Package 'GPP'

January 20, 2025

Title Gaussian Process Projection

Version 0.1

Description Estimates a counterfactual using Gaussian process projection. It takes a dataframe, creates missingness in the desired outcome variable and estimates counterfactual values based on all information in the dataframe. The package writes Stan code, checks it for convergence and adds artificial noise to prevent overfitting and returns a plot of actual values and estimated counterfactual values using r-base plot.

Depends R (>= 3.5.0), methods, rstan, parallel

LazyData true

Encoding UTF-8

License GPL (>= 2)

RoxygenNote 7.1.1

NeedsCompilation no

Author Devin P. Brown [aut], David Carlson [aut, cre]

Maintainer David Carlson <carlson.david@wustl.edu>

Repository CRAN

Date/Publication 2020-11-27 10:20:06 UTC

Contents

autoConverge	2
GDPdata	3
GPP	4
plotGPPfit	6
unMod	8
writeMod	9

10

Index

autoConverge

Description

Return a converged Stan model fit and the recommended noise level.

Usage

```
autoConverge(
  df,
  controlVars,
  nUntreated,
 obvColName,
  obvName,
 outcomeName,
  starttime,
  timeColName,
  filepath = NULL,
  ncores = NULL,
  iter = 25000,
  epsilon = 0.02,
 noise = 0.1,
 printMod = FALSE,
 shift = 0.05
)
```

Arguments

df	The dataframe used for the model.
controlVars	String of column names for control variables.
nUntreated	The number of untreated units in the model.
obvColName	The column name that includes the observation subject to the counterfactual.
ob∨Name	The name of the observation subject to the counterfactual.
outcomeName	The outcome variable of interest.
starttime	The start time of the counterfactual estimation.
timeColName	The name of the column that includes the time variable.
filepath	Your preferred place to save the fit data. See Details.
ncores	The number of cores to be used to run the model. Default of NULL will utilize all cores.
iter	Preferred number of iterations. See details.
epsilon	The desired level of convergence, i.e. how close to the 0.95 coverage is acceptable.

GDPdata

noise	The baseline level of noise to be added to the model to prevent overfit. Updates as the model runs.
printMod	Boolean. Defaults FALSE. If TRUE, prints the model block for the run to the console. See details.
shift	The magnitude of adjustment for the noise level per iteration. Defaults to 0.05.

Details

We recommend creating a new folder for the file path since the Stan fit creates a large number of files at runtime.

For iterations, check that your model converged (we recommend all r-hats close to 1 and examining traceplots).

We recommend keeping printMod as FALSE, otherwise, the function will write the model to the console for every model run on the convergence.

We also recommend using all cores on your machine to speed up model run time. If you are unsure about the number of cores in your machine, see doParallel::detectCores().

Value

The recommended noise level after convergence.

Author(s)

Devin P. Brown <devinpbrown96@gmail.com> and David Carlson <carlson.david@wustl.edu>

See Also

plotGPPfit runMod GPP writeMod

GDPdata

1960-2003 GDP dataset

Description

An example dataset for using GPP to estimate the counterfactual GDP of West Germany assuming no reunification.

Usage

GDPdata

4

Format

A data frame with 748 rows and 14 columns. For detailed explanations of the exact measures, see https://www.dropbox.com/s/n1bvqb54xrw8vyj/GPSynth.pdf?dl=0: index country year gdp infrate trade schooling invest60 invest70 invest80 industry invest school ind See Also

GPP plotGPPfit writeMod runMod autoConverge

GPP

Estimates a counterfactual with uncertainty using Gaussian process projection

Description

Returns a list of a plot object (after making the plot) of estimated counterfactual values after checking for model convergence and adjusting the noise level, and returns the fitted model.

Usage

GPP(
 df,
 controlVars,
 nUntreated,
 obvColName,
 obvName,
 outcomeName,
 starttime,
 timeColName,

```
ncores = NULL,
epsilon = 0.02,
noise = 0.1,
printMod = FALSE,
shift = 0.05,
iter = 25000,
filepath = NULL,
legendLoc = "topleft",
xlabel = NULL,
ylabel = NULL,
actualdatacol = "black",
preddatacol = "red",
...
```

Arguments

df	The dataframe used for the model.
controlVars	String of column names for control variables.
nUntreated	The number of untreated units in the model.
obvColName	The column name that includes the observation subject to the counterfactual.
obvName	The name of the observation subject to the counterfactual.
outcomeName	The outcome variable of interest.
starttime	The start year of the counterfactual estimation.
timeColName	The name of the column that includes the time variable.
ncores	The number of cores to be used to run the model. See details.
epsilon	The desired level of convergence.
noise	The baseline level of noise to be added to the model to prevent overfit. Updates as the model runs.
printMod	Boolean. Defaults FALSE. If TRUE, prints each model block to the console. See details.
shift	The magnitude of adjustment for the noise level per iteration. Defaults to 0.05.
iter	The number of iterations you would like to run. Defaults to 25,000. See details.
filepath	Your preferred place to save the fit data. See Details.
legendLoc	The preferred location of the legend in the final graph. Defaults to "topleft".
xlabel	The label of the x-axis in the final graph. Defaults to input for 'timeColName'.
ylabel	The preferred label of the y-axis in the final graph. Defaults to input for 'out-comeName'.
actualdatacol	The preferred color for plotted line for actual data. Defaults to black.
preddatacol	The preferred color for plotted line for predicted counterfactual data. Defaults to red.
	Further parameters passed to the plot function.

GPP

Details

We recommend using all cores on your machine to speed up model run time. If you are unsure about the number of cores in your machine, see parallel::detectCores().

We recommend keeping printMod as FALSE, otherwise, the function will write the model to the console for every model run on the convergence.

For iterations, check that your model converged (we recommend all r-hats close to 1 and examining traceplots).

We recommend creating a new folder for the file path since the Stan fit creates a large number of files at runtime.

Value

A plot of the actual values and the estimated counterfactual values of the model, and the final model fit.

Author(s)

Devin P. Brown <devinpbrown96@gmail.com> and David Carlson <carlson.david@wustl.edu>

See Also

plotGPPfit writeMod runMod autoConverge

Examples

```
data(GDPdata)
out = GPP(df = GDPdata,
    controlVars = c('invest', 'school', 'ind'),
    nUntreated = length(unique(GDPdata$country))-1,
    obvColName = 'country', obvName = 'West Germany',
    outcomeName = 'gdp', starttime = 1989,
    timeColName = 'year',
    ncores = 2)
```

plotGPPfit

Plots results of a (converged) model, with true and projected values.

Description

Takes the results of a Gaussian Process Projection fit and generates a linear plot of the actual and predicted counterfactual values

plotGPPfit

Usage

```
plotGPPfit(
   fit,
   df,
   obvColName,
   obvName,
   outcomeName,
   starttime,
   timeColName,
   legendLoc = "topleft",
   xlabel = NULL,
   ylabel = NULL,
   actualdatacol = "black",
   preddatacol = "red",
   ...
)
```

Arguments

fit	The fit results of the GPP stan model.
df	The dataframe used in your model.
obvColName	The column name that includes your observation of interest. Must be a string.
obvName	The name of the specific observation of interest. Must be a string.
outcomeName	The explanatory variable that is subjected to the counterfactual claim.
starttime	The start time of the treatment effect.
timeColName	The name of the column that includes your time variable.
legendLoc	The preferred location of the legend in the final graph. Defaults to "topleft".
xlabel	The label of the x-axis in the final graph. Defaults to input for 'timeColName'.
ylabel	The preferred label of the y-axis in the final graph. Defaults to input for 'out-comeName'.
actualdatacol	The preferred color for plotted line for actual data. Defaults to black.
preddatacol	The preferred color for plotted line for predicted counterfactual data. Defaults to red.
	Further graphical parameters.

Value

A plot built in r-base

Author(s)

Devin P. Brown <devinpbrown96@gmail.com> and David Carlson <carlson.david@wustl.edu>

See Also

autoConverge GPP runMod writeMod

runMod

Description

Returns a fit of the Stan model for all observations.

Usage

```
runMod(modText, dataBloc, unit, iter = 25000, filepath = NULL)
```

Arguments

modText	This is the string that contains your Stan code. Can be written with writeMod.
dataBloc	This is the data that you pass to the Stan code. It is automatically generated when you run autoConverge.
unit	The unit of observation to project.
iter	The number of iterations you would like to run. Defaults to 25,000.
filepath	Your preferred place to save the fit data. See Details.

Details

For iterations, check that your model converged (we recommend all r-hats close to 1 and examining traceplots).

We recommend creating a new folder for the file path since the Stan fit creates a large number of files at runtime.

Value

The fit for the GPP counterfactual Stan model.

Author(s)

Devin P. Brown <devinpbrown96@gmail.com> and David Carlson <carlson.david@wustl.edu>

See Also

plotGPPfit writeMod GPP autoConverge

writeMod

Description

Returns string of Stan code that can be run to estimate the GPP.

Usage

```
writeMod(noise, ncov, printMod = FALSE)
```

Arguments

noise	The desired amount of artificial noise to add to the model.
ncov	The number of covariates to include in the model.
printMod	Boolean. Defaults FALSE. If TRUE, prints each model block to the console. See details.

Details

We recommend keeping printMod as FALSE, otherwise, the function will write the model to the console for every model run on the convergence.

Value

A string of Stan code that can be run with runMod

Author(s)

Devin P. Brown <devinpbrown96@gmail.com> and David Carlson <carlson.david@wustl.edu>

See Also

plotGPPfit runMod GPP autoConverge

Examples

writeMod(noise = 0.25, ncov = 2)

Index

* datasets GDPdata, 3 autoConverge, 2, 4, 6-9 autoConverge, ANY-method (autoConverge), 2 GDPdata, 3 GPP, 3, 4, 4, 7-9 GPP, ANY-method (GPP), 4

plotGPPfit, 3, 4, 6, 6, 8, 9
plotGPPfit, ANY-method (plotGPPfit), 6

runMod, 3, 4, 6, 7, 8, 9
runMod, ANY-method (runMod), 8

writeMod, 3, 4, 6-8, 9
writeMod, ANY-method (writeMod), 9