FALSE.
Value

A list containing:

p_value Two-sided p-value for the overall test statistic.
test_statistic Standardized test statistic.
fold_data Original input list, for reference or diagnostics.

compute_predictive_contributions
Compute predictive contributions of feature groups

Description
Analyzes the relative contribution of grouped features to the overall discriminant signal, based on
averaged Lasso coefficients across cross-validation folds.

Usage

compute_predictive_contributions(result, group, group_threshold = 5)

Arguments
result A result object returned by mean_comparison_anchor (), containing fold_data
with classifier coefficients.
group A grouping vector indicating group membership of features. Must be the same

length as the number of features.

group_threshold
Integer. Minimum number of active features required in a group for it to be
considered active. Default is 5.

debiased_pc_testing 7

Details

The function identifies active groups based on cross-validated non-zero coefficients, then decom-
poses the total L2 norm of the average coefficient vector across groups.

Value

A data frame with two columns:

group Group name or label.

score Proportion of total predictive signal attributable to that group.

See Also

collect_active_features_proj

debiased_pc_testing Debiased one-step test for two-sample mean comparison. A small p-
value tells us not only there is difference in the mean vectors, but can
also indicates which principle component the difference aligns with.

Description

Debiased one-step test for two-sample mean comparison. A small p-value tells us not only there
is difference in the mean vectors, but can also indicates which principle component the difference
aligns with.

Usage
debiased_pc_testing(
sample_1,
sample_2 = NULL,
pca_method = "sparse_pca”,
mean_method = "naive”,
num_latent_factor = 1,
n_folds = 5,
verbose = TRUE
)
Arguments
sample_1 Group 1 sample. Each row is a subject and each column corresponds to a feature.
sample_2 Group 2 sample. Each row is a subject and each column corresponds to a feature.
pca_method Methods used to estimate principle component The default is "sparse_pca", us-

ing sparse PCA from package PMA. Other choices are "dense_pca"—the regular
PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.

8 debiased_pc_testing

mean_method Methods used to estimate the mean vector. Default is sample mean "naive".
There is also a hard-thresholding sparse estiamtor "hard".

num_latent_factor
Number of principle to be estimated/tested. Default is 1.

n_folds Number of splits when performing cross-fitting. The default is 5, if computa-
tional time allows, you can try to set it to 10.
verbose Print information to the console. Default is TRUE.
Value

A list of test statistics.

test_statistics
Test statistics. Each entry corresponds to the test result of one principle compo-
nent.

standard_error Estimated standard error of test_statistics_before_studentization.

test_statistics_before_studentization
Similar to test_statistics but does not have variance = 1.

split_data Intermediate quantities needed for further assessment and interpretation of the
test results.

Examples

sample_size_1 <- sample_size_2 <- 300

true_mean_1 <- matrix(c(rep(1, 10), rep(@, 90)), ncol = 1)
true_mean_2 <- matrix(c(rep(1.5, 10), rep(@, 90)), ncol = 1)
pcl <- c(rep(1, 10), rep(0, 90))

pcl <- pcl/norm(pcl, type = '2")

simulation_covariance <- 10 * pcl %*% t(pcl)
simulation_covariance <- simulation_covariance + diag(1, 100)

sample_1 <- data.frame(MASS: :mvrnorm(sample_size_1,

mu = true_mean_1,

Sigma = simulation_covariance))
sample_2 <- data.frame(MASS: :mvrnorm(sample_size_2,

mu = true_mean_2,

Sigma = simulation_covariance))
result <- debiased_pc_testing(sample_1, sample_2)
result$test_statistics
##these are test statistics. Each one of them corresponds to one PC.
summarize_pc_name(result, latent_fator_index = 1) #shows which features contribute to PC1
extract_pc(result) # extract the estimated leading PCs.

estimate_leading _pc 9

estimate_leading_pc Estimate the leading principal component

Description

Estimates the leading principal component of the input matrix using dense or sparse PCA.

Usage
estimate_leading_pc(control, pca_method = c("dense_pca”, "sparse_pca"))
Arguments
control A matrix or data frame. Each row is a sample, and each column is a feature.
pca_method Character. PCA method to use. Options are "dense_pca” (default) or "sparse_pca”.
Details

For low-dimensional settings (< 30 features), the method automatically switches to dense PCA. For
sparse PCA, the function uses the PMA: : SPC. cv cross-validation method.

Value

A normalized numeric vector representing the leading principal component direction.

Examples
Not run:
X <= matrix(rnorm(100), nrow = 20)
estimate_leading_pc(X, pca_method = "dense_pca")

End(Not run)

estimate_nuisance_parameter_lasso

The function for nuisance parameter estimation in an-
chored_lasso_testing().

Description

The function for nuisance parameter estimation in anchored_lasso_testing().

10

Usage

estimate_nuisance_parameter_lasso(
nuisance_sample_1,
nuisance_sample_2,

pca_method = "sparse_pca”,
mean_method = "lasso",
lasso_tuning_method = "min",

num_latent_factor = 1,
local_environment = local_environment,
verbose = TRUE

Arguments

nuisance_sample_1

estimate_nuisance_parameter._lasso

Group 1 sample. Each row is a subject and each column corresponds to a feature.

nuisance_sample_2

Group 2 sample. Each row is a subject and each column corresponds to a feature.

pca_method Methods used to estimate principle component The default is "sparse_pca", us-
ing sparse PCA from package PMA. Other choices are "dense_pca"—the regular
PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.

mean_method Methods used to estimate the discriminant direction. Default is logistic Lasso
"lasso". Can also take value "lasso_no_truncation"

lasso_tuning_method

Method for Lasso penalty hyperparameter tuning. Default is "min", the mini-
mizer of cross-validation error; users can also use "1se" for more sparse solu-

tions.
num_latent_factor

The principle component that lasso coefficient anchors at. The default is PC1 =

1.
local_environment

An environment for hyperparameters shared between folds.

verbose Print information to the console. Default is TRUE.

Value
A list of estimated nuisance quantities.

estimate_leading_pc

Leading principle components
estimate_mean_1

Sample mean for group 1
estimate_mean_2

Sample mean for group 1
estimate_lasso_beta

Logistic Lasso regression coefficients.

estimate_nuisance_pc 11

estimate_projection_direction
Anchored projection direction. It is similar to PC1 when signal is weak but
similar to estimate_optimal_direction when the signal is moderately large.

estimate_optimal_direction
Discriminant direction.

estimate_nuisance_pc The function for nuisance parameter estimation in simple_pc_testing()
and debiased_pc_testing().

Description

The function for nuisance parameter estimation in simple_pc_testing() and debiased_pc_testing().

Usage

estimate_nuisance_pc(
nuisance_sample_1,
nuisance_sample_2 = NULL,
pca_method = "sparse_pca”,
mean_method = "naive”,
num_latent_factor = 1,
local_environment = NA

Arguments

nuisance_sample_1
Group 1 sample. Each row is a subject and each column corresponds to a feature.

nuisance_sample_2
Group 2 sample. Each row is a subject and each column corresponds to a feature.

pca_method Methods used to estimate principle component The default is "sparse_pca", us-
ing sparse PCA from package PMA. Other choices are "dense_pca"—the regular
PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.

mean_method Methods used to estimate the mean vector. Default is sample mean "naive".
There is also a hard-thresholding sparse estiamtor "hard".

num_latent_factor
Number of principle to be estimated/tested. Default is 1.

local_environment
A environment for hyperparameters shared between folds.

12 evaluate_influence_function_multi_factor

Value
A list of estimated nuisance quantities.

estimate_leading_pc

Leading principle components
estimate_mean_1

Sample mean for group 1
estimate_mean_2

Sample mean for group 1
estimate_eigenvalue

Eigenvalue for each principle compoenent.
estimate_noise_variance

Noise variance, I need this to construct block-diagonal estimates of the covari-
ance matrix.

evaluate_influence_function_multi_factor
Calculate the test statistics on the left-out samples. Called in debi-
ased_pc_testing().

Description

Calculate the test statistics on the left-out samples. Called in debiased_pc_testing().

Usage

evaluate_influence_function_multi_factor(
cross_fitting_sample_1,
cross_fitting_sample_2 = NULL,
nuisance_collection,
num_latent_factor = 1

Arguments

cross_fitting_sample_1
Group 1 sample. Each row is a subject and each column corresponds to a feature.
cross_fitting_sample_2
Group 2 sample. Each row is a subject and each column corresponds to a feature.
nuisance_collection
A collection of nuisance quantities estimated using "nuisance" samples. It is the
output of estimate_nuisance_pc().
num_latent_factor
Number of principle components to be considered.

evaluate_pca_lasso_plug_in 13

Value

A list of test statistics.
inner_product_1

Simple inner products for sample 1.
inner_product_2

Simple inner products for sample 2.
influence_eigenvector_each_subject_1

Debiased test statistics, sample 1.
influence_eigenvector_each_subject_2

Debiased test statistics, sample 1.
for_variance_subject_1

Statistics for variance calculation, sample 1.

for_variance_subject_2
Statistics for variance calculation, sample 2.

evaluate_pca_lasso_plug_in
Calculate the test statistics on the left-out samples. Called in an-
chored_lasso_testing().

Description

Calculate the test statistics on the left-out samples. Called in anchored_lasso_testing().

Usage

evaluate_pca_lasso_plug_in(
cross_fitting_sample_1,
cross_fitting_sample_2,
nuisance_collection,
mean_method = "lasso”

Arguments

cross_fitting_sample_1

Group 1 sample. Each row is a subject and each column corresponds to a feature.
cross_fitting_sample_2

Group 2 sample. Each row is a subject and each column corresponds to a feature.
nuisance_collection

A collection of nuisance quantities estimated using "nuisance" samples. It is the

output of estimate_nuisance_pc().

mean_method Methods used to estimate the discriminant direction. Default is logistic Lasso
"lasso". Can also take value "lasso_no_truncation"

14 evaluate_pca_plug_in

Value

A list of test statistics.
influence_each_subject_1

Test statistics for sample 1.
influence_each_subject_1

Test statistics for sample 2.
for_variance_each_subject_1

Statistics for variance calculation, sample 1.
for_variance_each_subject_2

Statistics for variance calculation, sample 2.

evaluate_pca_plug_in Calculate the test statistics on the left-out samples. Called in sim-
ple_pc_testing().

Description

Calculate the test statistics on the left-out samples. Called in simple_pc_testing().

Usage

evaluate_pca_plug_in(
cross_fitting_sample_1,
cross_fitting_sample_2 = NULL,
nuisance_collection

Arguments

cross_fitting_sample_1

Group 1 sample. Each row is a subject and each column corresponds to a feature.
cross_fitting_sample_2

Group 2 sample. Each row is a subject and each column corresponds to a feature.
nuisance_collection

A collection of nuisance quantities estimated using "nuisance" samples. It is the

output of estimate_nuisance_pc().

Value

A list of test statistics.
influence_each_subject_1

Statistics for sample 1.
influence_each_subject_2

Statistics for sample 2.

extract_lasso_coef 15

extract_lasso_coef Extract the lasso estimate from the output of anchored_lasso_testing().

Description

Extract the lasso estimate from the output of anchored_lasso_testing().

Usage

extract_lasso_coef(testing_result)

Arguments

testing_result The output/test result list from anchored_lasso_testing().

Value

A list, whose elements are the estimated discriminant directions for each split—the length of the
output list is the same as n_folds.

The discriminant vectors for each split.

extract_pc Extract the principle components from the output of sim-
ple_pc_testing() and debiased_pc_testing().

Description

Extract the principle components from the output of simple_pc_testing() and debiased_pc_testing().

Usage

extract_pc(testing_result)

Arguments

testing_result The output/test result list from simple_pc_testing() or debiased_pc_testing().

Value

A list, whose elements are the estimated PC for each split—the length of the output list is the same
as n_folds.

The PC vectors for each split.

16 fit_lasso

fit_lasso Fit a (group) Lasso logistic regression classifier

Description

Performs Lasso or group Lasso logistic regression to distinguish between two groups of samples.

Usage

fit_lasso(
control_train,
treat_train,
lambda_type = c("lambda.min”, "lambda.lse"),

classifier_method = c("lasso"”, "group_lasso"),
group = NULL
)
Arguments

control_train A matrix or data frame for the control group. Rows are samples, columns are

features.

treat_train A matrix or data frame for the treatment group. Rows are samples, columns are
features.

lambda_type Character. Type of lambda to use from cross-validation. Options are "lambda.min”

(default) and "lambda. 1se”.
classifier_method
Character. Choice of classifier. "lasso” (default) or "group_lasso”.

group Optional grouping vector for group_lasso, same length as the number of columns
in the input data.

Details

The function fits a logistic regression using either glmnet for Lasso or grpreg for group Lasso. Co-
efficients are soft-thresholded by the maximum coefficient times n* (-1/3) where n is the effective
sample size.

Value

A numeric vector of estimated regression coefficients (excluding intercept), thresholded for small
values.

Examples

Not run:

X1 <- matrix(rnorm(100), nrow = 10)

X2 <- matrix(rnorm(100), nrow = 10)
fit_lasso(X1, X2, classifier_method = "lasso")

index_spliter 17

End(Not run)

index_spliter Split indices into folds

Description

Randomly splits a given vector of indices into approximately equal-sized folds.

Usage

index_spliter(array, n_folds = 5)

Arguments
array A vector of indices (e.g., 1:n) to be split into folds.
n_folds Integer. Number of folds. Default is 5.

Value

A list of length n_folds, each containing a subset of the shuffled indices.

Examples

index_spliter(1:10, n_folds = 3)

mean_comparison_anchor
High-dimensional two-sample mean comparison with anchored pro-
Jjection

Description

Performs a cross-validated, projection-based mean comparison between two high-dimensional groups
using sparse or dense PCA and (group) Lasso classifiers.

18 mean_comparison_anchor

Usage
mean_comparison_anchor(
control,
treatment,
pca_method = c("dense_pca”, "sparse_pca"),
classifier_method = c("lasso"”, "group_lasso"),
lambda_type = "lambda.l1se”,
n_folds = 10,
group = NULL,

standardize_feature = TRUE,
verbose = TRUE

)
Arguments
control A matrix or data frame for the control group. Rows are samples; columns are
features.
treatment A matrix or data frame for the treatment group. Rows are samples; columns are
features.
pca_method Character. Method for estimating the projection direction. Options are "dense_pca”

or "sparse_pca". Default is "sparse_pca”.

classifier_method
Character. Classifier to guide the projection. Options are "lasso” or "group_lasso”.
Default is "lasso”.

lambda_type Character. Regularization parameter choice in Lasso. Options are "1ambda.min"”
or "lambda. 1se”. Default is "lambda. 1se".

n_folds Integer. Number of cross-validation folds. Default is 10.

group Optional. A grouping vector (required for group_lasso), same length as the

number of columns in control.
standardize_feature

Logical. Whether to standardize features using pooled mean and standard devi-
ation. Default is TRUE.

verbose Logical. Whether to print messages during execution. Default is TRUE.

Details

This function applies a projection-based method for high-dimensional mean testing. The projection
direction is computed by anchoring the leading principal component with a regularized classifier
(Lasso or group Lasso), and test statistics are aggregated across folds.

Value

A list with:

p_value Two-sided p-value for the overall test.
test_statistic Standardized test statistic.

fold_data Per-fold results, including projections and scores.

normalize_and_split 19

See Also

process_fold_mean_diff, combine_folds_mean_diff, estimate_leading_pc, fit_lasso

Examples

Not run:

X <= matrix(rnorm(200 * 100), nrow = 100)

Y <- matrix(rnorm(200 * 100), nrow = 100)

result <- mean_comparison_anchor(X, Y, pca_method = "dense_pca"”, classifier_method = "lasso")

End(Not run)

normalize_and_split Normalize and split two datasets using pooled mean and standard de-
viation

Description
Combines two datasets, normalizes features using pooled mean and standard deviation, and returns
the normalized datasets separately.

Usage
normalize_and_split(df1, df2)

Arguments
df1 A data frame or matrix. Typically group 1.
df2 A data frame or matrix. Typically group 2.
Value

A list with elements:

dfl Normalized version of df1.

df2 Normalized version of df2.

Examples

set.seed(123)

df1 <- matrix(rnorm(20), nrow = 5)
df2 <- matrix(rnorm(20), nrow = 5)
normalize_and_split(df1, df2)

20

process_fold_mean_ditf

process_fold_mean_diff

Process one cross-validation fold for mean difference testing

Description

Computes the test statistic, variance, and projection direction for one fold in a cross-validated com-
parison of two groups.

Usage

process_fold_mean_diff(

fold_index,
control,
treatment,

control_split_index,
tr_split_index,

pca_method,

classifier_method,

lambda_type,

group,
verbose

Arguments

fold_index
control

treatment

Integer index of the current fold.
Matrix or data frame for the control group (rows = samples, columns = features).

Matrix or data frame for the treatment group (rows = samples, columns = fea-
tures).

control_split_index

A list of row indices for each fold of the control group.

tr_split_index A list of row indices for each fold of the treatment group.

pca_method

Character. PCA method to use. Options are "dense_pca" or "sparse_pca”.

classifier_method

lambda_type
group

verbose

Value

Character. Classifier method. Options are "lasso” or "group_lasso”.
Character. Lambda selection method. Options are "1lambda.min"” or "lambda. 1se".
Optional grouping vector for group lasso.

Logical. Whether to print progress messages.

A list containing the test statistic, its variance, scores for each group, the projection direction, and
intermediate quantities.

simple_pc_testing

21

simple_pc_testing

Simple plug-in test for two-sample mean comparison.

Description

Simple plug-in test

Usage

for two-sample mean comparison.

simple_pc_testing(

sample_1,

sample_2 = NULL,

pca_method = '
mean_method =

'sparse_pca”,
"naive”,

num_latent_factor = 1,

n_folds = 5,

verbose = TRUE

Arguments

sample_1
sample_2

pca_method

mean_method

Group 1 sample. Each row is a subject and each column corresponds to a feature.
Group 2 sample. Each row is a subject and each column corresponds to a feature.

Methods used to estimate principle component The default is "sparse_pca", us-
ing sparse PCA from package PMA. Other choices are "dense_pca"—the regular
PCA; and "hard"— hard-thresholding PCA, which also induces sparsity.

Methods used to estimate the mean vector. Default is sample mean "naive".
There is also a hard-thresholding sparse estiamtor "hard".

num_latent_factor

n_folds

verbose

Value

Number of principle to be estimated/tested. Default is 1.

Number of splits when performing cross-fitting. The default is 5, if computa-
tional time allows, you can try to set it to 10.

Print information to the console. Default is TRUE.

A list of test statistics.

test_statistics

standard_error

Test statistics. Each entry corresponds to the test result of one principle compo-
nent.

Estimated standard error of test_statistics_before_studentization.

test_statistics_before_studentization

split_data

Similar to test_statistics but does not have variance = 1.

Intermediate quantities needed for further assessment and interpretation of the
test results.

22 summarize_feature_name

Examples

sample_size_1 <- sample_size_2 <- 300

true_mean_1 <- matrix(c(rep(1, 10), rep(@, 90)), ncol = 1)
true_mean_2 <- matrix(c(rep(1.5, 10), rep(@, 90)), ncol = 1)
pcl <- c(rep(1, 10), rep(0@, 90))

pcl <- pcl/norm(pcl, type = '2")

simulation_covariance <- 10 * pcl %*% t(pcl)
simulation_covariance <- simulation_covariance + diag(1, 100)

sample_1 <- data.frame(MASS: :mvrnorm(sample_size_1,

mu = true_mean_1,

Sigma = simulation_covariance))
sample_2 <- data.frame(MASS: :mvrnorm(sample_size_2,

mu = true_mean_2,

Sigma = simulation_covariance))
result <- simple_pc_testing(sample_1, sample_2)
result$test_statistics
##these are test statistics. Each one of them corresponds to one PC.
summarize_pc_name(result, latent_fator_index = 1) #shows which features contribute to PC1
extract_pc(result) # extract the estimated leading PCs.

summarize_feature_name
Summarize the features (e.g. genes) that contribute to the test result,
i.e. those features consistently show up in Lasso vectors.

Description

Summarize the features (e.g. genes) that contribute to the test result, i.e. those features consistently
show up in Lasso vectors.

Usage

summarize_feature_name(testing_result, method = "majority voting")

Arguments

testing_result The output/test result list from anchored_lasso_testing().

method How to combine the feature list across different splits. Default is *majority
voting’—features that show up more than 50% of the splits are considered ac-
tive/useful. It can be "union’—all the features pooled together; or *intersection’—
only include features showing up in all splits.

summarize_pc_name 23

Value

A list of names of features (your very original input data need to have column names!) that con-
tribute to the test result. An empty list means there is barely any difference between the two groups.

Feature names that consistently showing up in the discriminant vectors.

summarize_pc_name Summarize the features (e.g. genes) that contribute to the test result,
i.e. those features consistently show up in the sparse principle compo-
nents.
Description

Summarize the features (e.g. genes) that contribute to the test result, i.e. those features consistently
show up in the sparse principle components.

Usage

summarize_pc_name(
testing_result,
latent_fator_index = 1,
method = "majority voting”

)

Arguments

testing_result The output/test result list from simple_pc_testing() or debiased_pc_testing().
latent_fator_index
Which principle component should the algorithm summarize? Default is PC1.
method How to combine the feature list across different splits. Default is *majority
voting’—features that show up more than 50% of the splits are considered ac-

tive/useful. It can be *union’—all the features pooled together; or *intersection’—
only include features showing up in all splits.

Value

A list of names of features (your very original input data need to have column names!) that con-
tribute to the test result.

Feature names that consistently showing up in the estimated PC vectors.

24 validate_and_convert_data

validate_and_convert_data
Validate and convert input data

Description

Checks whether the input is a matrix or data frame, and converts it to a matrix if valid.

Usage

validate_and_convert_data(data, name)

Arguments

data A matrix or data frame.

name A string used in error messages to identify the variable name.
Value

A numeric matrix.

Examples

validate_and_convert_data(data.frame(x = 1:3, y = 4:6), "example_data")

Index

anchored_lasso_testing, 2

check_data_for_folds, 4
check_non_null_and_identical_colnames,
4
collect_active_features_proj, 5,7
combine_folds_mean_diff, 6, /9
compute_predictive_contributions, 6

debiased_pc_testing, 7

estimate_leading_pc, 9, 19

estimate_nuisance_parameter_lasso, 9

estimate_nuisance_pc, 11

evaluate_influence_function_multi_factor,
12

evaluate_pca_lasso_plug_in, 13

evaluate_pca_plug_in, 14

extract_lasso_coef, 15

extract_pc, 15

fit_lasso, 16, 19
index_spliter, 17
mean_comparison_anchor, 17
normalize_and_split, 19
process_fold_mean_diff, 19, 20
simple_pc_testing, 21
summarize_feature_name, 22

summarize_pc_name, 23

validate_and_convert_data, 24

25

	anchored_lasso_testing
	check_data_for_folds
	check_non_null_and_identical_colnames
	collect_active_features_proj
	combine_folds_mean_diff
	compute_predictive_contributions
	debiased_pc_testing
	estimate_leading_pc
	estimate_nuisance_parameter_lasso
	estimate_nuisance_pc
	evaluate_influence_function_multi_factor
	evaluate_pca_lasso_plug_in
	evaluate_pca_plug_in
	extract_lasso_coef
	extract_pc
	fit_lasso
	index_spliter
	mean_comparison_anchor
	normalize_and_split
	process_fold_mean_diff
	simple_pc_testing
	summarize_feature_name
	summarize_pc_name
	validate_and_convert_data
	Index

