Package ‘GMPro’

January 20, 2025
Type Package
Title Graph Matching with Degree Profiles
Version 0.1.0

Author Yaofang Hu [aut, cre],
Wanjie Wang [aut],
Yi Yu [aut]

Maintainer Yaofang Hu <yaofang.hu@u.nus.edu>

Description Functions for graph matching via nodes' degree profiles are provided in this pack-
age. The models we can handle include Erdos-Renyi random graphs and stochastic block mod-
els(SBM). More details are in the reference paper: Yaofang Hu, Wan-
jie Wang and Yi Yu (2020) <arXiv:2006.03284>.

Imports combinat, stats, transport, igraph
License GPL-2

Encoding UTF-8

LazyData true

URL https://arxiv.org/abs/2006.03284
RoxygenNote 7.1.0

Suggests testthat

NeedsCompilation no

Repository CRAN

Date/Publication 2020-06-25 14:00:02 UTC

Contents

DPdistance e e e
DPedge e

DP_SBM

https://arxiv.org/abs/2006.03284
https://arxiv.org/abs/2006.03284

2 DPdistance

Index 13

DPdistance calculate degree profile distances between 2 graphs.

Description

This function constructs empirical distributions of degree profiles for each vertex and then calculate
distances between each pair of vertices, one from graph A and the other from graph B. The default
distance used is the 1-Wasserstein distance.

Usage
DPdistance(A, B, fun = NULL)

Arguments

A,B Two 0/1 adjacency matrices.

fun Optional function that computes distance between two distributions.
Value

A distance matrix. Rows represent nodes in graph A and columns represent nodes in graph B. Its (i,
Jj) element is the distance between i € A and i € B.

Examples

set.seed(2020)

n=10; q=1/2; s=1; p =1

Parent = matrix(rbinom(n*n, 1, q), nrow = n, ncol = n)
Parent[lower.tri(Parent)] = t(Parent)[lower.tri(Parent)]
diag(Parent) <- 0

Generate graph A

dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]

A1 = Parentx*dA

tmp = rbinom(n, 1, p)

n.A = length(which(tmp == 1))

indA = sample(1:n, n.A, replace = FALSE)

A = A1[indA, indA]

Generate graph B

dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]

B1 = ParentxdB

tmp = rbinom(n, 1, p)

n.B = length(which(tmp == 1))

indB = sample(1:n, n.B, replace = FALSE)

B = B1[indB, indB]

DPdistance(A, B)

DPedge 3

DPedge The edge-exploited version of DPmatching.

Description

This functions is based on DPmatching. Instead of allowing each vertex in A to connect to one and
only one vertex in B, here by introducing parameter d, this function allows for d edges for each
vertex in A. More details are in DPmatching.

Usage
DPedge(A = NULL, B = NULL, d, W = NULL)

Arguments
A,B Two symmetric 0/1 addjacency matrices.
d A positive integer, indicating the number of candidate matching.
W A distance matrix between A and B. This argumnet can be null. If W is null, A and
B cannot be null.
Value
Dist The distance matrix between two graphs.
Z An indicator matrix. Entry Z; ; = 1 indicates a matching between node i in
graph A and node j in graph B, 0 otherwise.
Examples

set.seed(2020)

n=10; q=1/2; s=1; p =
Parent = matrix(rbinom(n*n,
Parent[lower.tri(Parent)] =
diag(Parent) <- 0

Generate graph A

dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]

A1 = ParentxdA

tmp = rbinom(n, 1, p)

n.A = length(which(tmp == 1))

indA = sample(1:n, n.A, replace = FALSE)

A = A1[indA, indA]

Generate graph B

dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]

B1 = ParentxdB

tmp = rbinom(n, 1, p)

n.B = length(which(tmp == 1))

indB = sample(1:n, n.B, replace = FALSE)

g), nrow = n, ncol =n)

1
1,
t(Parent)[lower.tri(Parent)]

4 DPmatching

B = B1[indB, indB]
DPmatching(A, B)

W = DPdistance(A, B)
DPedge(A, B, d = 5)

DPmatching calculate degree profile distances between two graphs and match
nodes.

Description

This function constructs empirical distributions of degree profiles for each vertex and then calculate
distances between each pair of vertices, one from graph A and the other from graph B. The default
used is the 1-Wasserstein distance. This function also matches vertices in A with vertices in B via
the distance matrix between A and B. The distance matrix can be null and DPmatching will calculate
it. A and B cannot be null when the distance matrix is null.

Usage
DPmatching(A, B, W = NULL)

Arguments
A, B Two 0/1 adjacency matrices.
W A distance matrix between A and B, which can be null. If null, this function will
calculate it. More details in DPdistance.
Value
Dist The distance matrix between two graphs.
match A vector containing matching results.
Examples

set.seed(2020)

n=10; q=1/2; s =1; p =1

Parent = matrix(rbinom(n*n, 1, q), nrow = n, ncol = n)
Parent[lower.tri(Parent)] = t(Parent)[lower.tri(Parent)]
diag(Parent) <- 0

Generate graph A

dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]

A1 = Parent*dA

tmp = rbinom(n, 1, p)

n.A = length(which(tmp == 1))

indA = sample(1:n, n.A, replace = FALSE)

A = Al1[indA, indA]

Generate graph B

dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n);

DP_SBM 5

dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]
B1 = ParentxdB

tmp = rbinom(n, 1, p)

n.B = length(which(tmp == 1))

indB = sample(1:n, n.B, replace = FALSE)
B = B1[indB, indB]

DPmatching(A, B)

W = DPdistance(A, B)

DPmatching(A, B, W)

DP_SBM Degree profile graph matching with community detection.

Description

Given two community-structured networks, this function first applies a spectral clustering method
SCORE to detect perceivable communities and then applies DPmatching or EEpost to match differ-
ent communities. More details are in SCORE, DPmatching and EEpost.

Usage
DP_SBM(
A,
B,
K,
fun = c("DPmatching”, "EEpost"),
rep = NULL,
tau = NULL,
d = NULL
)
Arguments
A, B Two 0/1 addjacency matrices.
K A positive integer, the number of communities in A and B.
fun A graph matching algorithm. Choices include DPmatching and EEpost.
rep A parameter if choosing EEpost as the initial graph matching algorithm.
tau Optional parameter if choosing EEpost as the initial graph matching algorithm.
The default value is rep/10.
d Optional parameter if choosing EEpost as the initial graph matching algorithm.
The default value is 1.
Details

The graphs to be matched are expected to have community structures. The result is the collection
of all possible permutations on {1, . ..,K3}.

6 EEpost

Value

A list of matching results for all possible permutations on {1, . ..,K}.

Examples

#i## Here we use graphs under stochastic block model (SBM).
set.seed(2020)
K=2;,n=30;, s=1;
P = matrix(c(1/2, 1/4, 1/4, 1/2), byrow = TRUE, nrow = K)
define community label matrix Pi
distribution = c(1, 2);
1 = sample(distribution, n, replace=TRUE, prob = c(1/2, 1/2))
Pi = matrix(@, n, 2) # label matrix
for (i in 1:n){

Pi[i, 1[i1] =1

}
define the expectation of the parent graph's adjacency matrix
Omega = Pi %*% P %x% t(Pi)
construct the parent graph G
G = matrix(runif(n*n, @, 1), nrow = n)
G = G - Omega
temp = G
G[which(temp >0)] = @
G[which(temp <=0)] = 1
diag(G) = 0@
G[lower.tri(G)] = t(G)[lower.tri(G)1;
Sample Graphs Generation
generate graph A from G
dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]
A1 = G*dA
indA = sample(1:n, n, replace = FALSE)
labelA = 1[indA]
A = A1[indA, indA]
similarly, generate graph B from G
dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]
B1 = GxdB
indB = sample(1:n, n, replace = FALSE)
labelB = 1[indB]
B = B1[indB, indB]
DP_SBM(A = A, B = B, K = 2, fun = "EEpost”, rep = 10, d = 3)

EEpost Post-processing step for edge-exploited graph matching.

EEpost

Description

Funtions DPmatching or DPedge can produce a preliminary graph matching result. This function,
EEPost works on refining the result iteratively. In addition, EEpost is able to provide a convergence
indicator vector FLAG for each matching as a reference for the certainty about the matching since
in practice,it has been observed that the true matches usually reach the convergence and stay the
same after a few iterations, while the false matches may keep changing in the iterations.

Usage

EEpost(W = NULL

Arguments

W
A, B
rep

tau

matching

Details

, A, B, rep, tau = NULL, d = NULL, matching = NULL)

A distance matrix.

Two 0/1 adjacency matrices.

A positive integer, indicating the number of iterations.
A positive threshold. The default value is rep/10.

A positive integer, indicating the number of candidate matching. The default
value is 1.

A preliminary matching result for EEpost. If matching is null, EEpost will
apply DPedge accordingly to generate the initial matching.

Similar to function EEpre, EEpost uses maximum bipartite matching to maximize the number of
common neighbours for the matched vertices with the knowledge of a preliminary matching result
by defining the similarity between i € A and j € B as the number of common neighbours between
1 and 7 according to the preliminary matching. Then, given a matching result II;, post processing
step is to seek a refinement II;; satisfying II;;1 € argmax (II, AII; B), where II is a permutation
matrix of dimension (n4,ng).

Value
Dist
match

FLAG

converged.match

converged.size

The distance matrix between two graphs.
A vector containing matching results.

An indicator vector indicating whether the matching result is converged. O for
No and 1 for Yes.

Converged match result. NA indicates the matching result for a certain node is
not v=convergent.

The number of converged nodes.

8 EEpre

Examples

set.seed(2020)

n=10;p=1; q=1/2; s =1
Parent = matrix(rbinom(n*n, 1, q), nrow = n, ncol = n)
Parent[lower.tri(Parent)] = t(Parent)[lower.tri(Parent)]
diag(Parent) <- @

Generate graph A

dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]

A1l = ParentxdA;

tmp = rbinom(n, 1, p)

n.A = length(which(tmp == 1))

indA = sample(1:n, n.A, replace = FALSE)

A = Al1[indA, indA]

Generate graph B

dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]

B1 = ParentxdB

tmp = rbinom(n, 1, p)

n.B = length(which(tmp == 1))

indB = sample(1:n, n.B, replace = FALSE)

B = B1[indB, indB]

matchingl= DPmatching(A, B)$Dist
EEpost(A = A, B =B, rep = 10, d
EEpost(A = A, B =B, rep = 10, d

5)
5, matching = matchingl)

EEpre Edge exploited degree profile graph matching with preprocessing.

Description
This function uses seeds to compute edge-exploited matching results. Seeds are nodes with high
degrees. EEpre uses seeds to extend the matching of seeds to the matching of all nodes.

Usage

EEpre(A, B, d, seed = NULL, AB_dist = NULL)

Arguments
A,B Two 0/1 addjacency matrices.
d A positive integer, indicating the number of candicate matching.
seed A matrix indicating pair of seeds. seed can be null.
AB_dist A nonnegative distance matrix, which can be null. If AB_dist is null, EEpre

will apply DPdistance to find it.

EE _SBM 9

Details

The high degree vertices have many neighbours and enjoy ample information for a successful
matching. Thereforem, this function employ these high degree vertices to match other nodes. If
the information of seeds is unavailable, EEpre will conduct a grid search grid search to find the
optimal collection of seeds. These vertices are expected to have high degress and their distances are
supposed to be the smallest among the pairs in consideration.

Value
Dist The distance matrix between two graphs
z An indicator matrix. Entry Z; ; = 1 indicates a matching between node ¢ € A
and node j € B, 0 otherwise.
Examples

set.seed(2020)

n=10;p =1; q=1/2; s =1

Parent = matrix(rbinom(n*n, 1, q), nrow = n, ncol = n)
Parent[lower.tri(Parent)] = t(Parent)[lower.tri(Parent)]
diag(Parent) <- 0

Generate graph A

dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]

A1 = ParentxdA;

tmp = rbinom(n, 1, p)

n.A = length(which(tmp == 1))

indA = sample(1:n, n.A, replace = FALSE)

A = Al1[indA, indA]

Generate graph B

dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]

B1 = ParentxdB

tmp = rbinom(n, 1, p)

n.B = length(which(tmp == 1))

indB = sample(1:n, n.B, replace = FALSE)

B = B1[indB, indB]

EEpre(A = A, B =B, d = 5)

EE_SBM Edge exploited degree profile graph matching with community detec-
tion.

Description

Given two community-structured networks, this function first applies a spectral clustering method
SCORE to detect perceivable communities and then applies a certain graph matching method to
match different communities.

10 EE _SBM

Usage
EE_SBM(
A,
B,
K,
fun = c("DPmatching”, "EEpost"),
rep = NULL,
tau = NULL,
d = NULL
)
Arguments
A,B Two 0/1 addjacency matrices.
K A positive integer, indicating the number of communities in A and B.
fun A graph matching algorithm. Choices include DPmatching and EEpost.
rep Optional parameter if EEpost is the initial graph matching algorithm.
tau Optional parameter if EEpost is the initial graph matching algorithm. The de-
fault value is rep/10.
d Optional parameter if EEpost is the initial graph matching algorithm. The de-
fault value is 1.
Details

EE_SBM can be regarded as a post processing version of DP_SBM using EEpost.

Value
match A vector containing matching results.
FLAG An indicator vector indicating whether the matching result is converged, 0 for
No and 1 for Yes.
Examples

Here we use graphs under stochastic block model (SBM).
set.seed(2020)
K=2; n=30; s =1;
P = matrix(c(1/2, 1/4, 1/4, 1/2), byrow = TRUE, nrow = K)
define community label matrix Pi
distribution = c(1, 2);
1 = sample(distribution, n, replace=TRUE, prob = c(1/2, 1/2))
Pi = matrix(@, n, 2) # label matrix
for (i in 1:n){

Pifi, 1[i1] =1

}
define the expectation of the parent graph's adjacency matrix
Omega = Pi %*% P %x% t(Pi)
construct the parent graph G

SCORE 11

G = matrix(runif(n*n, @, 1), nrow = n)

G = G - Omega

temp = G

G[which(temp >0)] = @

GLwhich(temp <=0)] = 1

diag(G) = 0@

G[lower.tri(G)] = t(G)[lower.tri(G)1;

Sample Graphs Generation

generate graph A from G

dA = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dA[lower.tri(dA)] = t(dA)[lower.tri(dA)]

A1l = G*dA

indA = sample(1:n, n, replace = FALSE)

labelA = 1[indA]

A = A1[indA, indA]

similarly, generate graph B from G

dB = matrix(rbinom(n*n, 1, s), nrow = n, ncol=n)
dB[lower.tri(dB)] = t(dB)[lower.tri(dB)]

B1 = GxdB

indB = sample(1:n, n, replace = FALSE)

labelB = 1[indB]

B = B1[indB, indB]

EE_SBM(A = A, B = B, K =2, fun = "EEpost”, rep = 10, d = 3)

SCORE Spectral Clustering On Ratios-of-Eigenvectors.

Description

Using ratios-of-eigenvectors to detect underlying communities.

Usage
SCORE(G, K, itermax = NULL, startn = NULL)

Arguments
G A 0/1 adjacency matrix.
K A positive integer, indictaing the number of underlying communities in graph G.
itermax k-means parameter, indicating the maximum number of iterations allowed. The
default value is 100.
startn k-means parameter. If centers is a number, how many random sets should be
chosen? The default value is 10.
Details

SCORE is fully established in Fast community detection by SCORE of Jin (2015). SCORE uses the
entry-wise ratios between the first leading eigenvector and each of the other leading eigenvectors
for clustering.

12 SCORE

Value

A label vector.

References

Jin, J. (2015) Fast community detection by score, The Annals of Statistics 43 (1), 57-89
https://projecteuclid.org/euclid.aos/1416322036

Examples

set.seed(2020)
n=10; K=2
P = matrix(c(1/2, 1/4, 1/4, 1/2), byrow = TRUE, nrow = K)
distribution = c(1, 2)
1 = sample(distribution, n, replace=TRUE, prob = c(1/2, 1/2))
Pi = matrix(@, n, 2)
for (i in 1:n){
Pifi, 1[il] =1
}
define the expectation of the parent graph's adjacency matrix
Omega = Pi %*% P %x% t(Pi)
construct the parent graph G
G = matrix(runif(n*n, @, 1), nrow = n)
G = G - Omega
temp = G
G[which(temp >0)] = @
G[which(temp <=0)] =1
diag(G) = @
G[lower.tri(G)] = t(G)[lower.tri(G)]
SCORE(G, 2)

https://projecteuclid.org/euclid.aos/1416322036

Index

DP_SBM, 5
DPdistance, 2
DPedge, 3
DPmatching, 4

EE_SBM, 9
EEpost, 6
EEpre, 8

SCORE, 11

13

	DPdistance
	DPedge
	DPmatching
	DP_SBM
	EEpost
	EEpre
	EE_SBM
	SCORE
	Index

