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calcCounts Calculate cluster cell counts
Description

Calculate number of cells per cluster-sample combination

Usage

calcCounts(d_se)

Arguments
d_se Data object from previous steps, in SummarizedExperiment format, containing
cluster labels as a column in the row meta-data (from generateClusters).
Details

Calculate number of cells per cluster-sample combination (referred to as cluster cell ’counts’, *abun-
dances’, or "frequencies’).

The cluster cell counts are required for testing for differential abundance of cell populations, and
are also used for weights and filtering when testing for differential states within cell populations.

Results are returned as a new SummarizedExperiment object, where rows = clusters, columns =
samples, assay = values (counts). (Note that this structure differs from the input data object.)
Value

d_counts: SummarizedExperiment object, where rows = clusters, columns = samples, assay =
values (counts).
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Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Function to create random data (one sample)

d_random <- function(n = 20000, mean = @, sd = 1, ncol = 20, cofactor = 5) {
d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
colnames(d) <- paste@("marker”, sprintf("%02d", 1:ncol))
d

# Create random data (without differential signal)
set.seed(123)
d_input <- list(

samplel = d_random(),

sample2 = d_random(),

sample3 = d_random(),

sample4 = d_random()

experiment_info <- data.frame(
sample_id = factor(paste@("”sample”, 1:4)),
group_id = factor(c("group1”, "groupl”, "group2", "group2")),
stringsAsFactors = FALSE

)

marker_info <- data.frame(
channel_name = paste@("channel”, sprintf("%03d", 1:20)),
marker_name = paste@("marker”, sprintf("%02d", 1:20)),
marker_class = factor(c(rep("type"”, 10), rep("state”, 10)),
levels = c("type", "state”, "none")),
stringsAsFactors = FALSE
)

# Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

# Transform data
d_se <- transformData(d_se)

# Generate clusters
d_se <- generateClusters(d_se)

# Calculate counts
d_counts <- calcCounts(d_se)

calcMedians Calculate cluster medians

Description

Calculate cluster medians (median expression for each cluster-sample-marker combination)
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Usage

calcMedians(d_se)

Arguments
d_se Data object from previous steps, in SummarizedExperiment format, contain-
ing cluster labels as a column in the row meta-data (from generateClusters).
Column meta-data is assumed to contain a factor marker_class.
Details

Calculate median marker expression for each cluster and sample (i.e. medians for each cluster-
sample-marker combination).
The data object is assumed to contain a factor marker_class in the column meta-data (see prepareData),

n on

which indicates the protein marker class for each column of data ("type”, "state”, or "none").

The cluster medians are required for testing for differential states within cell populations, and for
plotting purposes.

Variables id_type_markers and id_state_markers are saved in the metadata slot of the output
object. These can be used to identify the ’cell type’ and ’cell state’ markers in the list of assays in
the output SummarizedExperiment object, which is useful in later steps of the *diffcyt’ pipeline.

Results are returned as a new SummarizedExperiment object, where rows = clusters, columns =
samples, sheets (assays slot) = markers. Note that there is a separate table of values (assay) for
each marker. The metadata slot also contains variables id_type_markers and id_state_markers,
which can be used to identify the sets of cell type and cell state markers in the list of assays.

Value

d_medians: SummarizedExperiment object, where rows = clusters, columns = samples, sheets
(assays slot) = markers. The metadata slot contains variables id_type_markers and id_state_markers,
which can be accessed with metadata(d_medians)$id_type_markers and metadata(d_medians)$id_state_marker

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Function to create random data (one sample)

d_random <- function(n = 20000, mean = @, sd = 1, ncol = 20, cofactor = 5) {
d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
colnames(d) <- paste@("marker"”, sprintf("%02d", 1:ncol))
d

3

# Create random data (without differential signal)
set.seed(123)
d_input <- list(

samplel = d_random(),

sample2 = d_random(),

sample3 = d_random(),

sample4 = d_random()

)

experiment_info <- data.frame(
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sample_id = factor(paste@("”sample”, 1:4)),
group_id = factor(c("groupl”, "groupl”, "group2", "group2")),
stringsAsFactors = FALSE

)

marker_info <- data.frame(
channel_name = paste@("channel”, sprintf("%03d", 1:20)),
marker_name = paste@("marker"”, sprintf("%02d", 1:20)),
marker_class = factor(c(rep("type”, 10), rep("state”, 10)),
levels = c("type”, "state”, "none")),
stringsAsFactors = FALSE
)

# Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

# Transform data
d_se <- transformData(d_se)

# Generate clusters
d_se <- generateClusters(d_se)

# Calculate medians
d_medians <- calcMedians(d_se)

calcMediansByClusterMarker
Calculate medians (by cluster and marker)

Description

Calculate medians for each cluster-marker combination

Usage

calcMediansByClusterMarker(d_se)

Arguments
d_se Data object from previous steps, in SummarizedExperiment format, contain-
ing cluster labels as a column in the row meta-data (from generateClusters).
Column meta-data is assumed to contain a factor marker_class.
Details

Calculate median marker expression for each cluster, across all samples (i.e. medians for each
cluster-marker combination).

The data object is assumed to contain a factor marker_class in the column meta-data (see prepareData),
which indicates the protein marker class for each column of data ("type”, "state"”, or "none").
Cluster medians are calculated for all markers.

The medians by cluster and marker are required for plotting purposes.
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Variables id_type_markers and id_state_markers are saved in the metadata slot of the output
object. These can be used to identify the ’cell type’ and ’cell state’ markers in the sequence of
markers (columns) in the output object, which is useful in later steps of the *diffcyt’ pipeline.

Results are returned as a new SummarizedExperiment object, where rows = clusters, columns =
markers, assay = values (marker expression values). The metadata slot also contains variables
id_type_markers and id_state_markers, which can be used to identify the sets of cell type and
cell state markers in the columns.

Value

d_medians_by_cluster_marker: SummarizedExperiment object, where rows = clusters, columns

= markers, assay = values (marker expression values). The metadata slot contains variables
id_type_markers and id_state_markers, which can be accessed with metadata(d_medians)$id_type_markers
and metadata(d_medians)$id_state_markers.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Function to create random data (one sample)

d_random <- function(n = 20000, mean = @, sd = 1, ncol = 20, cofactor = 5) {
d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
colnames(d) <- paste@("marker"”, sprintf("%02d", 1:ncol))
d

3

# Create random data (without differential signal)
set.seed(123)
d_input <- list(

samplel = d_random(),

sample2 = d_random(),

sample3 = d_random(),

sample4 = d_random()

)

experiment_info <- data.frame(
sample_id = factor(paste@("sample”, 1:4)),
group_id = factor(c("groupl”, "groupl”, "group2", "group2")),
stringsAsFactors = FALSE

)

marker_info <- data.frame(
channel_name = paste@("channel”, sprintf("%03d", 1:20)),
marker_name = paste@("marker”, sprintf("%02d", 1:20)),
marker_class = factor(c(rep("type"”, 10), rep("state”, 10)),
levels = c("type", "state”, "none")),
stringsAsFactors = FALSE
)

# Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

# Transform data
d_se <- transformData(d_se)
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# Generate clusters
d_se <- generateClusters(d_se)

# Calculate medians (by cluster and marker)
d_medians_by_cluster_marker <- calcMediansByClusterMarker(d_se)

calcMediansBySampleMarker
Calculate medians (by sample and marker)

Description

Calculate medians for each sample-marker combination

Usage

calcMediansBySampleMarker (d_se)

Arguments
d_se Data object from previous steps, in SummarizedExperiment format, contain-
ing cluster labels as a column in the row meta-data (from generateClusters).
Column meta-data is assumed to contain a factor marker_class.
Details

Calculate overall median marker expression for each sample (i.e. medians for each sample-marker
combination).

The data object is assumed to contain a factor marker_class in the column meta-data (see prepareData),
which indicates the protein marker class for each column of data ("type”, "state”, or "none").
Cluster medians are calculated for all markers.

The medians by sample and marker are required for plotting purposes.

Variables id_type_markers and id_state_markers are saved in the metadata slot of the output
object. These can be used to identify the ’cell type’ and ’cell state’ markers in the sequence of
markers (columns) in the output object, which is useful in later steps of the *diffcyt’ pipeline.

Results are returned as a new SummarizedExperiment object, where rows = samples, columns =
markers, assay = values (marker expression values). The metadata slot also contains variables
id_type_markers and id_state_markers, which can be used to identify the sets of cell type and
cell state markers in the columns.

Value

d_medians_by_sample_marker: SummarizedExperiment object, where rows = samples, columns

= markers, assay = values (marker expression values). The metadata slot contains variables
id_type_markersand id_state_markers, which can be accessed with metadata(d_medians)$id_type_markers
and metadata(d_medians)$id_state_markers.
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Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Function to create random data (one sample)

d_random <- function(n = 20000, mean = @, sd = 1, ncol = 20, cofactor = 5) {
d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
colnames(d) <- paste@("marker”, sprintf("%02d", 1:ncol))
d

# Create random data (without differential signal)
set.seed(123)
d_input <- list(

samplel = d_random(),

sample2 = d_random(),

sample3 = d_random(),

sample4 = d_random()

experiment_info <- data.frame(
sample_id = factor(paste@("”sample”, 1:4)),
group_id = factor(c("group1”, "groupl”, "group2", "group2")),
stringsAsFactors = FALSE

)

marker_info <- data.frame(
channel_name = paste@("channel”, sprintf("%03d", 1:20)),
marker_name = paste@("marker"”, sprintf("%02d", 1:20)),
marker_class = factor(c(rep("type"”, 10), rep("state”, 10)),
levels = c("type", "state”, "none")),
stringsAsFactors = FALSE
)

# Prepare data
d_se <- prepareData(d_input, experiment_info, marker_info)

# Transform data
d_se <- transformData(d_se)

# Generate clusters
d_se <- generateClusters(d_se)

# Calculate medians (by sample and marker)
d_medians_by_sample_marker <- calcMediansBySampleMarker(d_se)

createContrast Create contrast matrix

Description

Create contrast matrix for differential testing
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Usage

createContrast(contrast)

Arguments
contrast Vector defining the contrast of interest. This should be a numeric vector spec-

ifying the combination of model parameters to test whether they are equal to
zero. The entries correspond to the columns of the design matrix, or the levels
of the fixed effect terms in the model formula. For example, using a design ma-
trix: ¢(@, 1, 0, @, @) to test whether a single parameter corresponding to the
second column in the design matrix is equal to zero.

Details

Creates a contrast matrix specifying the comparison of interest, in the correct format for the differ-
ential testing functions. This can then be provided to the differential testing functions, together with
either a design matrix or model formula, and the data object.

The argument contrast defines the contrast of interest. This should be a numeric vector specifying
the combination of model parameters to test whether they are equal to zero. In many cases, this will
simply be a vector of zeros and a single entry equal to one; this will test whether a single parameter
is equal to zero (e.g. ¢(0, 1, 0, 0, 0)).

If a design matrix has been used, the entries of contrast correspond to the columns of the design
matrix; and the length of contrast equals the number of columns in the design matrix. If a model
formula has been used, the entries correspond to the levels of the fixed effect terms; and the length
equals the number of levels of the fixed effect terms.

The contrast matrix is formatted as a matrix with a single column containing the contrast of interest.
To perform tests for multiple contrasts, run this function and the corresponding differential testing
function multiple times.

Value
contrast: Returns a contrast matrix containing the contrast of interest, formatted as a matrix with
a single column.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Example: contrast matrix
createContrast(c(@, 1, 0, 0, 0))

createDesignMatrix Create design matrix

Description

Create design matrix for model fitting
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Usage

createDesignMatrix(experiment_info, cols_design = NULL)

Arguments

experiment_info
data.frame, DataFrame, or tbl_df of experiment information (which was also
previously provided to prepareData). This should be a data frame containing
all factors and covariates of interest; e.g. group IDs, block IDs, batch IDs, and
continuous covariates.

cols_design Argument specifying the columns of experiment_info to include in the design
matrix. This can be provided as a character vector of column names, a numeric
vector of column indices, or a logical vector. Default = all columns.

Details

Creates a design matrix specifying the models to be fitted. (Alternatively, createFormula can be
used to generate a model formula instead of a design matrix.)

The design matrix can then be provided to the differential testing functions, together with the data
object and contrast matrix.

The experiment_info input (which was also previously provided to prepareData) should be a
data frame containing all factors and covariates of interest. For example, depending on the experi-
mental design, this may include the following columns:

* group IDs (e.g. groups for differential testing)

block IDs (e.g. patient IDs in a paired design)

batch IDs (batch effects)

e continuous covariates

The argument cols_design specifies which columns in experiment_info to include in the design
matrix. (For example, there may be an additional column of sample IDs, which should not be
included.) This can be provided as a character vector of column names, a numeric vector of column
indices, or a logical vector. By default, all columns are included.

Columns of indicator variables (e.g. group IDs, block IDs, and batch IDs) in experiment_info
must be formatted as factors (otherwise they will be treated as numeric values). The indicator
columns will be expanded into the design matrix format. The names for each parameter are taken
from the column names of experiment_info.

All factors provided here will be included as fixed effect terms in the design matrix. Alternatively,
to use random effects for some factors (e.g. for block IDs), see createFormula; or, depending
on the method used, provide them directly to the differential testing function (testDA_voom and
testDS_limma).

Value

design: Returns a design matrix (numeric matrix), with one row per sample, and one column per
model parameter.
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Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Example: simple design matrix

experiment_info <- data.frame(
sample_id = factor(paste@("”sample”, 1:4)),
group_id = factor(c("groupl1”, "groupl”, "group2", "group2")),
stringsAsFactors = FALSE

)

createDesignMatrix(experiment_info, cols_design = "group_id")

# Example: more complex design matrix: patient IDs and batch IDs
experiment_info <- data.frame(
sample_id = factor(paste@("sample”, 1:8)),
group_id = factor(rep(paste@("group”, 1:2), each = 4)),
patient_id = factor(rep(paste@("patient”, 1:4), 2)),
batch_id = factor(rep(paste@("batch”, 1:2), 4)),
stringsAsFactors = FALSE
)

createDesignMatrix(experiment_info, cols_design = c("group_id", "patient_id", "batch_id"))

# Example: more complex design matrix: continuous covariate
experiment_info <- data.frame(
sample_id = factor(paste@("”sample”, 1:4)),
group_id = factor(c("groupl”, "groupl”, "group2", "group2")),
age = c(52, 35, 71, 60),
stringsAsFactors = FALSE

)
createDesignMatrix(experiment_info, cols_design = c("group_id"”, "age"))
createFormula Create model formula and corresponding data frame of variables
Description

Create model formula and corresponding data frame of variables for model fitting

Usage

createFormula(experiment_info, cols_fixed = NULL, cols_random = NULL)

Arguments

experiment_info
data.frame, DataFrame, or tb1_df of experiment information (which was also
previously provided to prepareData). This should be a data frame containing
all factors and covariates of interest; e.g. group IDs, block IDs, batch IDs, and
continuous covariates.

cols_fixed Argument specifying columns of experiment_info to include as fixed effect
terms in the model formula. This can be provided as a character vector of col-
umn names, a numeric vector of column indices, or a logical vector.
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cols_random Argument specifying columns of experiment_info to include as random inter-
cept terms in the model formula. This can be provided as a character vector of
column names, a numeric vector of column indices, or a logical vector. Default
= none.

Details

Creates a model formula and corresponding data frame of variables specifying the models to be
fitted. (Alternatively, createDesignMatrix can be used to generate a design matrix instead of a
model formula.)

The output is a list containing the model formula and corresponding data frame of variables (one
column per formula term). These can then be provided to differential testing functions that require
a model formula, together with the main data object and contrast matrix.

The experiment_info input (which was also previously provided to prepareData) should be a
data frame containing all factors and covariates of interest. For example, depending on the experi-
mental design, this may include the following columns:

* group IDs (e.g. groups for differential testing)

* block IDs (e.g. patient IDs in a paired design; these may be included as either fixed effect or
random effects)

 batch IDs (batch effects)
e continuous covariates

» sample IDs (e.g. to include random intercept terms for each sample, to account for overdisper-
sion typically seen in high-dimensional cytometry data; this is known as an ’observation-level
random effect’ (OLRE); see see Nowicka et al., 2017, F1000Research for more details)

The arguments cols_fixed and cols_random specify the columns in experiment_info to include
as fixed effect terms and random intercept terms respectively. These can be provided as character
vectors of column names, numeric vectors of column indices, or logical vectors. The names for
each formula term are taken from the column names of experiment_info.

Note that for some methods, random effect terms (e.g. for block IDs) must be provided directly to
the differential testing function instead (testDA_voom and testDS_limma).

If there are no random effect terms, it will usually be simpler to use a design matrix instead of a
model formula; see createDesignMatrix.

Value
formula: Returns a list with three elements:
¢ formula: model formula

* data: data frame of variables corresponding to the model formula

* random_terms: TRUE if model formula contains any random effect terms

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Example: model formula
experiment_info <- data.frame(
sample_id = factor(paste@("”sample”, 1:8)),
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group_id = factor(rep(paste@("group”, 1:2), each = 4)),
patient_id = factor(rep(paste@("patient”, 1:4), 2)),
stringsAsFactors = FALSE

)

createFormula(experiment_info, cols_fixed = "group_id", cols_random = c("sample_id", "patient_id"))

diffcyt Run “diffcyt’ pipeline

Description

Wrapper function to run complete ’diffcyt’ pipeline

Usage

diffcyt(
d_input,
experiment_info = NULL,
marker_info = NULL,
design = NULL,
formula = NULL,
contrast,
analysis_type = c("DA", "DS"),
method_DA = c("diffcyt-DA-edgeR"”, "diffcyt-DA-voom”, "diffcyt-DA-GLMM"),
method_DS = c("diffcyt-DS-limma”, "diffcyt-DS-LMM"),
markers_to_test = NULL,
clustering_to_use = NULL,
cols_to_include = NULL,
subsampling = FALSE,
n_sub = NULL,
seed_sub = NULL,
transform = TRUE,
cofactor = 5,
cols_clustering = NULL,
xdim = 10,
ydim = 10,
meta_clustering
meta_k = 40,
seed_clustering = NULL,
min_cells = 3,
min_samples = NULL,
normalize = FALSE,
norm_factors = "TMM",
trend_method = "none”,
block_id = NULL,
trend = TRUE,
weights = TRUE,
plot = FALSE,
path = ".",
verbose = TRUE

FALSE,
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Arguments

d_input Input data. Must be either: (i) a flowSet or list of flowFrames, DataFrames,
data.frames, or matrices as input (one flowFrame or list item per sample)
(see prepareData); or (ii) a CATALYST daFrame (containing cluster labels in
rowData; see vignette for an example).

experiment_info
data.frame, DataFrame, or tbl_df of experiment information, for example
sample IDs and group IDs. Must contain a column named sample_id. See
prepareData. (Not required when providing a CATALYST daFrame for d_input.)

marker_info data.frame, DataFrame, or tbl_df of marker information for each column of
data. This should contain columns named marker_name and marker_class.
The columns contain: (i) marker names (and any other column names); and
(ii) a factor indicating the marker class for each column (with entries "type"”,
"state"”, or "none”). See prepareData. (Not required when providing a
CATALYST daFrame for d_input.)

design Design matrix, created with createDesignMatrix. See createDesignMatrix.
formula Model formula object, created with createFormula. See createFormula.
contrast Contrast matrix, created with createContrast. See createContrast.

analysis_type Type of differential analysis to perform: differential abundance (DA) of cell
populations, or differential states (DS) within cell populations. Options are "DA"
and "DS". See testDA_edgeR, testDA_voom, testDA_GLMM, testDS_limma, or
testDS_LMM.

method_DA Method to use for calculating differential abundance (DA) tests. Options are
"diffcyt-DA-edgeR", "diffcyt-DA-voom”, and "diffcyt-DA-GLMM". De-
fault = "diffcyt-DA-edgeR". See testDA_edgeR, testDA_voom, or testDA_GLMM.

method_DS Method to use for calculating differential state (DS) tests. Options are "diffcyt-DS-1imma”
and "diffcyt-DS-LMM". Default = "diffcyt-DS-1imma”. See testDS_limma
or testDS_LMM.

markers_to_test
(Optional) Logical vector specifying which markers to test for differential ex-
pression (from the set of markers stored in the assays of d_medians; for method
testDS_limma or testDS_LMM). Default = all ’cell state’ markers, which are
identified by the logical vector id_state_markers stored in the meta-data of
d_medians. See testDS_limma or testDS_LMM.

clustering_to_use
(Optional) Column name indicating which set of cluster labels to use for dif-
ferential testing, when input data are provided as a CATALYST daFrame object
containing multiple sets of cluster labels. (In this case, the metadata of the
daFrame object is assumed to contain a data frame named cluster_codes;
clustering_to_use is the column name of the selected column in cluster_codes.
If clustering_to_use is provided, an identifier clustering_name to identify
this column will also be saved in the metadata of the output object.) Default =
NULL, in which case cluster labels stored in column named cluster_id in the
rowData of the daFrame object are used.

cols_to_include
Logical vector indicating which columns to include from the input data. Default
= all columns. See prepareData.

subsampling Whether to use random subsampling to select an equal number of cells from
each sample. Default = FALSE. See prepareData.



diffcyt 15

n_sub Number of cells to select from each sample by random subsampling, if subsampling
= TRUE. Default = number of cells in smallest sample. See prepareData.

seed_sub Random seed for subsampling. Set to an integer value to generate reproducible
results. Default = NULL. See prepareData.

transform Whether to apply ’arcsinh’ transform. This may be set to FALSE if the input
data has already been transformed. Default = TRUE. See transformData.

cofactor Cofactor parameter for "arcsinh’ transform. Default = 5, which is appropriate for
mass cytometry (CyTOF) data. For fluorescence flow cytometry, we recommend
cofactor = 150 instead. See transformData.

cols_clustering
Columns to use for clustering. Default = NULL, in which case markers identified
as “cell type’ markers (with entries "type") in the vector marker_class in the
column meta-data of d_se will be used. See generateClusters.

xdim Horizontal length of grid for self-organizing map for FlowSOM clustering (num-
ber of clusters = xdim * ydim). Default = 10 (i.e. 100 clusters). See generateClusters.

ydim Vertical length of grid for self-organizing map for FlowSOM clustering (number
of clusters = xdim * ydim). Default = 10 (i.e. 100 clusters). See generateClusters.
meta_clustering
Whether to include FlowSOM ’meta-clustering’ step. Default = FALSE. See
generateClusters.

meta_k Number of meta-clusters for FlowSOM, if meta-clustering = TRUE. Default =
40. See generateClusters.

seed_clustering
Random seed for clustering. Set to an integer value to generate reproducible
results. Default = NULL. See generateClusters.

min_cells Filtering parameter. Default = 3. Clusters are kept for differential testing if they
have at least min_cells cells in at least min_samples samples. See testDA_edgeR,
testDA_voom, testDA_GLMM, testDS_limma, or testDS_LMM.

min_samples Filtering parameter. Default = number of samples / 2, which is appropriate for
two-group comparisons (of equal size). Clusters are kept for differential testing
if they have at least min_cells cells in at least min_samples samples. See
testDA_edgeR, testDA_voom, testDA_GLMM, testDS_limma, or testDS_LMM.

normalize Whether to include optional normalization factors to adjust for composition ef-
fects. Default = FALSE. See testDA_edgeR, testDA_voom, or testDA_GLMM.

norm_factors Normalization factors to use, if normalize = TRUE. Default = "TMM", in which
case normalization factors are calculated automatically using the "trimmed mean
of M-values’ (TMM) method from the edgeR package. Alternatively, a vector
of values can be provided (the values should multiply to 1). See testDA_edgeR,
testDA_voom, or testDA_GLMM.

trend_method  Method for estimating dispersion trend; passed to function estimateDisp from
edgeR package (for method testDA_edgeR). Default = "none". (See estimateDisp
help file from edgeR package for other options.) See testDA_edgeR.

block_id (Optional) Vector or factor of block IDs (e.g. patient IDs) for paired experi-
mental designs, to be included as random effects (for method testDA_voom or
testDS_limma). If provided, the block IDs will be included as random effects
using the limma duplicateCorrelation methodology. Alternatively, block
IDs can be included as fixed effects in the design matrix (createDesignMatrix).
See testDA_voom or testDS_limma.
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trend (Optional) Whether to fit a mean-variance trend when calculating moderated
tests with function eBayes from limma package (for method testDS_limma).
When trend = TRUE, this is known as the 1imma-trend method (Law et al.,
2014; Phipson et al., 2016). Default = TRUE. See testDS_limma.

weights (Optional) Whether to include precision weights (for method testDS_limma
or testDS_LMM). For method testDS_limma, cluster cell counts will be used
as precision weights (across all samples and clusters); this allows the 1imma
model fitting functions to account for uncertainty due to the total number of
cells per sample (library sizes) and total number of cells per cluster. For methods
testDS_LMM, cluster cell counts will be used as precision weights within each
model (across samples, i.e. within the model for each cluster); these represent
the relative uncertainty in calculating each median value (within each model).
Default = TRUE. See testDS_limma or testDS_LMM.

plot Whether to save diagnostic plots (for method testDA_voom or testDS_limma).
Default = FALSE. See testDA_voom or testDS_limma.
path Path for diagnostic plots, if plot = TRUE (for method testDA_voomor testDS_limma).
Default = current working directory. See testDA_voom or testDS_limma.
verbose Whether to print status messages during each step of the pipeline. Default =
TRUE.
Details

This wrapper function runs the complete *diffcyt’ analysis pipeline, by calling the functions for the
individual steps in the pipeline in the correct sequence.

For more details about the functions for the individual steps, see the package vignette and the
function help pages. Running the individual functions may provide additional flexibility, especially
for complex analyses.

The input data can be provided as a flowSet or a list of flowFrames, DataFrames, data.frames,
or matrices (one flowFrame or list item per sample). Alternatively, it is also possible to provide the
input as a daFrame object from the CATALYST Bioconductor package (Chevrier, Crowell, Zanotelli et
al., 2018). This can be useful when initial exploratory analyses and clustering have been performed
using CATALYST; the daFrame object from CATALYST (containing cluster labels in the rowData) can
then be provided directly to the diffcyt functions for differential testing.

Minimum required arguments when not providing a flowSet or list of flowFrames, DataFrames,
data. frames, or matrices:

e d_input

e experiment_info

» marker_info

* either design or formula (depending on the differential testing method used)
* contrast

* analysis_type
Minimum required arguments when providing a CATALYST daFrame object:

e d_input
* either design or formula (depending on the differential testing method used)
* contrast

e analysis_type
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Value

Returns a list containing the results object res, as well as the data objects d_se, d_counts, d_medians,
d_medians_by_cluster_marker, and d_medians_by_sample_marker. (If a CATALYST daFrame
object was used as input, the output list contains objects res, d_counts, and d_medians.) The
structure of res depends on the differential testing method used. See testDA_edgeR, testDA_voom,
testDA_GLMM, testDS_limma, or testDS_LMM.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Function to create random data (one sample)

d_random <- function(n = 20000, mean = @, sd = 1, ncol = 20, cofactor = 5) {
d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
colnames(d) <- paste@("marker”, sprintf("%02d", 1:ncol))
d

3

# Create random data (without differential signal)
set.seed(123)
d_input <- list(

samplel = d_random(),

sample2 = d_random(),

sample3 = d_random(),

sample4 = d_random()

)

# Add differential abundance (DA) signal

ix_DA <- 801:900

ix_cols_type <- 1:10

d_input[[3]J1[ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol
d_input[[4]11[ix_DA, ix_cols_type] <- d_random(n = 1000, mean = 2, ncol

10)
10)

# Add differential states (DS) signal

ix_DS <- 901:1000

ix_cols_DS <- 19:20

d_input[[1]J]1[ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[2]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
d_input[[3]1[ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)
d_input[[4]1[ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)

experiment_info <- data.frame(
sample_id = factor(paste@("sample”, 1:4)),
group_id = factor(c("groupl”, "groupl”, "group2", "group2")),
stringsAsFactors = FALSE

)

marker_info <- data.frame(
channel_name = paste@("channel”, sprintf("%03d", 1:20)),
marker_name = paste@("marker”, sprintf("%02d", 1:20)),
marker_class = factor(c(rep("type"”, 10), rep("state”, 10)),
levels = c("type", "state”, "none")),
stringsAsFactors = FALSE
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# Create design matrix
design <- createDesignMatrix(experiment_info, cols_design = "group_id")

# Create contrast matrix
contrast <- createContrast(c(@, 1))

# Test for differential abundance (DA) of clusters (using default method 'diffcyt-DA-edgeR')
out_DA <- diffcyt(d_input, experiment_info, marker_info,

design = design, contrast = contrast,

analysis_type = "DA"”, method_DA = "diffcyt-DA-edgeR",

seed_clustering = 123, verbose = FALSE)

# Test for differential states (DS) within clusters (using default method 'diffcyt-DS-limma')
out_DS <- diffcyt(d_input, experiment_info, marker_info,

design = design, contrast = contrast,

analysis_type = "DS"”, method_DS = "diffcyt-DS-limma”,

seed_clustering = 123, verbose = FALSE)

# Display results for top DA clusters
topTable(out_DA, format_vals = TRUE)

# Display results for top DS cluster-marker combinations
topTable(out_DS, format_vals = TRUE)

# Plot heatmap for DA tests
plotHeatmap(out_DA, analysis_type = "DA")

# Plot heatmap for DS tests
plotHeatmap(out_DS, analysis_type = "DS")

generateClusters Generate clusters

Description

Generate high-resolution clusters for diffcyt analysis

Usage

generateClusters(
d_se,
cols_clustering = NULL,
xdim = 10,
ydim = 10,
meta_clustering
meta_k = 40,
seed_clustering = NULL,

FALSE,
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Arguments

d_se Transformed input data, from prepareData and transformData.

cols_clustering
Columns to use for clustering. Default = NULL, in which case markers identified
as ’cell type’ markers (with entries "type"”) in the vector marker_class in the
column meta-data of d_se will be used.

xdim Horizontal length of grid for self-organizing map for FlowSOM clustering (num-
ber of clusters = xdim * ydim). Default = 10 (i.e. 100 clusters).

ydim Vertical length of grid for self-organizing map for FlowSOM clustering (number
of clusters = xdim * ydim). Default = 10 (i.e. 100 clusters).

meta_clustering
Whether to include FlowSOM ’meta-clustering’ step. Default = FALSE.

meta_k Number of meta-clusters for FlowSOM, if meta-clustering = TRUE. Default =
40.

seed_clustering
Random seed for clustering. Set to an integer value to generate reproducible
results. Default = NULL.

Other parameters to pass to the FlowSOM clustering algorithm (through the
function BuildSOM).

Details

Performs clustering to group cells into clusters representing cell populations or subsets, which can
then be further analyzed by testing for differential abundance of cell populations or differential
states within cell populations. By default, we use high-resolution clustering or over-clustering (i.e.
we generate a large number of small clusters), which helps ensure that rare populations are ade-
quately separated from larger ones.

Data is assumed to be in the form of a SummarizedExperiment object generated with prepareData
and transformed with transformData.

The input data object d_se is assumed to contain a vector marker_class in the column meta-data.
This vector indicates the marker class for each column ("type”, "state”, or "none”). By default,
clustering is performed using the ’cell type’ markers only. For example, in immunological data,
this may be the lineage markers. The choice of cell type markers is an important design choice for
the user, and will depend on the underlying experimental design and research questions. It may
be made based on prior biological knowledge or using data-driven methods. For an example of a

data-driven method of marker ranking and selection, see Nowicka et al. (2017), F1000Research.

By default, we use the FlowSOM clustering algorithm (Van Gassen et al. 2015, Cytometry Part A,
available from Bioconductor) to generate the clusters. We previously showed that F1owSOM gives
very good clustering performance for high-dimensional cytometry data, for both major and rare cell
populations, and is extremely fast (Weber and Robinson, 2016, Cytometry Part A).

The clustering is run at high resolution to give a large number of small clusters (i.e. over-clustering).
This is done by running only the initial ’self-organizing map’ clustering step in the F1owSOM algo-
rithm, i.e. without the final *'meta-clustering’ step. This ensures that small or rare populations are
adequately separated from larger populations, which is crucial for detecting differential signals for
extremely rare populations.

The minimum spanning tree (MST) object from BuildMST is stored in the experiment metadata
slot in the SummarizedExperiment object d_se, and can be accessed with metadata(d_se) $MST.
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Value

d_se: Returns the SummarizedExperiment input object, with cluster labels for each cell stored
in an additional column of row meta-data. Row meta-data can be accessed with rowData. The
minimum spanning tree (MST) object is also stored in the metadata slot, and can be accessed with
metadata(d_se) $MST.

Examples

# For a complete workflow example demonstrating each step in the 'diffcyt' pipeline,
# see the package vignette.

# Function to create random data (one sample)

d_random <- function(n = 20000, mean = @, sd = 1, ncol = 20, cofactor = 5) {
d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
colnames(d) <- paste@("marker”, sprintf("%02d", 1:ncol))
d

3

# Create random data (without differential signal)
set.seed(123)
d_input <- list(
samplel = d_random(),
sample2 = d_random(),
sample3 = d_random(