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Abstract

When dealing with large scale gene expression studies, observations are commonly con-
taminated by sources of unwanted variation such as platforms or batches. Not taking this
unwanted variation into account when analyzing the data can lead to spurious associations and
to missing important signals. When the analysis is unsupervised, e.g. when the goal is to clus-
ter the samples or to build a corrected version of the dataset — as opposed to the study of an
observed factor of interest — taking unwanted variation into account can become a difficult
task. The factors driving unwanted variation may be correlated with the unobserved factor of
interest, so that correcting for the former can remove the latter if not done carefully. RUVnor-
malize implements methods described inJacob et al.[[2012] to estimate and remove unwanted
variation from microarray gene expression data. These methods rely on negative control genes
and replicate samples.

1 Introduction

Over the last few years, microarray-based gene expression studies involving a large number of
samples have been conducted [Cardoso et al., 2007, (Cancer Genome Atlas Research Networkl
2008]], with the goal of helping understand or predict some particular factors of interest like the
prognosis or the subtypes of a cancer. Such large gene expression studies are often carried out
over several years, may involve several hospitals or research centers and typically contain some
unwanted variation. Sources of unwanted variation can be technical elements such as batches,
different platforms or laboratories, or any biological signal which is not the factor of interest of the
study such as heterogeneity in ages or different ethnic groups.

Unwanted variation can easily lead to spurious associations. For example when one is looking
for genes which are differentially expressed between two subtypes of cancer, the observed differ-
ential expression of some genes could actually be caused by differences between laboratories if
laboratories are partially confounded with subtypes. When doing clustering to identify new sub-
groups of the disease, one may actually identify some of the unwanted factors if their effects on
gene expression are stronger than the subgroup effect. If one is interested in predicting prognosis,
one may actually end up predicting whether the sample was collected at the beginning or at the end



of the study because better prognosis patients were accepted at the end of the study. In this case,
the classifier obtained would have little value for predicting the prognosis of new patients.

Similar problems arise when trying to combine several smaller studies rather than working
on one large heterogeneous study: in a dataset resulting from the merging of several studies the
strongest effect one can observe is generally related to the membership of samples to different
studies. A very important objective is therefore to remove this unwanted variation without losing
the variation of interest.

A large number of methods have been proposed to tackle this problem, mostly using linear
models. When both the factor of interest and the unwanted factors are observed, the problem
essentially boils down to a linear regression [Johnson et al., 2007]. When the factor of interest is
observed but the unwanted factors are not, the latter need to be estimated before a regression is
possible. This is typically done using the covariance structure of the gene expression matrix [[Kang
et al., [2008]], the residuals after an ordinary regression [Leek and Storey| 2007, [Listgarten et al.
2010] or negative control genes [Gagnon-Bartsch and Speed, [2012]. Finally if the factor of interest
itself is not defined, some methods [Alter et al., [2000]] use singular value decomposition (SVD)
on gene expression to identify and remove the unwanted variation and others [Benito et al., [2004]
remove observed batches by linear regression.

RUVnormalize addresses this latter case where there is no predefined factor of interest. This
situation arises when performing unsupervised estimation tasks such as clustering or PCA, in the
presence of unwanted variation. It can also be the case that one needs to normalize a dataset
without knowing which factors of interest will be studied. Our main objective is to correct the
gene expression by estimating and removing the unwanted variation, without removing the —
unobserved — variation of interest.

For more detail about the statistical model and method, see |Jacob et al.|[2012]] and references
therein.

2 Software features

RUVnormalize takes as input gene expression data, negative control genes and replicate samples,
and offers the following functionalities:

Gene expression correction RUVnormalize estimates the unwanted variation from negative con-
trol genes or replicate samples and removes it from the input gene expression data, returning
a corrected matrix.

Representation RUVnormalize provides a function to represent the influence of unwanted varia-
tion on gene expression.



3 Case studies

We now show on a particular dataset how RUVnormalize can be used to remove unwanted variation
from gene expression data.

Vawter et al.|[2004] systematically measured the expression of 12, 600 genes for 5 male and 5
female patients, with the goal to study gender related differential expression. The samples come
from different brain regions and are hybridized from different labs, both of which affect gene
expression. Ideally, a correction method applied to this dataset would remove the effect of these
unwanted sources of variation without affecting the gender signal.

We apply various correction methods on this dataset and assess how well the corrected data
clusters by gender.

3.1 Loading the library and the data

We load the RUVnormalize package by typing or pasting the following codes in R command line.
We also need the spams package.

>
>

vV VvV VVVVVVVVVVVVVVYV

library (RUVnormalize)

library (RUVnormalizeData)

We then load the expression data, control genes and known factors affecting the expression:

data ('gender', package='RUVnormalizeData')

Y <-
X <-
X <-
X <=
chip

t (exprs (gender))

as.numeric (phenoData (gender) Sgender == 'M')
X — mean (X)

cbind (X/ (sqrt (sum(X"2))))

<- annotation (gender)

## Extract regions and labs for plotting purposes

lregions <- sapply (rownames (Y),FUN=function(s) strsplit(s,'_")[[1]][2])
llabs <- sapply (rownames (Y),FUN=function(s) strsplit(s,'_'")[[1]][3])

## Dimension of the factors

m <-—
n <-—
p <=
Y <-
cIdx

nrow (Y)

ncol (Y)

ncol (X)

scale (Y, scale=FALSE) # Center gene expressions

<- which (featureData (gender) SisNegativeControl) # Negative control genes

## Number of genes kept for clustering, based on their variance
nKeep <- 1260

We prepare variables which will then be used to plot the data before and after correction.



## Prepare plots

annot <- cbind(as.character(sign(X)))

colnames (annot) <- 'gender'

plAnnots <— 1ist ('gender'='categorical')

lab.and.region <- apply(rbind(lregions, llabs),2,FUN=function(v) paste (v, coll:
gender.col <- c('-1' = "deeppink3", 'l1' = "blue")

vV V.V Vv VvV

Gene expression in this dataset is strongly affected by a platform effect. This effect is rea-
sonably well corrected by centering the data by platform, so we apply this centering as a pre-
processing.

> ## Remove platform effect by centering.
> Y[chip=="hgu9ba.db',] <- scale(Y[chip=='hgu95a.db',], scale=FALSE)
> Y[chip=="hgu95av2.db',] <- scale(Y[chip=="hgu95av2.db',], scale=FALSE)

Some correction methods use a table describing which samples are replicates of each others.
The table has as many columns as the largest set of replicates for one sample. Each row corresponds
to a set of replicates of the same sample and gives the row indices of the replicates in the gene
expression matrix, padded with -1 entries.

> ## Prepare control samples

> sclIdx <—- matrix(-1,84,3)

> rny <-— rownames (Y)

> added <- c()

> c <= 0

> # Replicates by lab

> for(r in 1:(length(rny) - 1)){

+ if(r %in% added)

+ next

+ c <- c+l1

+ scldx[c,1] <- r

+ cc <- 2

+ for(rr in seqg(along=rny/[ (r+1):1length(rny)])){
+ if(all(strsplit (rny[xr],'_")[[1]][-3] == strsplit(rny[r+rr], ' ") [[1]][-3],
+ scldx[c,cc] <—- r+rr

+ cc <- cc+l

+ added <- c(added, r+rr)

+ }

+ }

+ )

> scldxLab <- scIdx
> scldx <- matrix(-1,84,3)



> rny <- rownames (Y)
> added <- c/{()
> c <= 0
> ## Replicates by region
> for(r in 1:(length(rny) - 1)){
+ if(r %in% added)
next
c <- c+1
scldx[c,1] <- r
cc <- 2
for(rr in seqg(along=rny/[ (r+1):length(rny)])){
if(all(strsplit(rny([r],'_")[[1]][-2] == strsplit(rnyl[r+rr],'_")[[1]][-2],
scldx[c,cc] <—- r+rr
cc <—- cc+l
added <- c(added, r+rr)

V + + + + + + + + F + +

}
scIdx <—- rbind(scIdxLab,scIdx)

3.2 Correction

We now apply the correction methods and plot the corrected data. More specifically after each
correction, we apply k-means clustering to the corrected gene expression matrix, and plot the pro-
jection of the samples onto the space spanned by the first two principal components. We plot the
projections as we go, and summarize the clustering qualities in a table at the end of the vignette.
We use the function c1Score to compare the partition of the samples obtained using k-means to
the ground truth (partition by gender).

As described in Jacob et al.[[2012], we only keep the 10% genes with the largest variance for
clustering an computing the principal components.

As a baseline, we start with the uncorrected gene expression matrix:

## Sort genes by their standard deviation

sdY <- apply (Y, 2, sd)

ssd <- sort (sdY, decreasing=TRUE, index.return=TRUE)Six

## Cluster the samples

kmres <- kmeans (Y[, ssd[l:nKeep], drop=FALSE], centers=2, nstart=200)
vclust <- kmresScluster

## Compute the distance between clustering by gender

## and clustering obtained by k-means

uScore <- clScore(vclust,X)

vV V.V Vv Vv VvV V.V



We then plot the first two principal components for the uncorrected gene expression matrix.

The plot suggests that without correction, the observed gene expression is mainly driven by a
lab effect (PC1) and a brain region effect (PC2).

In the rest of the vignette, we apply the same steps (clustering and PCA plot) after centering
genes by lab-region batch, using naive RUV-2, random naive RUV-2, the replicate based correction
and iterative corrections based on replicates and negative control genes only. SeelJacob et al.|[2012]
for more details about the correction methods.

## Centering by region-lab
YmeanCorr <— Y
for(rr in unique (lregions)){
for (1l in unique (llabs)){
YmeanCorr|[ (lregions==rr) & (llabs==11),] <- scale(YmeanCorr|[ (lregions==rr)é&

}

sdY <- apply (YmeanCorr, 2, sd)

ssd <- sort (sdY,decreasing=TRUE, index.return=TRUE) Six

kmresMC <- kmeans (YmeanCorr|[,ssd[1l:nKeep],drop=FALSE],centers=2,nstart=200)
vclustMC <—- kmresMCScluster

MCScore <- clScore(vclustMC, X)

vV VvV VYV + + + + VvV VYV

The plot shows that centering removed the lab and brain region effects, but not in a way that
leads to a clustering by gender. The following methods lead to a removal of the lab and brain region
effects which leads to a better clustering of the samples by gender.

## Naive RUV-2 no shrinkage

k <- 20

nu <- 0

nsY <- naiveRandRUV (Y, cIdx, nu.coeff=0, k=k)

sdY <- apply(nsY, 2, sd)

ssd <- sort (sdY,decreasing=TRUE, index.return=TRUE) $ix

kmresZ2ns <- kmeans (nsY[,ssd[1l:nKeep],drop=FALSE], centers=2,nstart=200)
vcelustZns <—- kmresZnsScluster

nsScore <— clScore(vclustZns, X)

vV V.V VvV VvV VYV

## Naive RUV-2 + shrinkage

k <—-m

nu.coeff <- le-3

nY <- naiveRandRUV (Y, cIdx, nu.coeff=nu.coeff, k=k)
sdY <- apply(nY, 2, sd)

vV V.V Vv VvV



> svdResUncorr <—- svdPlot (Y[, ssd[l:nKeep], drop=FALSE],
+ annot=annot,

+ labels=lab.and.region,

+ svdRes=NULL,

+ plAnnots=plAnnots,

+ kColors=gender.col, file=NULL)
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Figure 1: Samples of the gender study represented in the space of their first two principal compo-
nents before correction. Blue samples are males, pink samples are females. The upper case letter
represents the lab, the lower case one is the brain region.



> svdResMC <- svdPlot (YmeanCorr|[, ssd[1:nKeep], drop=FALSE],
+ annot=annot,

+ labels=lab.and.region,

+ svdRes=NULL,

+ plAnnots=plAnnots,

+ kColors=gender.col, file=NULL)
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Figure 2: Samples of the gender study represented in the space of their first two principal com-
ponents after mean centering genes withing each region/lab groups. Blue samples are males, pink
samples are females. The upper case letter represents the lab, the lower case one is the brain region.



> svdRes2ns <—- svdPlot (nsY[, ssd[l:nKeep], drop=FALSE],
+ annot=annot,

+ labels=lab.and.region,

+ svdRes=NULL,

+ plAnnots=plAnnots,

+ kColors=gender.col, file=NULL)
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Figure 3: Samples of the gender study represented in the space of their first two principal compo-
nents after applying the naive RUV-2 correction naiveRandRUV with rank reduction (k = 20)
and no shrinkage (v = 0). Blue samples are males, pink samples are females. The upper case letter
represents the lab, the lower case one is the brain region.



ssd <- sort (sdY,decreasing=TRUE, index.return=TRUE) Six

kmres2 <- kmeans (nY[,ssd[l:nKeep],drop=FALSE],centers=2,nstart=200)
velust2 <- kmres2Scluster

nScore <- clScore (vclust2,X)

vV V. VvV Vv

## Replicate-based

SRes <—- naiveReplicateRUV(Y, cIdx, scIdx, k=20)

sdY <- apply (sResScY, 2, sd)

ssd <- sort (sdY,decreasing=TRUE, index.return=TRUE) $ix

kmresRep <- kmeans (sResScY[,ssd[1:nKeep],drop=FALSE],centers=2,nstart=200)
vclustRep <- kmresRepScluster

RepScore <- clScore (vclustRep, X)

vV V.V Vv VvV V.V

The last two correction methods are iterative: they start by a computing a naive estimate of the
W« unwanted variation term, then estimate a term of interest X 5 from the residuals Y — Wa,
re-estimate Wa from Y — X 3 and iterate between these two steps for a fixed number of steps or
until some convergence is reached.

In these example, the estimation of X 3 given W« is done using a sparse dictionary learning
method [Mairal et al.,2010]. The choice of the regularization parameters is discussed in|Jacob et al.
[2012]]. The paramXb variable corresponds to the parameters of the sparse dictionary learning
method. The D, batch, iter and mode should not be modified unless you are familiar with
Mairal et al.|[2010] and know precisely what you are doing. K corresponds to the rank of X, i.e.,
p in our notation, and lambda is the regularization parameter. Large values of 1ambda lead to
sparser, more shrunk estimates of (.

> 1f (require (spams)) {

## Iterative replicate-based
CEps <- le-6

maxIter <- 30

p <- 20

paramXb <- 1ist ()

paramXbSK <- p

paramXb$D <- matrix(c(0.),nrow = 0,ncol=0)
paramXbSbatch <- TRUE

paramXbSiter <- 1

## 11
paramXbSmode <- 'PENALTY'
paramXbS$lambda <- 0.25

+ + + + + + + + + + + + + +

10



> svdRes2 <- svdPlot (nY[, ssd[l:nKeep], drop=FALSE],
+ annot=annot,

+ labels=lab.and.region,

+ svdRes=NULL,

+ plAnnots=plAnnots,

+ kColors=gender.col, file=NULL)
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Figure 4: Samples of the gender study represented in the space of their first two principal com-
ponents after applying the naive RUV-2 correction naiveRandRUV using no rank reduction
(kK = m) but shrinkage v # 0. Blue samples are males, pink samples are females. The upper
case letter represents the lab, the lower case one is the brain region.
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> svdResRep <- svdPlot (sRes$cY[, ssd[l:nKeep], drop=FALSE],
+ annot=annot,

+ labels=lab.and.region,

+ svdRes=NULL,

+ plAnnots=plAnnots,

+ kColors=gender.col, file=NULL)
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Figure 5: Samples of the gender study represented in the space of their first two principal com-
ponents after applying the replicate based correction naiveReplicateRUV. Blue samples are
males, pink samples are females. The upper case letter represents the lab, the lower case one is the
brain region.
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+ + + + + + + + + + + + + ++ +

+ + + + + + + + +++FFF o+ o+ o+ VY

iRes <- iterativeRUV (Y, cIdx, scIdx, paramXb, k=20, nu.coeff=0,

cEps, maxIter,
Wmethod='"'rep', wUpdate=11)

ucY <- 1iResScY

sdY <- apply(ucyY, 2, sd)
ssd <- sort (sdY,decreasing=TRUE, index.return=TRUE) $ix

kmresIter <- kmeans (ucY[,ssd[l:nKeep]],centers=2,nstart=200)
vclustIter <- kmresIterScluster
IterScore <- clScore(vclustlIter,X)
lelse{
IterScore <— NA

if (require(spams)){
## Iterated ridge
paramXb <- 1ist ()
paramXb$K <- p
paramXbSD <- matrix(c(0.),nrow = 0,ncol=0)
paramXbSbatch <- TRUE
paramXbSiter <- 1
paramXbSmode <- 'PENALTY' #2
paramXbSlambda <- 6e-2
paramXbSlambda2 <- 0

iRes <- iterativeRUV (Y, cIdx, scIdx=NULL, paramXb, k=nrow(Y),
cEps, maxIter,
Wmethod="svd', wUpdate=11)

nrcY <— 1iResScY

sdY <- apply (nrcY, 2, sd)
ssd <- sort (sdY,decreasing=TRUE, index.return=TRUE) Six

kmresIter <- kmeans (nrcY[,ssd[]1:nKeep]],centers=2,nstart=200)
vclustIter <- kmresIterScluster
IterRandScore <- clScore(vclustIter,X)

telse{

13

nu.coeff=le-3,



+ IterRandScore <—- NA
+}

Finally, we summarize the clustering errors obtained after each correction in a single table:
> scores <- c(uScore, MCScore, nsScore, nScore, RepScore, IterScore, IterRandSc«
> names (scores) <- c('Uncorrected', 'Centered', 'Naive RUV-2', 'Naive + shrink’,
> print ('Clustering errors after each correction')

[1] "Clustering errors after each correction"

> print (scores)

Uncorrected Centered Naive RUV-2 Naive + shrink
0.9997457 0.9725210 0.7507730 0.6737471
Replicates Replicates + iter Shrinkage + iter
0.7702779 NA NA

4 Session Information

R version 4.5.0 (2025-04-11 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows Server 2022 x64 (build 20348)

Matrix products: default
LAPACK version 3.12.1

locale:

1] LC_COLLATE=C

] LC_CTYPE=English_United States.utf8

] LC_MONETARY=English_United States.utf8
] LC_NUMERIC=C

] LC_TIME=English_United States.utf8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats graphics grDevices utils datasets methods

other attached packages:

14

base



[1] RUVnormalizeData_ 1.29.0 Biobase 2.69.0 BiocGenerics_0.55.0
[4] generics_0.1.4 RUVnormalize_1.43.0

loaded wvia a namespace (and not attached):
[1] compiler_4.5.0 tools_4.5.0
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