
MetaNeighbor : a method to rapidly assess cell type identity using
both functional and random gene sets

Megan Crow, Stephan Fischer, Sara Ballouz, Manthan Shah, Jesse Gillis

2025-06-04

Contents
1 Introduction 1

2 Data type requirements 2

3 System requirements/estimated run times 3

4 Installation 3

5 Methods 3
5.1 Part 1: Supervised MetaNeighbor . 3

5.1.1 Quick start . 3
5.1.2 More detail . 4

5.1.2.1 Load package and data . 4
5.1.2.2 Run MetaNeighbor and plot results . 4

5.2 Part 2: MetaNeighbor for Data Exploration . 5
5.2.1 Quick start . 5
5.2.2 More detail . 6

5.2.2.1 Load package and data . 6
5.2.2.2 Identify a highly variable gene set . 6
5.2.2.3 Run MetaNeighbor for data exploration . 6
5.2.2.4 Plot results . 7
5.2.2.5 Identify reciprocal top hits and high scoring cell type pairs 8

5.3 Part 3: low-memory version of MetaNeighbor for large datasets 9
5.3.1 Run previous example with low-memory version . 9
5.3.2 Apply low-memory version to large datasets . 11

5.3.2.1 Example with 2 datasets: prepare the data 11
5.3.2.2 Example with 2 datasets: match labels . 12

5.3.3 Apply MetaNeighbor to a collection of 5 datasets . 13
5.3.3.1 Match labels . 13
5.3.3.2 Run MetaNeighbor on common labels . 15

6 FAQ and Contact Information 16

1 Introduction
The purpose of this method is to measure the similarity of cells across single cell RNA-sequencing (scRNA-seq)
datasets by sampling from both random and functionally defined gene sets. MetaNeighbor works on the basis
that cells of the same type should have more similar gene expression profiles than cells of different types.

1

In other words, when we compare the expression profile between T cells and hepatocytes for a given gene
set, we should see higher correlations among all T cells than we do between T cells and hepatocytes. This is
illustrated in the schematic below:

Figure 1. A. Relationship between gene set expression and cell type B. Cell similarity within and across cell
types

In our approach, this is formalized through neighbor voting based on cell-cell similarities, which will be
described in detail in the Methods section. In short, MetaNeighbor takes four inputs: a gene-by-sample
expression matrix (“data”), a set of labels indicating each sample’s dataset of origin (“experiment labels”), a
set of labels indicating each sample’s cell type (“cell type labels”) and a set of genes (“gene sets”). The output
is a performance vector (“AUROC scores”), which is the mean area under the receiver operator characteristic
curve (AUROC) for the given task. This score reflects our ability to rank cells of the same known type higher
than those of other types within a dataset, and can be interpreted as the probability that we will be correct
about making a binary classification for a given cell (e.g. neuron vs. non-neuronal cell). An AUROC score of
0.5 means that we have performed as well as if we had randomly guessed the cell’s identity.

This is a fully supervised analysis, and requires knowledge of the corresponding cell types across datasets.
However, we have also used some heuristic measures to identify cell types across datasets when labels may be
ambiguous or uninformative. We will walk through this exploratory analysis in Part 2 of the vignette.

2 Data type requirements
For MetaNeighbor to run, the input data should be a SummarizedExperiment object (SEO) with the following
considerations:

1. The gene-by-sample matrix should be an assay of SEO.
2. Gene sets of interest should be provided as a list of vectors.
3. Additional data should have following vectors:

i. sample_id: A character vector (length equal to the number of samples) containing a unique
identifier for each sample.

ii. study_id: A character vector (length equal to the number of samples) that indicates the source
of each sample (ex.“GSE60361” = Zeisel et al, “GSE71585” = Tasic et al, as in mn_data).

iii. cell_type: A character vector (length equal to the number of samples) that indicates the cell
type of each sample.

4. cell_labels should be provided as a sample-by-cell label matrix. This should be a binary (0,1) matrix
where 1 indicates cell type membership and 0 indicates non-membership.

Additional requirements to be noted:

1. It is critical that genes within gene sets match the gene names of the expression matrix.
2. Gene sets should contain more than one gene.
3. The row names of the cell_labels object should match the column names of the expression matrix.

2

3 System requirements/estimated run times
Because there is a ranking step, the code is not ideal for scaling in the R environment as is. The major factor
is the total number of samples. Speed-ups are possible with parallelization and installing libraries such as
MRAN (https://mran.revolutionanalytics.com/). We also propose an approximate version of MetaNeighbor
that skips the ranking step, effectively improving scalability by using less memory and running faster.

Laptop (OSX 10.10.4, 1.6 GHz, 8GB RAM, R 3.3.2, Rstudio 0.99.446) for the default version.

Desktop (Ubuntu 18.04.1 in an Oracle VM, 4 x 3.6 GHz, 10.9GB RAM, R 3.4.4) for the low-memory version.

Experiments Cell types Samples Gene sets
Default:

Time (s)
Low-memory:

Time (s)
2 1 100 10 0.1 .
2 10 100 10 0.5 0.1
2 10 100 100 1.7 0.6
2 10 100 1000 17.5 6.2
2 1 1000 10 9 .

10 1 1000 10 9 .
2 10 1000 10 12 0.7
2 10 1000 100 93 6.4
2 10 1000 1000 979 63
2 10 10000 10 3653 10
2 10 10000 100 . 91
2 10 10000 1000 . 910

(a . indicates that we did not measure this combination of parameters)

4 Installation
Install the MetaNeighbor package by running the following command:
if (!require('devtools')) {

install.packages('devtools', quiet=TRUE)
}
devtools::install_git('https://github.com/gillislab/MetaNeighbor')

5 Methods
MetaNeighbor runs as follows: first, we build a network of rank correlations between all cells for a gene
set. All values in the network are then re-ranked and standardized to lie between 0-1. Next, the neighbor
voting predictor produces a weighted matrix of predicted labels by performing matrix multiplication between
the network and the binary vector indicating cell type membership, then dividing each element by the null
predictor (i.e., node degree). That is, each cell is given a score equal to the fraction of its neighbors (including
itself), which are part of a given cell type. For cross-validation, we permute through all possible combinations
of leave-one-dataset-out cross-validation, and we report how well we can recover cells of the same type as area
under the receiver operator characteristic curve (AUROC). This is repeated for all folds of cross-validation,
and the mean AUROC across folds is reported.

5.1 Part 1: Supervised MetaNeighbor
5.1.1 Quick start

To run through the analysis and plot results, load the package and run the following commands:

3

https://mran.revolutionanalytics.com/

library(MetaNeighbor)
library(SummarizedExperiment)
data(mn_data)
data(GOmouse)
AUROC_scores = MetaNeighbor(dat = mn_data,

experiment_labels = as.numeric(factor(mn_data$study_id)),
celltype_labels = metadata(colData(mn_data))[["cell_labels"]],
genesets = GOmouse,
bplot = TRUE)

5.1.2 More detail

We have provided sample data and sample gene sets within the MetaNeighbor package. In this sample data,
we have included the cortical interneurons from two public datasets, GSE60361 and GSE71585 (RPKM). A
subset of ~3000 genes and 10 genesets have been included for demonstration. For this example, we will be
testing how well we can identify the Sst Chodl subtype (Sst-Chodl from GSE71585 and Int1 from GSE60361)
and the Smad3 subtype (Smad3 from GSE71585 and Int14 from GSE60361), relative to all other interneurons
within their respective experiments.

MetaNeighbor requires a SummarizedExperimentObject as input, formatted as specified above.

There are two outputs of the method:

1. A matrix of AUROC scores representing the mean for each gene set tested for each celltype
2. A beanplot displaying density of AUROC scores for each cell type (by default the plot will be displayed

and can be turned off by setting the argument bplot=FALSE)

5.1.2.1 Load package and data To run through the analysis, run the following commands:
library(MetaNeighbor)
library(SummarizedExperiment)
data(mn_data)
data(GOmouse)

5.1.2.2 Run MetaNeighbor and plot results As MetaNeighbor runs, it outputs the name of the gene
set that is being evaluated. When all gene sets have been tested, MetaNeighbor will return a gene set-by-cell
type matrix of AUROC scores. A smoothed distribution of scores for each cell type will be plotted by default
(turn off plotting by setting bplot= FALSE). Short horizontal lines inside the shape indicate AUROC values
for individual gene sets, and the large horizontal line represents the mean.
AUROC_scores = MetaNeighbor(dat = mn_data,

experiment_labels = as.numeric(factor(mn_data$study_id)),
celltype_labels = metadata(colData(mn_data))[["cell_labels"]],
genesets = GOmouse,
bplot = TRUE)

4

0.2
0.4
0.6
0.8
1.0
1.2

S
m

ad
3

S
st

C
ho

dl

A
U

R
O

C

head(AUROC_scores)

SstChodl Smad3
GO:0016853 0.678 0.658
GO:0005615 0.963 0.949
GO:0005768 0.815 0.870
GO:0007067 0.583 0.723
GO:0065003 0.839 0.928
GO:0042592 0.889 0.955

AUROC scores greater than 0.5 indicate improvement over randomly guessing the identity of the cell type of
interest.

5.2 Part 2: MetaNeighbor for Data Exploration
5.2.1 Quick start

To run through the analysis and plot results run the following commands:
library(MetaNeighbor)
data(mn_data)
var_genes = variableGenes(dat = mn_data, exp_labels = mn_data$study_id)
celltype_NV = MetaNeighborUS(var_genes = var_genes,

dat = mn_data,
study_id = mn_data$study_id,
cell_type = mn_data$cell_type)

top_hits = topHits(cell_NV = celltype_NV,
dat = mn_data,
study_id = mn_data$study_id,
cell_type = mn_data$cell_type,
threshold = 0.9)

top_hits
cols = rev(colorRampPalette(RColorBrewer::brewer.pal(11,"RdYlBu"))(100))
breaks = seq(0, 1, length=101)
gplots::heatmap.2(celltype_NV,

margins=c(8,8),
keysize=1,
key.xlab="AUROC",
key.title="NULL",
trace = "none",
density.info = "none",
col = cols,
breaks = breaks,

5

offsetRow=0.1,
offsetCol=0.1,
cexRow = 0.7,
cexCol = 0.7)

5.2.2 More detail

While ideally we would like to perform supervised analyses to investigate cell type identity, in some cases
it is difficult to know how cell type labels compare across datasets. For this situation, we came up with a
heuristic to allow researchers to make an educated guess about overlaps without requiring in-depth knowledge
of marker genes. This was based on our observation that large, high variance gene sets tended to provide
improved scores for known cell types.

Exploratory Metaneighbor requires an input SEO as specified above, as well as a vector containing a set of
variable genes (var_genes). The function will use the set of variable genes to create a cell-cell similarity
network.

The output of the function is a cell type-by-cell type mean AUROC matrix, which is built by treating each
pair of cell types as testing and training data for MetaNeighbor, then taking the average AUROC for each
pair (NB AUROC scores across testing and training folds will not be identical because each test cell type is
scored out of its own dataset, and differences in dataset heterogeneity influence scores). When comparing
datasets that contained similar cell types, we found that cell types that were the best hit for one another
(“reciprocal top hits”), and cell types with scores >0.9 tended to be good candidates for downstream tests of
cell type identity using Supervised MetaNeighbor. This rule will not hold when experiments contain wholly
different cell types (e.g., comparing brain to pancreas will likely yield some spurious overlaps), or when
datasets are very unbalanced with respect to one another.

5.2.2.1 Load package and data We have provided sample data and source code here.To begin the
analysis, simply load the package from the above link into your R session.
library(MetaNeighbor)
data(mn_data)

5.2.2.2 Identify a highly variable gene set To begin, we will use the function variableGenes, which
picks the top quartile of variable genes across all but the top decile of expression bins for each dataset, then
provides the intersect across datasets as the output.
var_genes = variableGenes(dat = mn_data, exp_labels = mn_data$study_id)
head(var_genes)

[1] "Sst" "Crhbp" "Enpp2" "Serpine2" "Crh" "Lgals1"
length(var_genes)

[1] 331

In this case, we return a set of 331 highly variable genes. AUROC scores depend on both gene set size and
variance. If the size of the returned set is small (<200 genes) the suggested AUROC cut-off of >0.9 may not
be applicable, and it may be helpful to increase the gene set size. This may be done by taking a majority
rule on genes included in the highly variable sets of each dataset in the analysis (i.e., include a gene if it is
highly variable in >50% of datasets) . This strategy is likely to be required with an increasing number of
datasets included. However, we note that if few genes are returned when using a small number of datasets
(2-3), this may indicate that the datasets have different cell type compositions, or have very different gene
coverage. Under these circumstances, we do not recommend the use of MetaNeighbor.

5.2.2.3 Run MetaNeighbor for data exploration Once we have a set of highly variable genes, we
can simply run an exploratory version of MetaNeighbor using the function:

6

https://github.com/gillislab/MetaNeighbor

celltype_NV = MetaNeighborUS(var_genes = var_genes,
dat = mn_data,
study_id = mn_data$study_id,
cell_type = mn_data$cell_type)

5.2.2.4 Plot results Results can be plotted as follows:
cols = rev(colorRampPalette(RColorBrewer::brewer.pal(11,"RdYlBu"))(100))
breaks = seq(0, 1, length=101)
gplots::heatmap.2(celltype_NV,

margins=c(8,8),
keysize=1,
key.xlab="AUROC",
key.title="NULL",
trace = "none",
density.info = "none",
col = cols,
breaks = breaks,
offsetRow=0.1,
offsetCol=0.1,
cexRow = 0.7,
cexCol = 0.7)

7

G
S

E
60

36
1|

In
t2

G
S

E
60

36
1|

In
t1

G
S

E
71

58
5|

S
st

_C
bl

n4
G

S
E

71
58

5|
S

st
_C

ho
dl

G
S

E
60

36
1|

In
t4

G
S

E
71

58
5|

S
st

_T
h

G
S

E
71

58
5|

S
st

_T
ac

st
d2

G
S

E
71

58
5|

S
st

_C
dk

6
G

S
E

71
58

5|
S

st
_M

yh
8

G
S

E
71

58
5|

P
va

lb
_C

pn
e5

G
S

E
60

36
1|

In
t1

3
G

S
E

60
36

1|
In

t1
4

G
S

E
60

36
1|

In
t1

1
G

S
E

60
36

1|
In

t3
G

S
E

71
58

5|
P

va
lb

_G
px

3
G

S
E

71
58

5|
P

va
lb

_R
sp

o2
G

S
E

71
58

5|
P

va
lb

_T
pb

g
G

S
E

71
58

5|
P

va
lb

_O
bo

x3
G

S
E

71
58

5|
P

va
lb

_T
ac

r3
G

S
E

71
58

5|
P

va
lb

_W
t1

G
S

E
60

36
1|

In
t7

G
S

E
60

36
1|

In
t8

G
S

E
60

36
1|

In
t5

G
S

E
71

58
5|

S
nc

g
G

S
E

71
58

5|
Ig

tp
G

S
E

71
58

5|
S

m
ad

3
G

S
E

71
58

5|
N

dn
f_

C
xc

l1
4

G
S

E
71

58
5|

N
dn

f_
C

ar
4

G
S

E
60

36
1|

In
t1

2
G

S
E

60
36

1|
In

t1
5

G
S

E
60

36
1|

In
t1

6
G

S
E

60
36

1|
In

t9
G

S
E

60
36

1|
In

t1
0

G
S

E
60

36
1|

In
t6

G
S

E
71

58
5|

V
ip

_S
nc

g
G

S
E

71
58

5|
V

ip
_G

pc
3

G
S

E
71

58
5|

V
ip

_M
yb

pc
1

G
S

E
71

58
5|

V
ip

_C
ha

t
G

S
E

71
58

5|
V

ip
_P

ar
m

1

GSE60361|Int2
GSE60361|Int1
GSE71585|Sst_Cbln4
GSE71585|Sst_Chodl
GSE60361|Int4
GSE71585|Sst_Th
GSE71585|Sst_Tacstd2
GSE71585|Sst_Cdk6
GSE71585|Sst_Myh8
GSE71585|Pvalb_Cpne5
GSE60361|Int13
GSE60361|Int14
GSE60361|Int11
GSE60361|Int3
GSE71585|Pvalb_Gpx3
GSE71585|Pvalb_Rspo2
GSE71585|Pvalb_Tpbg
GSE71585|Pvalb_Obox3
GSE71585|Pvalb_Tacr3
GSE71585|Pvalb_Wt1
GSE60361|Int7
GSE60361|Int8
GSE60361|Int5
GSE71585|Sncg
GSE71585|Igtp
GSE71585|Smad3
GSE71585|Ndnf_Cxcl14
GSE71585|Ndnf_Car4
GSE60361|Int12
GSE60361|Int15
GSE60361|Int16
GSE60361|Int9
GSE60361|Int10
GSE60361|Int6
GSE71585|Vip_Sncg
GSE71585|Vip_Gpc3
GSE71585|Vip_Mybpc1
GSE71585|Vip_Chat
GSE71585|Vip_Parm1

0 0.4 1

AUROC

NULL

This plot shows the AUROC scores between each testing and training pair. Red indicates a higher score
and blue indicates a lower score. Note that the diagonal is not equal to one. This is because of the scoring
system: cell types that are ‘promiscuous’ (i.e., have broad similarity to many types) will tend to have higher
node degrees in the network. Differences in degree across cell types will affect scores as predictions are
standardized by this factor. Within-dataset scores are shown for visualization purposes only, and should not
be used for replicability inference.

5.2.2.5 Identify reciprocal top hits and high scoring cell type pairs To find reciprocal top hits
and those with AUROC>0.9 we use the following code:
top_hits = topHits(cell_NV = celltype_NV,

dat = mn_data,
study_id = mn_data$study_id,
cell_type = mn_data$cell_type,
threshold = 0.9)

Warning in topHits(cell_NV = celltype_NV, dat = mn_data, study_id =
mn_data$study_id, : The topHits function only looks for the best overall hit

8

for each reference cell type. We strongly recommend looking for best hits in
each target dataset by using the topHitsByStudy function instead.
top_hits

Study_ID|Celltype_1 Study_ID|Celltype_2 Mean_AUROC Match_type
1 GSE60361|Int1 GSE71585|Sst_Chodl 0.99 Reciprocal_top_hit
2 GSE60361|Int7 GSE71585|Vip_Sncg 0.97 Reciprocal_top_hit
3 GSE60361|Int14 GSE71585|Smad3 0.97 Reciprocal_top_hit
4 GSE60361|Int5 GSE71585|Sncg 0.96 Reciprocal_top_hit
5 GSE60361|Int10 GSE71585|Vip_Parm1 0.95 Reciprocal_top_hit
6 GSE60361|Int2 GSE71585|Sst_Cbln4 0.95 Reciprocal_top_hit
7 GSE60361|Int15 GSE71585|Ndnf_Car4 0.94 Reciprocal_top_hit
8 GSE60361|Int10 GSE71585|Vip_Mybpc1 0.93 Above_0.9
9 GSE60361|Int14 GSE71585|Igtp 0.92 Above_0.9
10 GSE71585|Sncg GSE60361|Int6 0.92 Above_0.9
11 GSE71585|Ndnf_Car4 GSE60361|Int16 0.92 Above_0.9
12 GSE60361|Int12 GSE71585|Ndnf_Cxcl14 0.91 Reciprocal_top_hit
13 GSE71585|Vip_Mybpc1 GSE60361|Int9 0.91 Above_0.9
14 GSE71585|Vip_Sncg GSE60361|Int8 0.91 Above_0.9
15 GSE60361|Int3 GSE71585|Pvalb_Obox3 0.81 Reciprocal_top_hit

These top hits can then be used for supervised analysis, making putative cell type labels for each unique
grouping (see Part 1).

5.3 Part 3: low-memory version of MetaNeighbor for large datasets
MetaNeighbor’s voting algorithm relies on a cell-cell correlation network. This procedure becomes very
memory-intensive and time consuming when it is applied to datasets that contain a large number of samples
(>10K). We propose an approximative version of MetaNeighbor that does not explicitly compute the cell-cell
correlation network, resulting in significant improvements in memory usage and run times.

The low-memory (fast) version is used by passing the flag fast_version = TRUE to either MetaNeighbor
or MetaNeighborUS. Other parameters are unchanged: switching from the exact to the fast version is very
simple. If your dataset is particularly large, we encourage you to use SingleCellExperiment objects, a subclass
of SummarizedExperiment that is able to store data in sparse representations. We also strongly encourage
you to use R with OpenBLAS or MKL (see installation tutorial here). The low-memory version relies almost
exclusively on matrix operations, OpenBLAS/MKL will considerably speed it up and automatically use all
cores on your machine.

5.3.1 Run previous example with low-memory version

We start by running the examples from the previous sections using the fast_version = TRUE flag. Load
MetaNeighbor and the tutorial data:
library(MetaNeighbor)
library(SummarizedExperiment)
data(mn_data)
data(GOmouse)

Re-run MetaNeighbor using the same command as above, with fast_version = TRUE:
AUROC_scores = MetaNeighbor(dat = mn_data,

experiment_labels = as.numeric(factor(mn_data$study_id)),
celltype_labels = metadata(colData(mn_data))[["cell_labels"]],
genesets = GOmouse,
bplot = TRUE,

9

https://www.datacamp.com/community/tutorials/installing-R-windows-mac-ubuntu

fast_version = TRUE)

0.2
0.4
0.6
0.8
1.0
1.2

S
m

ad
3

S
st

C
ho

dl

A
U

R
O

C

Re-run unsupervised MetaNeighbor, with fast_version = TRUE:
var_genes = variableGenes(dat = mn_data, exp_labels = mn_data$study_id)
celltype_NV = MetaNeighborUS(var_genes = var_genes,

dat = mn_data,
study_id = mn_data$study_id,
cell_type = mn_data$cell_type,
fast_version = TRUE)

cols = rev(colorRampPalette(RColorBrewer::brewer.pal(11,"RdYlBu"))(100))
breaks = seq(0, 1, length=101)
gplots::heatmap.2(celltype_NV,

margins=c(8,8),
keysize=1,
key.xlab="AUROC",
key.title="NULL",
trace = "none",
density.info = "none",
col = cols,
breaks = breaks,
offsetRow=0.1,
offsetCol=0.1,
cexRow = 0.7,
cexCol = 0.7)

10

G
S

E
60

36
1|

In
t9

G
S

E
60

36
1|

In
t1

0
G

S
E

71
58

5|
V

ip
_S

nc
g

G
S

E
60

36
1|

In
t6

G
S

E
71

58
5|

S
nc

g
G

S
E

71
58

5|
V

ip
_G

pc
3

G
S

E
71

58
5|

V
ip

_C
ha

t
G

S
E

71
58

5|
V

ip
_M

yb
pc

1
G

S
E

71
58

5|
V

ip
_P

ar
m

1
G

S
E

71
58

5|
N

dn
f_

C
ar

4
G

S
E

71
58

5|
N

dn
f_

C
xc

l1
4

G
S

E
71

58
5|

S
m

ad
3

G
S

E
71

58
5|

Ig
tp

G
S

E
60

36
1|

In
t1

4
G

S
E

60
36

1|
In

t1
1

G
S

E
60

36
1|

In
t1

2
G

S
E

60
36

1|
In

t1
6

G
S

E
60

36
1|

In
t1

5
G

S
E

60
36

1|
In

t5
G

S
E

71
58

5|
P

va
lb

_C
pn

e5
G

S
E

60
36

1|
In

t1
3

G
S

E
71

58
5|

P
va

lb
_T

pb
g

G
S

E
71

58
5|

P
va

lb
_O

bo
x3

G
S

E
71

58
5|

P
va

lb
_T

ac
r3

G
S

E
71

58
5|

P
va

lb
_W

t1
G

S
E

60
36

1|
In

t3
G

S
E

71
58

5|
P

va
lb

_R
sp

o2
G

S
E

71
58

5|
P

va
lb

_G
px

3
G

S
E

60
36

1|
In

t4
G

S
E

60
36

1|
In

t2
G

S
E

60
36

1|
In

t1
G

S
E

71
58

5|
S

st
_C

bl
n4

G
S

E
60

36
1|

In
t7

G
S

E
60

36
1|

In
t8

G
S

E
71

58
5|

S
st

_C
ho

dl
G

S
E

71
58

5|
S

st
_T

h
G

S
E

71
58

5|
S

st
_T

ac
st

d2
G

S
E

71
58

5|
S

st
_C

dk
6

G
S

E
71

58
5|

S
st

_M
yh

8

GSE60361|Int9
GSE60361|Int10
GSE71585|Vip_Sncg
GSE60361|Int6
GSE71585|Sncg
GSE71585|Vip_Gpc3
GSE71585|Vip_Chat
GSE71585|Vip_Mybpc1
GSE71585|Vip_Parm1
GSE71585|Ndnf_Car4
GSE71585|Ndnf_Cxcl14
GSE71585|Smad3
GSE71585|Igtp
GSE60361|Int14
GSE60361|Int11
GSE60361|Int12
GSE60361|Int16
GSE60361|Int15
GSE60361|Int5
GSE71585|Pvalb_Cpne5
GSE60361|Int13
GSE71585|Pvalb_Tpbg
GSE71585|Pvalb_Obox3
GSE71585|Pvalb_Tacr3
GSE71585|Pvalb_Wt1
GSE60361|Int3
GSE71585|Pvalb_Rspo2
GSE71585|Pvalb_Gpx3
GSE60361|Int4
GSE60361|Int2
GSE60361|Int1
GSE71585|Sst_Cbln4
GSE60361|Int7
GSE60361|Int8
GSE71585|Sst_Chodl
GSE71585|Sst_Th
GSE71585|Sst_Tacstd2
GSE71585|Sst_Cdk6
GSE71585|Sst_Myh8

0 0.4 1

AUROC

NULL

Because of the approximations in the low-memory version, the AUROCs do not match exactly, but results
from the low-memory version are in good qualitative agreement with the exact procedure.

5.3.2 Apply low-memory version to large datasets

The low-memory version is particularly useful when the number of samples across datasets exceeds 10,000. In
this section, we show a simple example with 5 datasets from the human pancreas. For simplicity, we use
parsed datasets from the Hemberg lab (datasets available here in RDS format). Every dataset is represented
as a SingleCellExperiment object, a subclass of SummarizedExperiment, particularly useful for storing large
datasets as it is able to handle sparse matrices or HDF5 matrices.

5.3.2.1 Example with 2 datasets: prepare the data Before we apply MetaNeighbor, we need to
fuse the datasets as a unique SingleCellExperiment object. Start by downloading the Baron and Segerstolpe
datasets, then run R and load the following libraries and data:
library(SingleCellExperiment)
library(Matrix)

11

https://hemberg-lab.github.io/scRNA.seq.datasets/human/pancreas/

baron <- readRDS('baron-human.rds')
segerstolpe <- readRDS('segerstolpe.rds')

In this analysis, we remove dead cells and doublets from the Segerstolpe dataset, and retain the genes that
are common to the two datasets:
common_genes <- intersect(rownames(baron), rownames(segerstolpe))
baron <- baron[common_genes,]
segerstolpe <- segerstolpe[common_genes, !(segerstolpe$cell_type1 %in% c('not applicable', 'co-expression'))]

We create a SingleCellExperiment that is a fusion of the two datasets, then remove the single datasets:
new_colData = data.frame(

study_id = rep(c('baron', 'segerstolpe'), c(ncol(baron), ncol(segerstolpe))),
cell_type = c(as.character(colData(baron)$cell_type1), colData(segerstolpe)$cell_type1)

)
pancreas <- SingleCellExperiment(

Matrix(cbind(assay(baron, 1), assay(segerstolpe, 1)), sparse = TRUE),
colData = new_colData

)
dim(pancreas)
rm(baron); rm(segerstolpe)

The fused dataset has 10,739 samples across 18,936 genes.

5.3.2.2 Example with 2 datasets: match labels Now that the dataset is ready, we can find variable
genes and run the unsupervised version of MetaNeighbor:
var_genes = variableGenes(dat = pancreas, exp_labels = pancreas$study_id)
celltype_NV = MetaNeighborUS(var_genes = var_genes,

dat = pancreas,
study_id = pancreas$study_id,
cell_type = pancreas$cell_type,
fast_version = TRUE)

cols = rev(colorRampPalette(RColorBrewer::brewer.pal(11,"RdYlBu"))(100))
breaks = seq(0, 1, length=101)
gplots::heatmap.2(celltype_NV,

margins=c(8,8),
keysize=1,
key.xlab="AUROC",
key.title="NULL",
trace = "none",
density.info = "none",
col = cols,
breaks = breaks,
offsetRow=0.1,
offsetCol=0.1,
cexRow = 0.7,
cexCol = 0.7)

12

5.3.3 Apply MetaNeighbor to a collection of 5 datasets

Using a procedure similar to the above example, we generated a SingleCellExperiment with all 5 pancreas
datasets. We encourage you to fuse the datasets on your own, then load the resulting SingleCellExperiment
object:
all_pancreas <- readRDS('all_pancreas.rds')
dim(all_pancreas)

Our fused dataset has 15,138 cells across 15,558 genes.

5.3.3.1 Match labels Select variable genes, then run unsupervised MetaNeighbor to match labels across
studies:
var_genes = variableGenes(dat = all_pancreas, exp_labels = all_pancreas$Study_ID)
celltype_NV = MetaNeighborUS(var_genes = var_genes,

dat = all_pancreas,
study_id = all_pancreas$Study_ID,

13

cell_type = all_pancreas$Celltype,
fast_version = TRUE)

cols = rev(colorRampPalette(RColorBrewer::brewer.pal(11,"RdYlBu"))(100))
breaks = seq(0, 1, length=101)
gplots::heatmap.2(celltype_NV,

margins=c(8,8),
keysize=1,
key.xlab="AUROC",
key.title="NULL",
trace = "none",
density.info = "none",
col = cols,
breaks = breaks,
offsetRow=0.1,
offsetCol=0.1,
cexRow = 0.7,
cexCol = 0.7)

14

5.3.3.2 Run MetaNeighbor on common labels Run MetaNeighbor for labels that span all datasets
with 71 gene sets (GO slim terms containing 50 to 1,000 genes):
data(GOhuman)
small_pancreas = all_pancreas[, all_pancreas$Celltype %in% c('alpha', 'beta', 'delta')]
celltype_matrix = model.matrix(~small_pancreas$Celltype - 1)
colnames(celltype_matrix) = levels(as.factor(small_pancreas$Celltype))
AUROC_scores = MetaNeighbor(dat = small_pancreas,

experiment_labels = as.numeric(factor(small_pancreas$Study_ID)),
celltype_labels = celltype_matrix,
genesets = GOhuman,
bplot = TRUE,
fast_version = TRUE)

15

6 FAQ and Contact Information
• If you use this package, please cite Crow et al (2018) Nature Communications.
• Data files used in Crow et al (2018) may be accessed here.
• A development version of MetaNeighbor was first available here (2016) but is no longer maintained.
• For any assistance reproducing analyses please contact mcrow@cshl.edu or jgillis@cshl.edu .

16

https://www.nature.com/articles/s41467-018-03282-0
https://www.dropbox.com/sh/9std53hcyafke2c/AAAuwjcOvKSrlZABRJVqVF_pa?dl=0
https://github.com/maggiecrow/MetaNeighbor
mailto:mcrow@cshl.edu
mailto:jgillis@cshl.edu

	Introduction
	Data type requirements
	System requirements/estimated run times
	Installation
	Methods
	Part 1: Supervised MetaNeighbor
	Quick start
	More detail
	Load package and data
	Run MetaNeighbor and plot results

	Part 2: MetaNeighbor for Data Exploration
	Quick start
	More detail
	Load package and data
	Identify a highly variable gene set
	Run MetaNeighbor for data exploration
	Plot results
	Identify reciprocal top hits and high scoring cell type pairs

	Part 3: low-memory version of MetaNeighbor for large datasets
	Run previous example with low-memory version
	Apply low-memory version to large datasets
	Example with 2 datasets: prepare the data
	Example with 2 datasets: match labels

	Apply MetaNeighbor to a collection of 5 datasets
	Match labels
	Run MetaNeighbor on common labels

	FAQ and Contact Information

