Package 'smoppix'

June 30, 2025

Version 1.0.0 **Description** Test for univariate and bivariate spatial patterns in spatial omics data with single-molecule resolution. The tests implemented allow for analysis of nested designs and are automatically calibrated to different biological specimens. Tests for aggregation, colocalization, gradients and vicinity to cell edge or centroid are provided. License GPL-2 **Encoding UTF-8** Imports spatstat.geom(>= 3.2.0), spatstat.random, methods, BiocParallel, Summarized Experiment, Spatial Experiment, scam, Rdpack, stats, utils, extra Dist (>= 1.0.11), Matrix, spatstat.model, openxlsx **Suggests** testthat,rmarkdown,knitr,DropletUtils,polyCub,RImageJROI,sp,ape,htmltools,funkycells,glmnet,doParallel RdMacros Rdpack RoxygenNote 7.3.2 biocViews Transcriptomics, Spatial, SingleCell **Depends** R (>= 4.4.0) VignetteBuilder knitr BugReports https://github.com/sthawinke/smoppix/issues URL https://github.com/sthawinke/smoppix LinkingTo Rcpp git_url https://git.bioconductor.org/packages/smoppix git_branch RELEASE_3_21 git_last_commit e7efe1c

Title Analyze Single Molecule Spatial Omics Data Using the

Type Package

Probabilistic Index

git_last_commit_date 2025-04-15 Repository Bioconductor 3.21 2 Contents

Date/Publication 2025-06-29

Author Stijn Hawinkel [cre, aut] (ORCID:

<https://orcid.org/0000-0002-4501-5180>)

Maintainer Stijn Hawinkel <stijn.hawinkel@psb.ugent.be>

Contents

	3
	5
	6
	7
	8
	9
71	0
buildMoransIDataFrame	2
	2
	3
	4
	5
	6
	6
	7
ϵ	7
	8
TI	8
6	9
	20
	22
	25
	26
	27
T	27
	28
	9
	2
6	32
6 6	3
	4
	4
	5
	5
loadBalanceBplapply	6
makeDesignVar	6
	7
	7
named.contr.sum	8
	0

addCell 3

plotCells																																		
plotExplore .																																		. 4
plotTopResults																																		. 4
plotWf																																		. 4
smoppix																																		. 4
$splitWindow \ . \\$. 4
writeToXlsx .																																		. 4
Yang																																		. 4
																																		4
	plotExplore . plotTopResults plotWf smoppix splitWindow . subSampleP . sund writeToXlsx .	plotExplore plotTopResults smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults	plotExplore	plotExplore	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf	plotExplore plotTopResults plotWf	plotExplore plotTopResults plotWf	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx	plotCells plotExplore plotTopResults plotWf smoppix splitWindow subSampleP sund writeToXlsx Yang				

addCell

Add cell boundaries and event-wise cell identifiers to a hyperframe.

Description

Add the list of the cells and their centroids in the hyperframe, check in which cell each event lies and add a cell marker.

Usage

```
addCell(
  hypFrame,
  owins,
  cellTypes = NULL,
  findOverlappingOwins = FALSE,
  warnOut = TRUE,
  coords = c("x", "y"),
  verbose = TRUE,
  addCellMarkers = TRUE,
  overwriteCells = FALSE,
  ...
)
```

Arguments

hypFrame	A hyperframe
owins	A list containing a list of owins per point pattern. The length of the list must match the length of the hyperframe, and the names must match. Also lists of geojson objects, coordinate matrices or rois are accepted, see details.
cellTypes	A dataframe of cell types and other cell-associated covariates. If supplied, it must contain a variable 'cell' that is matched with the names of the owins
findOverlapping	Owins
	a boolean, should windows be checked for overlap? Can be computationally intensive.

4 addCell

a boolean, should warning be issued when points are not contained in window?

The names of the coordinates, if the windows are given as sets of coordinates.

A boolean, should verbose output be printed?

A boolean, should cell identities be added? Set this to FALSE if cell identifiers are already present in the data, and you only want to add windows and centroids.

A boolean, should cells already present in hyperframe be overwritten?

Further arguments passed onto convertToOwins

Details

First the different cells are checked for overlap per point pattern if 'findOverlappingOwins' is TRUE. If no overlap is found, each event is assigned the cell that it falls into. Events not belonging to any cell will trigger a warning and be assigned 'NA'. Cell types and other variables are added to the marks if applicable. This function employs multithreading through the BiocParallel package. If this leads to excessive memory usage and crashes, try serial processing by setting register(SerialParam()). Different formats of windows are allowed, if the corresponding packages are installed. A dataframe of coordinates or a list of spatstat.geom owins is always allowed, as the necessary packages are required by smoppix. A 'SpatialPolygonsDataFrame' object is allowed if the 'polycub' package is installed, and a list of 'ijroi' object or a single 'ijzip' object if the 'RImageJROI' package is installed.

Value

The hyperframe with cell labels added in the marks of the point patterns

Note

By default, overlap between windows is not checked. Events are assigned to the first window they fall in. If you are not sure of the quality of the segmentation, do check your input or set checkOverlap to TRUE, even when this make take time.

See Also

buildHyperFrame, convertToOwins

Examples

```
library(spatstat.random)
set.seed(54321)
n <- 1e3 # number of molecules
ng <- 25 # number of genes
nfov <- 3 # Number of fields of view
conditions <- 3
# sample xy-coordinates in [0, 1]
x <- runif(n)
y <- runif(n)
# assign each molecule to some gene-cell pair
gs <- paste0("gene", seq(ng))
gene <- sample(gs, n, TRUE)</pre>
```

addDesign 5

```
fov <- sample(nfov, n, TRUE)</pre>
condition <- sample(conditions, n, TRUE)</pre>
# construct data.frame of molecule coordinates
df <- data.frame(gene, x, y, fov, "condition" = condition)</pre>
# A list of point patterns
listPPP <- tapply(seq(nrow(df)), df$fov, function(i) {</pre>
    ppp(x = df$x[i], y = df$y[i], marks = df[i, "gene", drop = FALSE])
}, simplify = FALSE)
# Regions of interest (roi): Diamond in the center plus four triangles
w1 \leftarrow owin(poly = list(x = c(0, .5, 1, .5), y = c(.5, 0, .5, 1)))
w2 \leftarrow owin(poly = list(x = c(0, 0, .5), y = c(.5, 0, 0)))
w3 \leftarrow owin(poly = list(x = c(0, 0, .5), y = c(1, 0.5, 1)))
w4 \leftarrow owin(poly = list(x = c(1, 1, .5), y = c(0.5, 1, 1)))
w5 \leftarrow owin(poly = list(x = c(1, 1, .5), y = c(0, 0.5, 0)))
hypFrame <- buildHyperFrame(df,</pre>
    coordVars = c("x", "y"),
    imageVars = c("condition", "fov")
)
nDesignFactors <- length(unique(hypFrame$image))</pre>
wList <- lapply(seq_len(nDesignFactors), function(x) {</pre>
    list("w1" = w1, "w2" = w2, "w3" = w3, "w4" = w4, "w5" = w5)
names(wList) <- rownames(hypFrame) # Matching names is necessary</pre>
hypFrame2 <- addCell(hypFrame, wList)</pre>
```

addDesign

Add design variables to hyperframe

Description

Add design variables to hyperframe

Usage

```
addDesign(hypFrame, desMat, designVec)
```

Arguments

hypFrame The hyperframe desMat The design matrix designVec The design vector

Value

The hyperframe with design variables added

6 addNuclei

addNuclei	Add nuclei to a hyperframe
-----------	----------------------------

Description

Add the nuclei identifiers to a hyperframe already containing cells.

Usage

```
addNuclei(
  hypFrame,
  nucleiList,
  checkSubset = TRUE,
  verbose = TRUE,
  coords = c("x", "y"),
  overwriteNuclei = FALSE,
  ...
)
```

Arguments

hypFrame A hyperframe

nucleiList A list containing a list of owins per point pattern. The length of the list must match the length of the hyperframe, and the names must match. Also lists of geojson objects, coordinate matrices or rois are accepted, see addCell

checkSubset A boolean, should be checked whether nuclei are encompassed by cells?

verbose A boolean, should verbose output be printed?

coords The names of the coordinates, if the nuclei are given as sets of coordinates.

overwriteNuclei

A boolean, should existing nuclei be replaced?

Further arguments passed onto convertToOwins

Details

The nuclei names must match the cell names already present, all other nuclei are dropped. A warning is issued when nuclei are not encompassed by their cell.

Value

The hyperframe with nuclei added as entry

See Also

```
addCell, convertToOwins
```

addTabObs 7

Examples

```
library(spatstat.random)
set.seed(54321)
n <- 1e3 # number of molecules
ng <- 25 # number of genes
nfov <- 3 # Number of fields of view
conditions <- 3
# sample xy-coordinates in [0, 1]
x <- runif(n)</pre>
y <- runif(n)
# assign each molecule to some gene-cell pair
gs <- paste0("gene", seq(ng))
gene <- sample(gs, n, TRUE)</pre>
fov <- sample(nfov, n, TRUE)</pre>
condition <- sample(conditions, n, TRUE)</pre>
# construct data.frame of molecule coordinates
df <- data.frame(gene, x, y, fov, "condition" = condition)</pre>
# A list of point patterns
listPPP <- tapply(seq(nrow(df)), df$fov, function(i) {</pre>
    ppp(x = df$x[i], y = df$y[i], marks = df[i, "gene", drop = FALSE])
}, simplify = FALSE)
# Regions of interest (roi): Diamond in the center plus four triangles
w1 \leftarrow owin(poly = list(x = c(0, .5, 1, .5), y = c(.5, 0, .5, 1)))
w2 \leftarrow owin(poly = list(x = c(0, 0, .5), y = c(.5, 0, 0)))
w3 \leftarrow owin(poly = list(x = c(0, 0, .5), y = c(1, 0.5, 1)))
w4 \leftarrow owin(poly = list(x = c(1, 1, .5), y = c(0.5, 1, 1)))
w5 \leftarrow owin(poly = list(x = c(1, 1, .5), y = c(0, 0.5, 0)))
hypFrame <- buildHyperFrame(df,</pre>
    coordVars = c("x", "y"),
    imageVars = c("condition", "fov")
nDesignFactors <- length(unique(hypFrame$image))</pre>
wList <- lapply(seq_len(nDesignFactors), function(x) {</pre>
    list("w1" = w1, "w2" = w2, "w3" = w3, "w4" = w4, "w5" = w5)
})
names(wList) <- rownames(hypFrame) # Matching names is necessary</pre>
hypFrame2 <- addCell(hypFrame, wList)</pre>
n1 \leftarrow owin(poly = list(x = c(0.2, .4, 0.8, .4), y = c(.4, .2, .4, .8)))
n2 \leftarrow owin(poly = list(x = c(0.1, 0.1, .4), y = c(.4, .1, .1)))
n3 \leftarrow owin(poly = list(x = c(0.1, 0.1, .4), y = c(1, .75, 1)))
n4 \leftarrow owin(poly = list(x = c(1, 1, .6), y = c(.7, .9, .9)))
n5 \leftarrow owin(poly = list(x = c(.95, .95, .7), y = c(.1, .4, .1)))
nList <- lapply(seq_len(nDesignFactors), function(x) {</pre>
    list("w1" = n1, "w2" = n2, "w3" = n3, "w4" = n4, "w5" = n5)
names(nList) <- rownames(hypFrame) # Matching names is necessary</pre>
hypFrame3 <- addNuclei(hypFrame2, nList)</pre>
```

8 buildDataFrame

addTab0bs

Add tables with gene counts to the hyperframe, presort by gene and x-ccordinate and add design varibales

Description

Add tables with gene counts to the hyperframe, presort by gene and x-ccordinate and add design varibales

Usage

```
addTabObs(hypFrame)
```

Arguments

hypFrame

The hyperframe

Value

The hyperframe with tabObs added

buildDataFrame

Extract a data frame for a certain gene and PI from a fitted object

Description

Based on a fitted object, a dataframe with results for a certain feature and PI is built, e.g. in preparation for linear modelling.

```
buildDataFrame(
  obj,
  gene,
  pi = c("nn", "nnPair", "edge", "centroid", "nnCell", "nnPairCell"),
  piMat,
  moransI = FALSE,
  numNNs = 8,
  weightMats,
  pppDf
)
```

buildFormula 9

Arguments

obj	A results object. For distances to fixed objects, the result of a call to estPis; for nearest neighbour distances, the result of a call to addWeightFunction
gene	A character string indicating the desired gene or gene pair (genes separated by double hyphens)
pi	character string indicating the desired PI
piMat	A data frame. Will be constructed if not provided, for internal use.
moransI	A boolean, should Moran's I be calculated? in the linear mixed model
numNNs	An integer, the number of nearest neighbours in the weight matrix for the calculation of the Moran's I statistic
weightMats	List of weight matrices for Moran's I calculation.
pppDf	Dataframe of point pattern-wise variables. It is precalculated in fitLMMsSingle for speed, but will be newly constructed when not provided.

Value

A dataframe with estimated PIs and covariates

See Also

addWeightFunction, buildMoransIDataFrame

Examples

```
example(addWeightFunction, "smoppix")
dfUniNN <- buildDataFrame(yangObj, gene = "SmVND2", pi = "nn")
# Example analysis with linear mixed model
library(lmerTest)
mixedMod <- lmer(pi - 0.5 ~ day + (1 | root),
    weight = weight, data = dfUniNN,
    contrasts = list("day" = "contr.sum")
)
summary(mixedMod)
# Evidence for aggregation</pre>
```

buildFormula

Build a formula from different components

Description

Build a formula from different components

```
buildFormula(Formula, fixedVars, randomVars, outcome = "pi - 0.5")
```

10 buildHyperFrame

Arguments

```
Formula A formula. If not supplied or equals NULL, will be overridden fixedVars, randomVars

Character vectors with fixed and random variables outcome

A character vector describing the outcome
```

Details

Random intercepts are assumed for the random effects, if more complicated designs are used, do supply your own formula.

Value

A formula

See Also

fitLMMs,formula

buildHyperFrame

Build a hyperframe containing all point patterns of an experiment.

Description

Build a spatstat hyperframe with point patterns and metadata. Matrices, dataframe, lists and SpatialExperiment inputs are accepted.

```
buildHyperFrame(x, ...)

## S4 method for signature 'data.frame'
buildHyperFrame(
    x,
    coordVars,
    imageIdentifier = imageVars,
    imageVars,
    pointVars = setdiff(names(x), c(imageVars, imageIdentifier, coordVars, featureName)),
    featureName = "gene",
    ...
)

## S4 method for signature 'matrix'
buildHyperFrame(
    x,
    imageVars,
```

buildHyperFrame 11

```
imageIdentifier = imageVars,
  covariates,
  featureName = "gene",
    ...
)

## S4 method for signature 'list'
buildHyperFrame(
    x,
    coordVars = c("x", "y"),
    covariates = NULL,
    idVar = NULL,
    featureName = "gene",
    ...
)

## S4 method for signature 'SpatialExperiment'
buildHyperFrame(x, imageVars, pointVars, imageIdentifier = imageVars, ...)
```

Arguments

x the input object, see methods('buildHyperFrame')

... additional constructor arguments

coordVars Names of coordinates

imageIdentifier

A character vector of variables whose unique combinations define the separate

point patterns (images)

imageVars Covariates belonging to the point patterns

pointVars Names of event-wise covariates such as gene or cell for each single point

featureName The name of the feature identifier for the molecules.

covariates A matrix or dataframe of covariates

idVar An optional id variable present in covariates, that is matched with the names of

covariates

list A list of matrices or of point patterns of class 'spatstat.geom::ppp'

Value

An object of class 'hyperframe' from the 'spatstat.geom' package

See Also

hyperframe

Examples

```
data(Yang)
hypYang <- buildHyperFrame(Yang,
    coordVars = c("x", "y"),
    imageVars = c("day", "root", "section")
)</pre>
```

buildMoransIDataFrame Build a data frame with Moran's I as outcome variable

Description

Build a data frame with Moran's I as outcome variable

Usage

```
buildMoransIDataFrame(pi, piMat, weightMats)
```

Arguments

pi character string indicating the desired PI

piMat A data frame. Will be constructed if not provided, for internal use.

weightMats List of weight matrices for Moran's I calculation.

Value

A modified data frame, containing the estimated Moran's I and its variance

See Also

Moran.I, buildMoransIWeightMat

buildMoransIWeightMat Build a weight matrix based on nearest neighbourship for Moran's I calculations

Description

Build a weight matrix based on nearest neighbourship for Moran's I calculations

```
buildMoransIWeightMat(coordMat, numNNs)
```

calcIndividualPIs 13

Arguments

coordMat A matrix of centroid coordinates

numNNs An integer, the number of nearest neighbours in the weight matrix for the calcu-

lation of the Moran's I statistic

Value

A sparse matrix of weights for Moran's I statistic, of equal value for the numNNs nearest neighbours and zero otherwise

Note

The choice of numNN nearest neighbours is far less memory-glutton than a weight decaying continuously with distance

See Also

buildMoransIDataFrame, Moran.I

calcIndividualPIs

Calculate individual PI entries of a single point pattern

Description

Calculate individual PI entries of a single point pattern

```
calcIndividualPIs(
  p,
  tabObs,
  pis,
  pSubLeft,
  owins,
  centroids,
  null,
  features,
  ecdfAll,
  ecdfsCell,
  loopFun,
  minDiff,
  minObsNN
)
```

14 calcNNPI

Arguments

p The point pattern

tabObs A table of observed gene frequencies

pis The PIs to be estimated or for which weighting functions is to be added

pSubLeft The subsampled overall point pattern returned by subSampleP

owins, centroids

The list of windows corresponding to cells, and their centroids

null A character vector, indicating how the null distribution is defined. See details.

features A character vector, for which features should the probabilistic indices be calcu-

lated?

ecdfAll, ecdfsCell

Empirical cumulative distribution functions of all events and of cells within the

cell, under the null

loopFun The function to use to loop over the features. Defaults to bplapply except when

looping over features within cells

minDiff An integer, the minimum number of events from other genes needed for calcu-

lation of background distribution of distances. Matters mainly for within-cell

calculations: cells with too few events are skipped.

minObsNN An integer, the minimum number of events required for a gene to be analysed.

See details.

Details

For the single-feature nearest neighbour distances, the PI is average over the point pattern

Value

A list containing PI entries per feature

See Also

estPis, calcNNPI

calcNNPI	Estimate the PI for the nearest neighbour distances, given a set of
	ranks, using the negative hypergeometric distribution

Description

Estimate the PI for the nearest neighbour distances, given a set of ranks, using the negative hypergeometric distribution

```
calcNNPI(Ranks, n, m, ties, r = 1)
```

calcWindowDistPI 15

Arguments

Ranks	The (approximate) ranks, number of times observed distance is larger
n	the total number of observed distances minus the number of distances under consideration (the number of failures or black balls in the urn)
m	the number of observed distances (successes or white balls in the urn)
ties	The number of times the observed distance is equal to a null distance, of the same length as Ranks
r	The rank of distances considered, r=1 is nearest neighbour distance

Details

Ties are counted half to match the definition of the PI.

Value

A vector of evaluations of the negative hypergeometric distribution function

See Also

pnhyper, calcIndividualPIs

calcWindowDistPI	Estimate the PI for the distance to a fixed object of interest, such as a
Carchinaonbiothi	3 3
	cell wall or centroid

Description

Estimate the PI for the distance to a fixed object of interest, such as a cell wall or centroid

Usage

```
calcWindowDistPI(pSub, owins, centroids, ecdfAll, pi)
```

Arguments

pSub	The subset point pattern containing only a single gene
owins, centroids	3
	The list of windows corresponding to cells, and their centroids
ecdfAll	the cumulative distribution function under the null
pi	The type of PI to calculate

Details

Analysis of the distance to the border was introduced by (Joyner et al. 2013) in the form of the B-function. The independent evaluations of the B-functions under the null hypothesis represented by *ecdfAll* per cell are here returned as realizations of the probabilistic index.

16 checkFeatures

Value

A list of vectors of estimated probabilistic indeces per event

References

Joyner M, Ross C, Seier E (2013). "Distance to the border in spatial point patterns." *Spat. Stat.*, **6**, 24 - 40. ISSN 2211-6753, doi:10.1016/j.spasta.2013.05.002.

See Also

addCell, estPis

centerNumeric

Center numeric variables

Description

Center numeric variables

Usage

centerNumeric(x)

Arguments

Х

The dataframe whose numeric variables are being centered

Value

The adapted dataframe

checkFeatures

Check if features are present in hyperframe

Description

Check if features are present in hyperframe

Usage

```
checkFeatures(hypFrame, features)
```

Arguments

hypFrame A hyperframe

features A character vector, for which features should the probabilistic indices be calcu-

lated?

checkPi 17

Value

Throws error when features not found

checkPi

Check if the required PI's are present in the object

Description

Check if the required PI's are present in the object

Usage

```
checkPi(x, pi)
```

Arguments

x The result of the PI calculation, or a weighting function

pi A character string indicating the desired PI

Value

Throws an error when the PIs are not found, otherwise returns invisible

constructDesignVars

Check for or construct design matrix

Description

Run checks on design variables, or construct them as vector them if missing

Usage

```
constructDesignVars(designVars, lowestLevelVar, allCell, resList)
```

Arguments

designVars The initial design variables

lowestLevelVar Variable indicating the lowest level of nesting

allCell A boolean, are all PIs cell-related?

resList The results list

Value

A vector of design variables

See Also

buildDataFrame

18 crossdistWrapper

convert-	Tanuina
convert	louwins

Convert windows to spatstat.geom owin format

Description

Convert a list of windows in different possible formats to owins, for addition to a hyperframe.

Usage

```
convertToOwins(windows, namePPP, coords, ...)
```

Arguments

windows The list of windows. See addCell for accepted formats.

namePPP the name of the point pattern, will be added to the cell names

coords The names of the coordinates, if the windows are given as sets of coordinates.

... passed onto as owin

Details

Order of traversion of polygons may differ between data types. Where applicable, different orders are tried before throwing an error.

Value

A list of owins

See Also

addCell, as.owin

crossdistWrapper

A wrapper for C-functions calculating cross-distance matrix fast

Description

A wrapper for C-functions calculating cross-distance matrix fast

Usage

```
crossdistWrapper(x, y)
```

Arguments

x, y

the matrices or point patterns between which to calculate the cross distances

Eng 19

Value

a matrix of cross distances

Eng

Spatial transcriptomics data of mouse fibroblast cells

Description

Single-molecule spatial transcriptomics seqFISH+ data containing measurements of 10,000 genes in NIH/3T3 mouse fibroblast cells by (Eng et al. 2019). Molecule locations, gene identity and design variables are included, a subset of eight most expressed genes is included in the package, and the dataset was subsampled to 100,000 observations for memory reasons. In addition, a list of regions of interest (rois) is given describing the cell boundaries.

Usage

data(Eng)

Format

1. Eng A data frame with variables

```
x,y Molecule coordinatesgene Character vector with gene identitiesexperiment,fov Design variables
```

2. EngRois A list of lists of regions of interest (ROIs): the cell boundaries

Source

doi:10.1038/s415860191049y

References

Eng CL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, Yun J, Cronin C, Karp C, Yuan G, Cai L (2019). "Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+." *Nature*, **568**(7751), 235 - 239. ISSN 1476-4687, doi:10.1038/s415860191049y.

20 estGradients

estGradients	Estimate gradients over multiple point patterns, and test for signifi-
	cance

Description

estGradients() estimate gradients on all single-molecule point patterns of a hyperframe. estGradientsSingle() is the workhorse function for a single point pattern. getPvaluesGradient() extracts the p-values of the fits.

Usage

```
estGradients(
  hypFrame,
  gradients = c("overall", if (!is.null(hypFrame$owins)) "cell"),
  fixedEffects = NULL,
  randomEffects = NULL,
  verbose = FALSE,
  features = getFeatures(hypFrame),
  silent = TRUE,
  loopFun = "bplapply",
)
estGradientsSingle(
  hypFrame,
  gradients,
  fixedForm,
  randomForm,
  fixedFormSimple,
  effects = NULL,
)
getPvaluesGradient(res, gradient, method = "BH")
```

Arguments

hypFrame	A hyperframe
gradients	The gradients types to be estimated: "overall" or within cell ("cell")
fixedEffects, ra	andomEffects
	Character vectors of fixed and random effects present in the hyperframe, modifying the baseline intensity. See details.
verbose	A boolean, whether to report on progress of the fitting process.
features	A character vector, for which features should the gradients indices be calculated?
silent	A boolean, should error messages from spatstat.model::mppm be printed?

estGradients 21

loopFun The function to use to loop over the features.

... Passed onto fitGradient fixedForm, randomForm, fixedFormSimple

Formulae for fixed effects, random effects and fixed effects without slopes re-

spectively

effects Character vector of fixed and random effects

res The fitted gradients

gradient The gradient to be extracted, a character vector equal to "overall" or "cell".

method Method of multiplicity correction, see p.adjust. Defaults to Benjamini-Hochberg.

Details

The test for existence of a gradient revolves around interaction terms between x and y coordinates and image identifiers. If this interactions are significant, this implies existence of gradients in the different point patterns, albeit with different directions. Yet be aware that a gradient that is significant for a computer may look very different from the human perspective; many spatial patterns can be captured by a gradient to some extent. Baseline intensity corrections for every image or cell are included by default. The fixed and random effects modify the baseline intensity of the point pattern, not the gradient! Random effects can lead to problems with fitting and are dissuaded.

Value

For estGradients(), a list with the estimated gradients

For estGradientsSingle(), a list containing

overall Overall gradients

cell Gradients within the cell

For getPvaluesGradient(), a vector of p-values

Note

Fitting Poisson point processes is computation-intensive.

See Also

fitGradient

Examples

```
# Overall Gradients
data(Yang)
hypYang <- buildHyperFrame(Yang,
    coordVars = c("x", "y"),
    imageVars = c("day", "root", "section")
)
yangGrads <- estGradients(hypYang[seq_len(2), ],
    features = getFeatures(hypYang)[1],
    fixedEffects = "day", randomEffects = "root")</pre>
```

22 estPis

estPis

Estimate probabilistic indices for single-molecule localization patterns, and add the variance weighting function.

Description

Estimate different probabilistic indices for localization on all point patterns of a hyperframe, and integrate the results in the same hyperframe. estPisSingle() is the workhorse function for a single point pattern.

addWeightFunction() adds a weighting function based on the data to the object by modeling variance as a non-increasing spline as a function of the number of events.

```
estPis(
 hypFrame,
 pis = c("nn", "nnPair", "edge", "centroid", "nnCell", "nnPairCell"),
  verbose = TRUE,
  null = c("background", "CSR"),
 nPointsAll = switch(null, background = 20000, CSR = 1000),
  nPointsAllWithinCell = switch(null, background = 2000, CSR = 500),
 nPointsAllWin = 1000,
 minDiff = 20,
 minObsNN = 1L,
  features = getFeatures(hypFrame),
)
estPisSingle(
  p,
 pis,
 null,
  tabObs,
  owins = NULL,
  centroids = NULL,
```

estPis 23

```
window = p$window,
  loopFun = "bplapply",
  features,
  nPointsAll,
  nPointsAllWithinCell,
  nPointsAllWin,
 minDiff,
 minObsNN
)
addWeightFunction(
  resList,
  pis = resList$pis,
  designVars,
  lowestLevelVar,
  maxObs = 1e+05,
 maxFeatures = 1000,
 minNumVar = 3,
)
```

Arguments

hypFrame A hyperframe

pis The PIs to be estimated or for which weighting functions is to be added

verbose A boolean, whether to report on progress of the fitting process.

null A character vector, indicating how the null distribution is defined. See details.

nPointsAll, nPointsAllWithinCell

How many points to subsample or simulate to calculate the overall nearest neighbour distance distribution under the null hypothesis. The second argument (nPointsAll-WithinCell) applies to within cell calculations, where a lower number usually

suffises.

nPointsAllWin How many points to subsample or simulate to calculate distance to cell edge or

centroid distribution

minDiff An integer, the minimum number of events from other genes needed for calcu-

lation of background distribution of distances. Matters mainly for within-cell

calculations: cells with too few events are skipped.

minObsNN An integer, the minimum number of events required for a gene to be analysed.

See details.

features A character vector, for which features should the probabilistic indices be calcu-

lated?

... Additional arguments passed on to the scam function, fitting the spline

p The point pattern

tabObs A table of observed gene frequencies

owins, centroids

The list of windows corresponding to cells, and their centroids

24 estPis

window An window of class owin, in which events can occur

loopFun The function to use to loop over the features. Defaults to bplapply except when

looping over features within cells

resList A results list, from a call to estPis().

designVars A character vector containing all design factors (both fixed and random), that

are also present as variables in hypFrame.

lowestLevelVar The design variable at the lowest level of nesting, often separating technical

replicates. The conditional variance is calculated within the groups of PIs de-

fined by this variable.

maxObs, maxFeatures

The maximum number of observations respectively features for fitting the weight-

ing function. See details.

minNumVar The minimum number of observations needed to calculate a variance. Groups

with fewer replicates are ignored.

Details

The null distribution used to calculate the PIs can be either 'background' or 'null'. For 'background', the observed distributions of all genes is used. Alternatively, for null = 'CSR', Monte-Carlo simulation under complete spatial randomness is performed within the given window to find the null distribution of the distance under study.

The 'nn' prefix indicates that nearest neighbour distances are being used, either univariately or bivariately. The suffix 'Pair' indicates that bivariate probabilistic indices, testing for co- and antilocalization are being used. 'edge' and 'centroid' calculate the distance to the edge respectively the centroid of the windows added using the addCell function. The suffix 'Cell' indicates that nearest neighbour distances are being calculated within cells only.

It can be useful to set the minObsNN higher than the default of 5 for calculations within cells when the number of events is low, not to waste computation time on gene (pairs) with very variable PI estimates.

Provide either 'designVars' or 'lowestLevelVar'. The 'designVars' are usually the same as the regressors in the linear model. In case 'lowestLevelVar' is provided, the design variables are set to all imageVars in the hypFrame object except lowestLevelVar. When the PI is calculated on the cell level ("nnCell" or "nnPairCell"), the cell is always the lowest nesting level, and inputs to 'design-Vars' or 'lowestLevelVar' will be ignored for these PIs. The registered parallel backend will be used for fitting the trends of the different PIs. For computational and memory reasons, for large datasets the trend fitting is restricted to a random subset of the data through the maxObs and maxFeatures parameters.

Value

For estPis(), the hyperframe with the estimated PIs present in it

For estPisSingle(), a list of data frames with estimated PIs per gene and/or gene pair:

pointDists PIs for pointwise distances overall

windowDists PIs for distances to cell wall or centroid

evalWeightFunction 25

```
withinCellDists
```

PIs for pointwise distances within cell

For addWeightFunction(), the input object 'resList' with a slot 'Wfs' added containing the weighting functions.

See Also

buildDataFrame, estPis

Examples

evalWeightFunction

Evaluate a variance weighting function

Description

Evaluate the variance weighting function to return unnormalized weights

Usage

```
evalWeightFunction(wf, newdata)
```

Arguments

wf The weighting function
newdata A data frame with new data

Value

A vector of weights, so the inverse of predicted variances, unnormalized

See Also

predict.scam, addWeightFunction

26 extractResults

Examples

extractResults

Extract results from a list of fitted LMMs. For internal use mainly.

Description

Extract results from a list of fitted LMMs. For internal use mainly.

Usage

```
extractResults(
  models,
  hypFrame,
  subSet = "piMod",
  fixedVars = NULL,
  method = "BH"
)
```

Arguments

models The models

hypFrame The original hyperframe

subSet The name of the subset to be extracted, either PI or Moran's I

fixedVars The fixed effects for which the effect is to be reported method Multiplicity correction method passed onto p.adjust

Value

A list of matrices, all containing estimate, standard error, p-value and ajdusted p-value

See Also

fitLMMs, p.adjust

findEcdfsCell 27

findEcdfsCell	Construct empirical cumulative distribution functions (ecdfs) for distances within the cell

Description

The distance distribution under the null hypothesis of complete spatial randomness (CSR) within the cell is the same for all genes. This function precalculates this distribution using Monte-Carlo simulation under CSR, and summarizes it in an ecdf object

Usage

```
findEcdfsCell(p, owins, nPointsAllWin, centroids, null, pis, loopFun)
```

Arguments

p The point pattern

owins, centroids

The list of windows corresponding to cells, and their centroids

nPointsAllWin How many points to subsample or simulate to calculate distance to cell edge or centroid distribution

null A character vector, indicating how the null distribution is defined. See details of estPis.

The PIs to be estimated or for which weighting functions is to be added

loopFun The function to use to loop over the features. Defaults to bplapply except when

looping over features within cells

Value

pis

The list of ecdf functions

See Also

ecdf

findOverlap	Find overlap between list of windows	

Description

The function seeks overlap between the list of windows supplied, and throws an error when found or returns the id's when found.

28 fitGradient

Usage

```
findOverlap(owins, centroids = NULL, returnIds = FALSE, numCentroids = 30)
```

Arguments

owins the list of windows

centroids The centroids of the windows

returnIds A boolean, should the indices of the overlap be returned? If FALSE an error is

thrown at the first overlap

numCentroids An integer, the number of cells with closest centroids to consider looking for

overlap

Value

Throws an error when overlap found, otherwise returns invisible. When returnIds=TRUE, the indices of overlapping windows are returned.

Examples

```
library(spatstat.geom)
owins <- replicate(10, owin(
    xrange = runif(1) + c(0, 0.2),
    yrange = runif(1) + c(0, 0.1)
), simplify = FALSE)
idOverlap <- findOverlap(owins, returnIds = TRUE)</pre>
```

fitGradient

Test for presence of gradient in a hyperframe of point patterns

Description

A Poisson process is fitted to the data assuming exponential relationship wit intensity of the interaction between x and y variables and image identifier. This is compared to a model without this interaction to test for the significance of the gradient.

```
fitGradient(
  hypFrame,
  fixedForm,
  randomForm,
  fixedFormSimple,
  returnModel = FALSE,
  silent,
  ...
)
```

fitLMMs 29

Arguments

hypFrame the hyperframe

fixedForm, randomForm, fixedFormSimple

Formulae for fixed effects, random effects and fixed effects without slopes re-

spectively

returnModel A boolean, should the entire model be returned? Otherwise the p-value and

coefficient vector are returned

silent A boolean, should error messages from spatstat.model::mppm be printed?

... passed onto mppm

Value

A list contraining

pVal The p-value for existence of gradients

coef The model coefficients

or a mppm model when returnModel is true

See Also

estGradients

fitLMMs Fit linear (mixed) models for all probabilistic indices (PIs) and all

genes

Description

The PI is used as outcome variable in a linear (mixed) model, with design variables as regressors. Separate models are fitted for every combination of gene and PI. fitLMMsSingle() is the workhorse function for a single point pattern,

getResults() extracts effect size estimates, standard errors and adjusted p-values for a certain parameter from a linear model.

```
fitLMMs(
  obj,
  pis = obj$pis,
  fixedVars = NULL,
  randomVars = NULL,
  verbose = TRUE,
  returnModels = FALSE,
  Formula = NULL,
  randomNested = TRUE,
```

30 fitLMMs

```
features = getFeatures(obj),
 moranFormula = NULL,
  addMoransI = FALSE,
  numNNs = 10,
)
fitLMMsSingle(
  obj,
  рi,
  fixedVars,
  randomVars,
  verbose,
  returnModels,
  Formula,
  randomNested,
  features,
  addMoransI,
 weightMats,
 moranFormula
)
getResults(obj, pi, parameter, moransI = FALSE)
```

Arguments

obj The result object

pis Optional, the pis required. Defaults to all pis in the object

fixedVars Names of fixed effects randomVars Names of random variables

verbose A boolean, should the formula be printed?

returnModels a boolean: should the full models be returned? Otherwise only summary statis-

tics are returned

Formula A formula; if not supplied it will be constructed from the fixed and random

variables

randomNested A boolean, indicating if random effects are nested within point patterns. See

details.

features The features for which to fit linear mixed models. Defaults to all features in the

object

moranFormula Formula for Moran's I model fitting

addMoransI A boolean, include Moran's I of the cell-wise PIs in the calculation

numNNs An integer, the number of nearest neighbours in the weight matrix for the calcu-

lation of the Moran's I statistic

... Passed onto fitLMMsSingle

pi The desired PI

fitLMMs 31

weightMats A list of weight matrices for Moran's I

parameter The desired parameter

moransI A boolean, should results for the Moran's I be returned?

Details

Genes or gene pairs with insufficient observations will be silently omitted. When randomVars is provided as a vector, independent random intercepts are fitted for them by default. Providing them separated by '\' or ':' as in the lmer formulas is also allowed to reflect nesting structure, but the safest is to construct the formula yourself and pass it onto fitLMMs.

It is by default assumed that random effects are nested within the point patterns. This means for instance that cells with the same name but from different point patterns are assigned to different random effects. Set 'randomNested' to FALSE to override this behaviour.

The Moran's I statistic is used to test whether cell-wise PIs ("nnCell", "nnCellPair", "edge" and "centroid") are spatially autocorrelated across the images. The numeric value of the PI is assigned to the centroid location, and then Moran's I is calculated with a fixed number of numNNs nearest neighbours with equal weights.

Value

For fitLMMs(), a list of fitted objects

For fitLMMsSingle(), a list of test results, if requested also the linear models are returned

For getResults(), the matrix with results, with p-values in ascending order

Estimate The estimated PI

se The corresponding standard error

pVal The p-value

pAdj The Benjamini-Hochberg adjusted p-value

See Also

buildMoransIDataFrame, buildDataFrame

Examples

```
example(addWeightFunction, "smoppix")
lmmModels <- fitLMMs(yangObj, fixedVars = "day", randomVars = "root")
res <- getResults(lmmModels, "nn", "Intercept") #Extract the results
head(res)</pre>
```

32 getCoordsMat

fitPiModel

Fit a linear model for an individual gene and PI combination

Description

Fit a linear model for an individual gene and PI combination

Usage

```
fitPiModel(Formula, dff, contrasts, Control, MM, Weight = NULL)
```

Arguments

Formula A formula; if not supplied it will be constructed from the fixed and random

variables

dff The dataframe

contrasts The contrasts to be used, see model.matrix

Control Control parameters

MM A boolean, should a mixed model be tried

Weight A weight variable

Value

A fitted model

See Also

fitLMMsSingle

getCoordsMat

Extract coordinates from a point pattern or data frame

Description

Extract coordinates from a point pattern or data frame

Usage

```
getCoordsMat(x)
```

Arguments

x the point pattern, dataframe or matrix

Value

the matrix of coordinates

getDesignVars 33

getDesignVars

Return all design variables, both at the level of the point pattern and the level of the event

Description

Return all design variables, both at the level of the point pattern and the level of the event

Extract variables from point patterns

Extract variables from events (the marks)

Usage

Arguments

x The results list, output from estPis exclude variables to exclude

Details

getDesignVars() returns all design variables, getPPPvars returns design variables related to the different images and getEventVars returns design variables related to the individual events

Value

A vector of design variables

A vector of variables

A vector of variables

34 getFeatures

getElement

Extract en element from a matrix or vector

Description

Extract en element from a matrix or vector

Usage

```
getElement(x, e)
```

Arguments

x the matrix or vector

e The column or element name

Value

The desired element

getFeatures

Extract all unique features from an object

Description

Extract all unique features from an object

Usage

```
getFeatures(x)
```

Arguments

Х

A hyperframe or a results list containing a hyperframe

Value

A vector of features

Examples

```
data(Yang)
hypYang <- buildHyperFrame(Yang,
    coordVars = c("x", "y"),
    imageVars = c("day", "root", "section")
)
head(getFeatures(hypYang))</pre>
```

getGp 35

getGp

Helper function to get gene pair from a vector or list

Description

When provided with argument "geneA-geneB", looks for this gene pair as well as for "geneB-geneA" in the provided object.

Usage

```
getGp(x, gp, drop = TRUE, Collapse = "--")
```

Arguments

x The object in which to look

gp A character string describing the gene pair

drop A boolean, should matrix attributes be dropped in [] subsetting

Collapse The character separating the gene pair

Value

The element sought

Examples

```
mat <- t(cbind(
    "gene1--gene2" = c(1, 2),
    "gene1--gene3" = c(2, 3)
))
getGp(mat, "gene3--gene1")</pre>
```

getHypFrame

Extract the hyperframe

Description

Extract the hyperframe

Usage

```
getHypFrame(x)
```

Arguments

Х

The hyperframe, or list containing one

36 makeDesignVar

Value

the hyperframe

loadBalanceBplapply

Parallel processing with BiocParallel with load balancing

Description

The vector to iterate over (iterator) is split into as many parts as there are cores available, such that each core gets an equal load and overhead is minimized. The registered backend is then used by default to multithread using bplapply.

Usage

```
loadBalanceBplapply(iterator, func, loopFun = "bplapply")
```

Arguments

iterator The vector to iterate over

func The function to apply to each element

loopFun The looping function, can also be 'lapply' for serial processing

Value

A list with the same length as iterator

makeDesignVar

Make design variable by combining different design variables

Description

Make design variable by combining different design variables

Usage

```
makeDesignVar(x, designVars, sep = "_")
```

Arguments

x the design matrix

designVars the design variables to be combined sep The string to separate the components

Value

a vector of design levels

makePairs 37

makePairs

An aux function to build gene pairs

Description

An aux function to build gene pairs

Usage

```
makePairs(genes)
```

Arguments

genes

The genes to be combined

Value

A character vector of gene pairs

Examples

```
genes <- paste0("gene", seq_len(4))
makePairs(genes)</pre>
```

moransI

Calculate the Moran's I test statistic for spatial autocorrelation

Description

The Moran's I test statistic and its variance are calculated

Usage

```
moransI(x, W)
```

Arguments

x A vector of outcomes

W The matrix of weights, with dimensions equal to the length of x

Details

The implementation is inspired on the one from ape::Moran.I, but more bare-bones for a sparse weight matrix with certain properties as prepared by buildMoransIWeightMat, making it faster and using less memory.

38 named.contr.sum

Value

A vector of length 2: the Moran's I statistic and its variance

Note

Calculations are only correct for weight matrices as prepared by buildMoransIWeightMat!

See Also

Moran.I

named.contr.sum

A version of contr.sum that retains names, a bit controversial but also clearer

Description

A version of contr.sum that retains names, a bit controversial but also clearer

Usage

```
named.contr.sum(x, ...)
```

Arguments

x, ... passed on to contr.sum

Value

The matrix of contrasts

Note

After https://stackoverflow.com/questions/24515892/r-how-to-contrast-code-factors-and-retain-meaningful-labels-in-output-summary

nestRandom 39

nestRandom	Nest random effects within fixed variables, in case the names are the
	same

Description

Nest random effects within fixed variables, in case the names are the same

Usage

```
nestRandom(df, randomVars, fixedVars)
```

Arguments

df The dataframe
randomVars The random variables
fixedVars The fixed variables

Value

The dataframe with adapted randomVars

plotCells

Plot the n cells with highest abundance of a feature

Description

After testing for within-cell patterns, it may be useful to look at the cells with the most events for certain genes. These are plotted here, but the spatial location of the cells in the point pattern is lost! The choice and ranking of cells is one of decreasing gene (pair) expression.

Usage

```
plotCells(
  obj,
  features = getFeatures(obj)[seq_len(3)],
  nCells = 100,
  Cex = 1.5,
  borderColVar = NULL,
  borderCols = rev(palette()),
  Mar = c(0.5, 0.1, 0.75, 0.1),
  warnPosition = TRUE,
  summaryFun = "min",
  plotNuclei = !is.null(getHypFrame(obj)$nuclei),
  nucCol = "lightblue",
  ...
)
```

40 plotExplore

Arguments

obj A hyperframe, or an object containing one features The features to be plotted, a character vector nCells An integer, the number of cells to be plotted

Cex The point expansion factor

borderColVar The variable to colour borders of the cell

borderCols Colour palette for the borders

Mar the margins

warnPosition A boolean, should a warning be printed on the image that cells are not in their

original location?

summaryFun A function to summarize the gene-cell table in case multiple genes are plotted,

to determine which cells are plotted. Choose "min" for cells with the highest minimum, or "sum" for highest total expression of the combination of genes

plotNuclei A boolean, should nuclei be added?

nucCol A character string, the colour in which the nucleus' boundary is plotted

... Additional arguments, currently ignored

Value

Plots cells with highest expression to the plotting window, returns invisible

Examples

```
example(addCell, "smoppix")
plotCells(hypFrame2, "gene1")
plotCells(hypFrame2, "gene1", borderColVar = "condition", nCells = 10)
```

plotExplore

Plot a hyperframe with chosen features highlighted

Description

All points of the hyperframe are plotted in grey, with a subset of features highlighted in colour. A selection of point patterns is plotted that fit in the window, by default the first six. This function is meant for exploratory purposes as well as for visual confirmation of findings.

Usage

```
plotExplore(
  hypFrame,
  features = getFeatures(hypFrame)[seq_len(6)],
  ppps,
  numPps,
  maxPlot = 1e+05,
```

plotExplore 41

```
Cex = 1,
  plotWindows = !is.null(hypFrame$owins),
  plotPoints = TRUE,
  plotNuclei = !is.null(hypFrame$nuclei),
  piEsts = NULL,
 Xlim = NULL,
 Ylim = NULL,
 Cex.main = 1.1,
 Mar = c(0.5, 0.1, 0.9, 0.1),
  titleVar = NULL,
 piColourCell = NULL,
  palCols = c("blue", "yellow"),
  nucCol = "lightblue",
 border = NULL,
  CexLegend = 1.4,
  CexLegendMain = 1.7,
 Nrow
)
```

Arguments

hypFrame The hyperframe

features A small number of features to be highlighted. Defaults to the first 5.

ppps The rownames or indices of the point patterns to be plotted. Defaults to maxi-

mum 99.

numPps The number of point patterns with highest expression to be shown. Ignored is

pps is given.

maxPlot The maximum number of events plotted per point pattern

Cex, Cex.main Point and title expansion factors, repsectively plotWindows A boolean, should windows be plotted too?

plotPoints A boolean, should the molecules be plotted as points?

plotNuclei A boolean, should the nuclei be plotted?
piEsts Set of PI estimates, returned by estPis

Xlim, Ylim plotting limits
Mar the margins

titleVar Image variable to be added to the title

piColourCell PI by which to colour the cell

palCols Two extremes of the colour palette for colouring the cells

nucCol The colour for the nucleus window

border Passed on to plot.owin, and further to graphics::polygon

CexLegend, CexLegendMain

Expansion factor for the legend and its title respectively

Nrow Number of rows of the facet plot. Will be calculated if missing.

42 plotTopResults

Details

When cell-specific PIs are calculated ("nnCell', "nnCellPair", "edge", "centroid"), the cells can be coloured by them to investigate their spatial distribution, for instance those discovered through Moran's I statistic. The colour palette is taken from the output of palette(), so set that one to change the colour scheme.

Value

Plots a facet of point patterns to output

Note

palCols sets the pseudo-continuous scale to colour cells.

Examples

```
example(buildHyperFrame, "smoppix")
plotExplore(hypYang)
plotExplore(hypYang, titleVar = "day")
plotExplore(hypYang, features = c("SmRBRb", "SmTMO5b", "SmWER--SmAHK4f"))
```

plotTopResults

Plot the most significant findings for a certain PI

Description

Extract the most significant features for a certain PI and direction of effect, and plot them using an appropriate function: either plotExplore or plotCells

Usage

```
plotTopResults(
 hypFrame,
  results,
 рi,
 effect = "Intercept",
 what = if (pi %in% c("nn", "nnCell")) {
     "aggregated"
} else if (pi %in%
    c("nnPair", "nnPairCell")) {
     "colocalized"
} else if (pi %in% c("edge",
    "centroid")) {
     "close"
},
  sigLevel = 0.05,
 numFeats = 2,
```

plotTopResults 43

```
piThreshold = switch(effect, Intercept = 0.5, 0),
  effectParameter = NULL,
    ...
)
```

Arguments

hypFrame The hyperframe with the data

results The results frame

pi A character string, specifying the probabilistic index

effect The name of the effect

what Which features should be detected? Can be abbreviated, see details.

sigLevel The significance level

numFeats The number of features to plot

piThreshold The threshold for PI, a minimum effect size

effectParameter

A character string, indicating which parameter to look for when effect is pro-

vided

... passed onto plotting functions plotCells or plotExplore

Details

The "what" argument indicates if features far from or close to cell wall or centroid should be shown for pi "edge" or "centroid", aggregated or regular features for "nn" and "nnCell" and colocalized or antilocalized features for "nnPair" and "nnPairCell". Partial matching is allowed. Defaults to small probabilistic indices: proximity, aggregation and colocalization. For fixed effects, provide the name of the parameter, in combination with what. For instance, what = "regular", effect = "Var1" and effectParameter = "level1" will return features more regular at level1 of the variable than at baseline.

Value

A plot from plotCells or plotExplore, throws an error when no features meet the criteria

See Also

plotCells,plotExplore,fitLMMs

Examples

```
example(fitLMMs, "smoppix")
plotTopResults(hypYang, lmmModels, "nn")
#For the sake of illustration, set high significance level, as example dataset is small
plotTopResults(hypYang, lmmModels, "nn",
    effect = "day", what = "reg",
    effectParameter = "day0", sigLevel = 1-1e-10)
```

44 smoppix

\cap t	W T

Plot the variance weighting function

Description

The observation weights are plotted as a function of number of events. For a univariate PI, this is a line plot, for a bivariate PI this is a scatterplot of majority gene as a function of minority gene, with the weight represented as a colour scale. The minority respectively majority gene are the genes in the gene pair with least and most events

Usage

```
plotWf(obj, pi = obj$pis[1])
```

Arguments

obj The result of a call to addWeightFunction

pi The PI for which to plot the weighting function

Value

For univariate PI, returns a line plot; for bivariate PI a ggplot object

Examples

```
example(addWeightFunction, "smoppix")
plotWf(yangObj, "nn")
```

smoppix

smoppix: Analyze Single Molecule Spatial Omics Data Using the Probabilistic Index

Description

Test for univariate and bivariate spatial patterns in spatial omics data with single-molecule resolution. The tests implemented allow for analysis of nested designs and are automatically calibrated to different biological specimens. Tests for aggregation, colocalization, gradients and vicinity to cell edge or centroid are provided.

Author(s)

Maintainer: Stijn Hawinkel <stijn.hawinkel@psb.ugent.be>(ORCID)

splitWindow 45

See Also

Useful links:

- https://github.com/sthawinke/smoppix
- Report bugs at https://github.com/sthawinke/smoppix/issues

splitWindow

Split a number of plots into rows and columns

Description

Split a number of plots into rows and columns

Usage

```
splitWindow(x)
```

Arguments

X

The number of plots

Value

A vector of length 2 with required number of rows and columns

subSampleP

Subsample a point pattern when it is too large

Description

Subsample a point pattern when it is too large

Usage

```
subSampleP(p, nSims, returnId = FALSE)
```

Arguments

p The point pattern nSims The maximum size

returnId A boolean, should the id of the sampled elements be returned?

Value

A point pattern, subsampled if necessary

46 writeToXlsx

			- 1
c	11	n	\sim
	u	11	u

Helper function to spit gene pairs

Description

Helper function to spit gene pairs

Usage

```
sund(x, sep = "--")
```

Arguments

x character string

sep The character used to split

Value

The split string

Examples

```
GenePair <- "gene1--gene2"
sund(GenePair)</pre>
```

writeToXlsx

Write effect sizes and p-values results to excel worksheet

Description

The results of the linear models are written to an excel spreasdsheet with different tabs for every sign (PI smaller than or larger than 0.5) of every PI, sorted by increasing p-value.

Usage

```
writeToXlsx(obj, file, overwrite = FALSE, digits = 3, sigLevel = 0.05)
```

Arguments

obj	The results of linear model fitting
file	The file to write the results to

overwrite A boolean, should the file be overwritten if it exists already?

digits An integer, the number of significant digits to retain for the PI, raw and adjusted

p-values

sigLevel The significance level threshold to use for the adjusted p-values, only features

exceeding the threshold are written to the file. Set this parameter to 1 to write

all features

Yang 47

Details

If no feature exceeds the significance threshold for a certain pi and parameter combination, an empty tab is created. For fixed effects, a single tab is written for PI differences of any sign. The "baseline" tabs indicate the overall patterns, the other tabs are named after the fixed effects and indicate departure from this baseline depending on this fixed effect

Value

Returns invisible with a message when writing operation successful, otherwise throws an error.

See Also

createWorkbook,writeData, addWorksheet, saveWorkbook

Examples

```
example(fitLMMs, "smoppix")
writeToXlsx(lmmModels, "tmpFile.xlsx")
file.remove("tmpFile.xlsx")
```

Yang

Spatial transcriptomics data of Selaginella moellendorffii roots

Description

Single-molecule spatial transcriptomics smFISH data of Selaginella moellendorffii roots of a replicated experiment by (Yang et al. 2023). Molecule locations, gene identity and design variables are included. Only a subset of the data, consisting of roots 1-3 and sections 1-5 is included in the package for computational and memory reasons. The data are in table format to illustrate conversion to hyperframe using buildHyperFrame.

Usage

```
data(Yang)
```

Format

A data matrix

x,y Molecule coordinatesgene Character vector with gene identitiesroot,section,day Design variables

Source

doi:10.1016/j.cub.2023.08.030

References

Yang X, Poelmans W, Grones C, Lakehal A, Pevernagie J, Bel MV, Njo M, Xu L, Nelissen H, Rybel BD, Motte H, Beeckman T (2023). "Spatial transcriptomics of a lycophyte root sheds light on root evolution." *Curr. Biol.*, **33**(19), 4069 - 4084. ISSN 0960-9822, doi:10.1016/j.cub.2023.08.030.

Index

* datasets	ecdf, 27	
Eng, 19	Eng, 19	
Yang, 47	EngRois (Eng), 19	
* internal	estGradients, 20, 29	
smoppix, 44	estGradientsSingle (estGradients), 20	
	estPis, 9, 14, 16, 22, 25, 27	
addCell, 3, 6, 16, 18, 24	estPisSingle (estPis), 22	
addDesign, 5	evalWeightFunction, 25	
addNuclei, 6	extractResults, 26	
addTab0bs, 7		
addWeightFunction, 9, 25, 44	findEcdfsCell, 27	
addWeightFunction (estPis), 22	findOverlap, 27	
addWorksheet, 47	fitGradient, 21, 28	
as.owin, <i>18</i>	fitLMMs, <i>10</i> , <i>26</i> , <i>29</i> , <i>43</i>	
	fitLMMsSingle, <i>32</i>	
bplapply, 36	fitLMMsSingle(fitLMMs), 29	
buildDataFrame, 8, 17, 25, 31	fitPiModel, 32	
buildFormula, 9	formula, <i>10</i>	
buildHyperFrame, 4, 10, 47		
buildHyperFrame, data.frame-method	getCoordsMat, 32	
(buildHyperFrame), 10	getDesignVars, 33	
buildHyperFrame, list-method	getElement, 34	
(buildHyperFrame), 10	getEventVars, 33	
buildHyperFrame, matrix-method	<pre>getEventVars(getDesignVars), 33</pre>	
(buildHyperFrame), 10	getFeatures, 34	
buildHyperFrame,SpatialExperiment-method	getGp, 35	
(buildHyperFrame), 10	getHypFrame, 35	
buildMoransIDataFrame, 9, 12, 13, 31	getPPPvars, 33	
buildMoransIWeightMat, <i>12</i> , 12	getPPPvars(getDesignVars), 33	
	<pre>getPvaluesGradient (estGradients), 20</pre>	
calcIndividualPIs, 13, 15	getResults(fitLMMs), 29	
calcNNPI, <i>14</i> , 14		
calcWindowDistPI, 15	hyperframe, 11, 47	
centerNumeric, 16	landDalamapulanula 26	
checkFeatures, 16	loadBalanceBplapply, 36	
checkPi, 17	makeDesignVar, 36	
constructDesignVars, 17	makePairs, 37	
convertToOwins, 4, 6, 18	model.matrix, 32	
createWorkbook, 47	Moran. I, 12, 13, 38	
crossdistWrapper, 18	moransI, 37	
Ci 033u13tili appei , 10	mor arist, 37	

50 INDEX

```
mppm, 29
named.contr.sum, 38
nestRandom, 39
p.adjust, 21, 26
plotCells, 39, 42, 43
plotExplore, 40, 42, 43
\verb|plotTopResults|, 42|
plotWf, 44
pnhyper, 15
{\it predict.scam}, {\it 25}
saveWorkbook, 47
scam, 23
smoppix, 44
smoppix-package (smoppix), 44
splitWindow, 45
subSampleP, 45
sund, 46
writeData, 47
writeToXlsx,46
Yang, 47
```