
MEDIPS Tutorial

Lukas Chavez

October 31, 2011

Contents

1 Introduction 1

2 Preparations 2

3 MEDIPS Workflow 4
3.1 Create a MEDIPS SET from the input file 4
3.2 Creating the Genome Vector and Export of RPM Signals 6
3.3 Saturation Analysis . 7
3.4 Receiving DNA Sequence Pattern Positions 11
3.5 Sequence Pattern Coverage Analysis 11
3.6 CpG Enrichment . 13
3.7 Creating the Coupling Vector . 15
3.8 Calibration Curve and Linear Regression 16
3.9 Relative Methylation Score and Export of Normalized Data . . . 20
3.10 Methylation Profiles and Absolute Methylation Score 21
3.11 Additional MEDIPS SET Objects 28
3.12 Methylation Profiles of Two MEDIPS SET Objects 29
3.13 Selecting Candidate DMRs and Annotation 31

4 Concluding Remarks 35

1 Introduction

MEDIPS was developed for analyzing data derived from methylated DNA im-
munoprecipitation (MeDIP) experiments [Weber et al., 2005] followed by se-
quencing (MeDIP-seq). Nevertheless, MEDIPS may be applied to other im-
munoprecipitation based methylation analyses (e.g. MBD-seq), and selected
functionalities like the saturation analysis may be applied to other types of se-
quencing data (e.g. ChIP-seq). MEDIPS adresses several aspects in the context
of MeDIP-seq data analysis. These are:

• estimating the reproducibility for obtaining full genome methylation pro-
files with respect to the total number of given short reads and to the size
of the reference genome,

• analyzing the coverage of genome wide DNA sequence patterns (e.g. CpGs)
by the given reads,

1

• calculating an CpG enrichment factor as a quality control for the immuno-
precipitation,

• calculating genome wide MeDIP-seq signal densities at a user specified
resolution,

• calculating genome wide sequence pattern densities (e.g. CpGs) at a user
specified resolution,

• plotting of calibration plots as a data quality check and for a visual in-
spection of the dependency between local sequence pattern (e.g. CpG)
densities and MeDIP signals,

• normalization of MeDIP-seq data with respect to local sequence pattern
(e.g. CpG) densities,

• summarized methylation values for genome wide windows of a specified
length or for user supplied regions of interest (ROIs),

• calculating differentially methylated regions on raw or normalized data
comparing two sets of MeDIP-seq data and with respect to Input data (if
available), and

• export of raw and normalized data for visualization in common genome
browsers (e.g. the UCSC genome browser).

MEDIPS starts directly where the mapping tools stop and can be used for
any genome of interest, limited only by the available genomes within the Bio-
conductor BSgenome package.

2 Preparations

In order to execute MEDIPS, you need to have some other packages installed in
your R library. These are BSgenome and gtools, as well as the packages they
depend on. You can check this, by starting R and typing

> packageDescription("BSgenome")

> packageDescription("gtools")

R will inform you in case you do not have these packages installed. In case
you do not have these necessary packages installed, start R and try typing

> source("http://bioconductor.org/biocLite.R")

> biocLite("BSgenome")

> biocLite("gtools")

Please be aware of having the latest BSgenome version installed (>1.14.2). The
version number is returned by the packageDescription() command. Please
note, there is a bug in R distributions <=2.10.1 that sometimes causes errors
when interacting with the BSgenome package. This bug should be fixed in R
versions >2.11.0.

Next, it is necessary to install the MEDIPS package into your R environment.
Start R and enter:

2

> source("http://bioconductor.org/biocLite.R")

> biocLite("MEDIPS")

Please note, MEDIPS became available on BioC 2.7 that is designed to work
with R.2.12. Therefore, installation of the MEDIPS package by biocLite()

only works on R >=2.12.0.
In order to reproduce the presented MEDIPS workflow, the package includes

the example data sets MeDIP_hESCs_chr22.txt (17M), MeDIP_DE_chr22.txt
(22M), and Input_StemCells_chr22.txt (8.8M) in the extdata subdirectory
of the MEDIPS package.

The files contain genomic regions from chromosome 22 only, as covered by
short reads obtained from a MeDIP experiment of human embryonic stem cells
(hESCs), a MeDIP experiment of differentiated hESCs (definitive endoderm,
DE), and of Input experiments from hESCs and DE [Chavez et al., 2010].

As input, MEDIPS requires tab-separated files without headers containing
four columns:

• the first coulumn is of type character and contains the chromosome of the
region (e.g. chr1)

• the second column is of type numeric and contains the start position of
the mapped read

• the third column is of type numeric and contains the stop position of the
mapped read

• the fourth column is of type character and contains the strand information
of the mapped read

Each row represents a mapped read. These informations can be extracted
from the output file(s) of common mapping tools. MEDIPS counts chromosome
sequence positions starting at 1. Some alignment tools output the mapped
regions by interpreting the first base of a chromosome as 0. MEDIPS requires
one input file for each condition that has to be analyzed. Region informations
from several mapping results have to be pooled into one file. Furthermore, it
might be worthwhile to filter out some mapped reads of low quality or to exclude
artifical short read pile-ups from the results of the mapping procedure. Please
note, any such data pooling, further filtering or correction for the start and stop
positions has to be done by yourself before using MEDIPS.

Next, you need to have your genome of interest available. As soon as you
have the BSgenome package installed and the library loaded using

> library("BSgenome")

you can list all available genomes by typing

> available.genomes()

[1] "BSgenome.Alyrata.JGI.v1"

[2] "BSgenome.Amellifera.BeeBase.assembly4"

[3] "BSgenome.Amellifera.UCSC.apiMel2"

[4] "BSgenome.Athaliana.TAIR.04232008"

[5] "BSgenome.Athaliana.TAIR.TAIR9"

3

[6] "BSgenome.Btaurus.UCSC.bosTau3"

[7] "BSgenome.Btaurus.UCSC.bosTau4"

[8] "BSgenome.Celegans.UCSC.ce2"

[9] "BSgenome.Celegans.UCSC.ce6"

[10] "BSgenome.Cfamiliaris.UCSC.canFam2"

[11] "BSgenome.Dmelanogaster.UCSC.dm2"

[12] "BSgenome.Dmelanogaster.UCSC.dm3"

[13] "BSgenome.Drerio.UCSC.danRer5"

[14] "BSgenome.Drerio.UCSC.danRer6"

[15] "BSgenome.Drerio.UCSC.danRer7"

[16] "BSgenome.Ecoli.NCBI.20080805"

[17] "BSgenome.Gaculeatus.UCSC.gasAcu1"

[18] "BSgenome.Ggallus.UCSC.galGal3"

[19] "BSgenome.Hsapiens.UCSC.hg17"

[20] "BSgenome.Hsapiens.UCSC.hg18"

[21] "BSgenome.Hsapiens.UCSC.hg19"

[22] "BSgenome.Mmusculus.UCSC.mm8"

[23] "BSgenome.Mmusculus.UCSC.mm9"

[24] "BSgenome.Ptroglodytes.UCSC.panTro2"

[25] "BSgenome.Rnorvegicus.UCSC.rn4"

[26] "BSgenome.Scerevisiae.UCSC.sacCer1"

[27] "BSgenome.Scerevisiae.UCSC.sacCer2"

[28] "BSgenome.Scerevisiae.UCSC.sacCer3"

In the given example, we mapped the short reads against the human genome
build hg19. Therefore, we download and install this genome build:

> source("http://bioconductor.org/biocLite.R")

> biocLite("BSgenome.Hsapiens.UCSC.hg19")

This takes some time, but has to be done only once for each necessary reference
genome.

3 MEDIPS Workflow

3.1 Create a MEDIPS SET from the input file

First, you have to load MEDIPS into your R environment. Herewith, the de-
pendent libraries BSgenome and gtools as well as the packages they depend on
will be loaded.

> library(MEDIPS)

In the given example, we mapped the short reads against the human genome
build hg19. Therefore, we load the pre-installed (see chapter 2) hg19 library:

> library(BSgenome.Hsapiens.UCSC.hg19)

Next, a MEDIPS SET is created by reading the input file. This is performed
by the MEDIPS.readAlignedSequences() function. When calling this function,
it is necessary to state the reference genome build and your input file. In case

4

you know the number of rows within your input file, you can also specify the
numrows parameter. This will accelerate the reading of your file. Otherwise just
skip the numrows parameter.

In this manual, we are using example data located in the extdata subdirec-
tory of the MEDIPS package. Therefore, we have to point to the input example
files like:

> file=system.file("extdata", "MeDIP_hESCs_chr22.txt", package="MEDIPS")

In the example MeDIP_hESCs_chr22.txt file, there are 672866 regions (here,
only chromosome 22 is included). Therefore, we can now read the example file
by typing:

> CONTROL.SET=MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file, numrows=672866)

Typically, you will execute the function by pointing directly to your input
file using the file parameter. Here, you can also state the full directory path
to your input file together with the file name.

MEDIPS now created a MEDIPS SET from the input. The current content
of a MEDIPS SET can be viewed at any time by typing the name of your
MEDIPS SET object.

> CONTROL.SET

S4 Object of class MEDIPSset

=======================================

Regions information

=======================================

Regions file: MeDIP_hESCs_chr22.txt

Organism: BSgenome.Hsapiens.UCSC.hg19

Chromosomes: chr22

Chromosome lengths: 51304566

Number of regions: 672866

Regions chromosomes: chr22 chr22 chr22...

Regions start positions: 16053184 16054710 16080510...

Regions stop positions: 16053220 16054746 16080546...

Regions strand: - - +...

=======================================

Genome vector signals information

=======================================

Genome wide bin size:

Reads extended by:

Genome vector chromosomes: NA NA NA...

Genome vector positions: NA NA NA...

Genome vector signals: NA NA NA...

=======================================

Pattern information

=======================================

Pattern:

Number of patterns:

Pattern chromosomes: NA NA NA...

5

Pattern positions: NA NA NA...

=======================================

Genome vector coupling factor information

=======================================

Distance function:

Distance file:

Fragment length:

Genome vector coupling factors: NA...

=======================================

Calibration information

=======================================

Calibration curve mean signals: NA...

Calibration curve mean coupling factors: NA...

Calibration curve variance: NA...

Intercept:

Slope:

Calibration chromosome:

=======================================

Genome vector normalized signal information

=======================================

Normalization output interval: [0:1000]

Genome vector normalized signals: NA...

After reading the input file, the MEDIPS SET contains only information
about the input regions, like the input file name, the dependent organism, the
chromosomes included in the input file, the length of the included chromosomes
(automatically loaded), the number of regions, and the start, stop and strand
informations of the regions. All further slots, for example for the weighting
parameters and normalized data are still empty and will be filled during the
workflow.

3.2 Creating the Genome Vector and Export of RPM Sig-
nals

Based on the given regions, a genome-wide coverage has to be calculated. In
order to calculate the genome wide short read coverage, the user has to specify
a targeted data resolution using the parameter bin_size (default: 50bp). In
principle, a bin_size=1 can be specified. Because the resolution of MeDIP-seq
data is restricted by the size of the sonicated DNA fragments after amplification
and size selection (that often is between 0.2-1kb), it might not be necessary to
specify very small bin sizes. Moreover, the smaller the bin size, the higher the
need for memory of your computer and the higher the runtime will be. We
consider a bin size of 50bp as a reasonable compromise on data resolution and
computational costs.

Each chromosome inside the MEDIPS SET will then be divided into bins of
size 50bp and the short read coverage will be calculated on this resolution. In
the following, we call the bin representation of the genome the genome vector.

Moreover, short reads generated by modern-day sequencers do not represent
the full DNA fragments but are of shorter length (e.g. 36bp). Therefore, a
smoothing of the data is recommended by extending the reads. This can be

6

achieved by setting the parameter extend (default: 400bp). With this, each
region is extended to a length of 400bp either along the + or along the - direction
as specified by the dependent strand information. The extend value will not be
added to the given length of the short reads but the final length of the extended
reads will be the length as specified by the extend parameter.

You can create the genome vector by typing

> CONTROL.SET=MEDIPS.genomeVector(data=CONTROL.SET, bin_size=50, extend=400)

For each pre-defined genomic bin, the genome vector stores the number of
provided overlapping extended short reads and these are interpreted as the raw
MeDIP-seq signals. After having called the MEDIPS.genomeVector function, the
slots of the MEDIPS SET associated to the genome vector are occupied. For
example, there is a slot that contains the raw signals for each genomic bin.

Based on the total number of provided short reads (n), the raw MeDIP-
seq signals can be transformed into a reads per million (rpm) format in order
to assure that coverage profiles derived from different biological samples are
comparable, although generated from differing amounts of short reads. Let
xbini be the raw MeDIP-seq signal of the genomic bin i, where i=1,...,m and
m is the total number of genomic bins, then the rpm value of the genomic bin is
simply defined as:

rpmbini
=
xbini

·106

n

It is already possible to export the raw signals in a reads per million (rpm)
format as a wiggle (WIG) file by typing:

> MEDIPS.exportWIG(file="output.rpm.control.WIG", data=CONTROL.SET, raw=T, descr="hESCs.rpm")

At this point, it is necessary to set the parameter raw=T. Otherwise, the
export function tries to write out the normalized data that does not exist yet.
The descr parameter contains an arbitrary description for the wiggle file and
will be visualized by a suitable genome browser. It is recommended to gzip the
WIG file before you upload it to e.g. the UCSC browser.

3.3 Saturation Analysis

The saturation analysis addresses the question, whether the number of input
regions is sufficient to generate a saturated and reproducible methylation pro-
file of the reference genome. The main idea is that an insufficent number of
short reads will not result in a saturated methylation profile. Only if there is a
sufficient number of short reads, the resulting genome wide methylation profile
will be reproducible by another independent set of a similar number of short
reads.

You can start the saturation analysis by typing

> sr.control=MEDIPS.saturationAnalysis(data=CONTROL.SET, bin_size=50, extend=400, no_iterations=10, no_random_iterations=1)

For the saturation analysis, the total set of available regions is divided into
two distinct random sets (A and B) of equal size. In our example, both sets A

and B will contain 336433 randomly selected regions. Both sets A and B are

7

again divided into random subsets of equal size where the number of subsets
is determined by the parameter no_iterations (default=10). In our example,
each subset of A (A1,A2, ..,A10) and of B (B1,B2, ..,B10) will contain approx.
33643 randomly selected reads. For each set, A and B, the saturation anal-
ysis iteratively selects an increasing number of subsets and creates according
genome vectors as described in section 3.2. Here, the parameters bin_size and
extend fulfill the same tasks as described in section 3.2. In case, these param-
eters remain un-specified, MEDIPS accesses the parameter settings as specified
previously for generating the genome vector.

In each iteration step, the resulting genome vectors for the subsets of A and
B are compared using pearson correlation. As the number of considered regions
increases during each iteration step, it is assumed that the resulting genome
vectors become more similar, a dependency that is expressed by an increased
correlation.

Because such a saturation analysis can be performed on two independent
sets of short reads only, a true saturation can only be calculated for half of the
available short reads. As it is of interest to examin the reproducibility of the
MeDIP-seq experiment for the total set of available short reads, the saturation
analysis is always followed by an estimated saturation analysis. For the esti-
mated saturation analysis, the full set of given regions is doubled by considering
each region twice and then the described saturation analysis is performed on this
artificially doubled set of regions (see also Supplementary Methods in [Chavez
et al., 2010]).

The saturation analysis does not modify the MEDIPS SET object but the
results are stored at the specified saturation results object (here sr.control).
The results of the saturation and of the estimated saturation analysis can be
viewed by typing

> sr.control

$distinctSets

[,1] [,2]

[1,] 0 0.0000000

[2,] 33643 0.4428489

[3,] 67286 0.6139537

[4,] 100929 0.7052673

[5,] 134572 0.7604145

[6,] 168215 0.7989133

[7,] 201858 0.8260188

[8,] 235501 0.8470655

[9,] 269144 0.8635994

[10,] 302787 0.8772652

[11,] 336433 0.8882340

$estimation

[,1] [,2]

[1,] 0 0.0000000

[2,] 33643 0.4497263

[3,] 67286 0.6208508

[4,] 100929 0.7123012

8

[5,] 134572 0.7678543

[6,] 168215 0.8065684

[7,] 201858 0.8335948

[8,] 235501 0.8547031

[9,] 269144 0.8709834

[10,] 302787 0.8837507

[11,] 336430 0.8934393

[12,] 370073 0.9018482

[13,] 403716 0.9093068

[14,] 437359 0.9156047

[15,] 471002 0.9210023

[16,] 504645 0.9261510

[17,] 538288 0.9302516

[18,] 571931 0.9339780

[19,] 605574 0.9375691

[20,] 639217 0.9404713

[21,] 672866 0.9436543

$numberReads

[1] 672866

$maxEstCor

[1] 6.728660e+05 9.436543e-01

$maxTruCor

[1] 3.36433e+05 8.88234e-01

The maximal obtained correlation of the saturation analysis is stored at the
maxTruCor slot and the maximal obtained correlation of the estimated satura-
tion analysis is stored at the maxEstCor slot of the saturation results object
(first column: total number of considered reads, second column: obtained cor-
relation). The results of each iteration step are stored in the distinctSets and
estimation slots for the saturation and estimated saturation analysis, respec-
tively (first column: total number of considered reads, second column: obtained
correlation).

These results can be visualized by typing

> MEDIPS.plotSaturation(sr.control)

9

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
0

0.
2

0.
4

0.
6

0.
8

Saturation analysis

Saturation cor: 0.89; Estimated cor: 0.94
Number of reads

P
ea

rs
on

 c
or

re
la

tio
n

co
ef

fic
ie

nt

Saturation
Estimated saturation

Because the artificially doubled set of short reads, as utilized for the esti-
mated saturation analysis, does not represent a true outcome of a MeDIP-seq
experiment, the calculated correlations will overestimate the true reproducibil-
ity. It is assumed that the true correlation for the full set of available short
reads will be between the results of the true (0.89) and of the estimated (0.94)
saturation analyis.

The saturation analysis assists for rating whether the costs of additional
sequencing runs are in proportion to the gain in quality of the reconstructed
methylome. Please note, the results of the saturation analysis are dependent
on the size of the examined reference genome (here, only the chromosome 22 is
considered).

Further parameters that can be specified for the saturation analysis are:

• no_random_iterations: methods that randomly select data entries may
be processed several times in order to obtain more stable results. By spec-
ifying the no_random_iterations parameter (default=1) it is possible to
run the saturation analysis several times. The final results returned to
the saturation results object are the averaged results of all the random
iteration steps.

• empty_bins: can be either TRUE or FALSE (default TRUE). This pa-
rameter affects the way of calculating correlations between the resulting
genome vectors. If there occur genomic bins which contain no overlapping
regions, neither from the subsets of A nor from the subsets of B, these bins
will be neglected when the paramter is set to FALSE.

• rank: can be either TRUE or FALSE (default FALSE). This parame-
ter also effects the way of calculating correlations between the resulting

10

genome vectors. If rank is set to TRUE, the correlation will be calculated
for the ranks of the bins instead of considering the counts. Setting this
parameter to TRUE is a more robust approach that reduces the effect
of possible occuring outliers (these are bins with a very high number of
overlapping regions) to the correlation.

3.4 Receiving DNA Sequence Pattern Positions

The idea of a MeDIP experiment is to identify methylated cytosins. For this,
an antibody is used that recognizes methylated cytosines. However, it has been
shown [Down et al., 2008], [Pelizzola et al., 2008] that MeDIP signals scale with
local densities of CpGs and are not necessarily influenced by only methylated
cytosines. In order to integrate the information about CpG densities into the
following analysis, it is necessary to identify the genomic positions of all CpGs.
This can be achieved by typing

> CONTROL.SET=MEDIPS.getPositions(data=CONTROL.SET, pattern="CG")

MEDIPS returns all start positions of CpGs on the plus strand of the refer-
ence genome. As the CG pattern is reverse complementary, it is only necessary
to scan the plus strand. The pattern dependent slots of the MEDIPS SET object
now store the necessary informations. (Have a look by just typing the name of
your MEDIPS SET object). In principle, it is possible to identify the positions
of any other sequence pattern. For example, Lister and colleagues [Lister et al.,
2009] have shown that in human embryonic stem cells, methylation occurs at
cytosines outside of the CpG context. Therefore, it might be worthwhile to scan
for all cytosines within the reference genome. Please note, for sequence patterns
that are not reverse complementary, the function returns all start positions of
the pattern within the plus and the minus strand. But for now, we will continue
using the CpG pattern.

3.5 Sequence Pattern Coverage Analysis

The main idea of the coverage analysis is to test the number of CpGs (or any
other predefined sequence pattern, see section 3.4) covered by the given short
reads and to have a look at the depth of coverage. Before the coverage analysis
can be executed, it is necessary to previously execute the MEDIPS.getPositions
function (see section 3.4). Afterwards, the coverage analysis can be started by
typing

> cr.control=MEDIPS.coverageAnalysis(data=CONTROL.SET, extend=400, no_iterations=10)

For the coverage analysis, the total set of available regions is divided into dis-
tinct random subsets of equal size, where the number of subsets is determined
by the parameter no_iterations (default=10). The coverage analysis itera-
tively selects an increasing number of subsets and and tests how many CpGs
are covered by the available regions. Moreover, it is tested how many CpGs are
covered at least 1x, 2x, 3x, 4x, 5x, and 10x. These levels of coverage depths can
be adjusted by setting the coverages parameter (see below). As the regions
are typically of short length (e.g. 36bp), it is recommended to extend the region
length by an extend value (see section 3.2).

11

The coverage analysis does not modify the MEDIPS SET object but the
results are stored at the specified coverage results object (here cr.control).
The results of the coverage analysis can be viewed by typing

> cr.control

$matrix

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0 1 2 3 4 5 10

[2,] 0 0 0 0 0 0 0

[3,] 67286 289789 153218 82639 45529 25543 1793

[4,] 134572 380312 262964 180745 125659 88042 16607

[5,] 201858 423933 327623 251137 193208 149050 43882

[6,] 269144 449207 368479 300856 245395 199848 74734

[7,] 336430 465529 395865 337158 285248 241232 106256

[8,] 403716 477217 416567 364044 316531 274558 136121

[9,] 471002 485810 431652 384842 341404 301976 163358

[10,] 538288 492512 444032 401393 361581 324898 188201

[11,] 605574 497999 453047 414816 378240 343917 210978

[12,] 672866 502169 460963 425535 392066 360240 232422

$maxPos

[1] 578097

$pattern

[1] "CG"

$coveredPos

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.00 2.0 3.00 4.00 5.00 10.0

[2,] 502169.00 460963.0 425535.00 392066.00 360240.00 232422.0

[3,] 0.87 0.8 0.74 0.68 0.62 0.4

For example, the maxPos slot shows the total number of CpGs within chro-
mosome 22 of the reference genome. Moreover, the matrix slot shows the results
of the coverage analysis for each iteration and for each of the tested coverage
depths. Here, the first row shows the tested levels of coverage. The first column
contains the number of considered short reads in each iteration. The follow-
ing columns show the number of sequence patterns covered (at least) by the
according coverage depths.

The results of the coverage analysis can be visualized by typing

> MEDIPS.plotCoverage(cr.control)

12

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

Coverage analysis

Total number of CGs: 578097
Number of reads

N
um

be
r

of
 c

ov
er

ed
 C

G
s

min. 1−fold
min. 2−fold
min. 3−fold
min. 4−fold
min. 5−fold
min. 10−fold

Further parameters that can be specified for the coverage analysis are:

• no_random_iterations: methods that randomly select data entries may
be processed several times in order to obtain more stable results. By spec-
ifying the no_random_iterations parameter (default=1) it is possible to
run the coverage analysis several times. The final results returned to the
coverage results object are the averaged results of each random iteration
step.

• coverages: default is c(1, 2, 3, 4, 5, 10). The coverages define the depth
levels for testing how often a sequence pattern was covered by the given
regions. Just specify any other vector of coverage depths you would like
to test.

Although an increase of short reads will always improve the sequence pat-
tern coverage, the coverage analysis together with the saturation analysis allow
for gaining an impression on the overall sequence pattern coverage and repro-
ducibility of reconstructing a methylome based on the available short reads.
These data quality controls assist in deciding whether the costs of additional
experimental runs are in due proportion to the expected improvement on cov-
erage and reproducibility.

3.6 CpG Enrichment

As a quality check for the enrichment of CpG rich DNA fragments obtained
by the immunoprecipitation step of a MeDIP experiment, MEDIPS provides
the functionality to calculate CpG enrichment values. The main idea is to

13

check, how strong the regions are enriched for CpGs compared to the refer-
ence genome. For this, MEDIPS counts the number of Cs, the number of Gs,
the number CpGs, and the total number of bases within the specified reference
genome. Subsequently, MEDIPS calculates the relative frequency of CpGs and
the observed/expected ratio of CpGs present in the reference genome. Addition-
ally, MEDIPS calculates the same for the DNA sequences underlying the given
regions. The final enrichment values result by dividing the relative frequency
of CpGs (or the observed/expected value, respectively) of the regions by the
relative frequency of CpGs (or the observed/expected value, respectively) of the
reference genome. (See also Supplementary Material in [Chavez et al., 2010].)

You can start the CpG enrichment analysis by typing

> er.control=MEDIPS.CpGenrich(data=CONTROL.SET)

The CpG enrichment analysis does not modify the MEDIPS SET object but
the results are stored at the specified enrichment results object (here er.control).
You can access the results by typing

> er.control

$regions.CG

[1] 628173

$regions.C

[1] 6551995

$regions.G

[1] 6575462

$regions.relH

[1] 2.523184

$regions.GoGe

[1] 0.3630026

$genome.C

[1] 592445731

$genome.G

[1] 592804204

$genome.CG

[1] 28670425

$genome.relH

[1] 0.9903856

$genome.GoGe

[1] 0.236322

$enrichment.score.relH

14

[1] 2.547679

$enrichment.score.GoGe

[1] 1.536051

The enrichment results object contains several slots that show the number
of Cs, Gs, and CpGs within the reference genome and within the given regions.
Additionally, there are slots that show the relative frequency as well as the ob-
served/expected CpG ratio within the reference genome and within the given re-
gions. Finally, the slots enrichment.score.relH and enrichment.score.GoGe

indicate the enrichment of CpGs within the given regions compared to the ref-
erence genome. For short reads derived from Input experiments (that is se-
quencing of none-enriched DNA fragments), the enrichment values should be
close to 1 (see an example in section 3.11). In contrast, a MeDIP-seq exper-
iment should return CpG rich sequences what will be indicated by increased
enrichment scores. In our example, the enrichment score for the relative CpG
enrichment is 2.547679, indicating an enrichment of CpG rich regions.

In case you would like to examine not only the regions defined by the short
reads, but also the DNA sequences of the putative longer DNA fragments from
where the short reads were derived, it is possible to increase the length of the
regions by specifying the extend (default NULL) parameter. By setting the
extend to any positive value, the regions will be extended to the plus or to
the minus dircetion (dependent on the strand information of the reads) and
afterwards the CpG enrichment will be calculated for the extended regions.

3.7 Creating the Coupling Vector

The need for MeDIP-seq data correction occurs by a varying efficiency of an-
tibody binding with respect to local CpG densities. Similar to other MeDIP
normalization methods [Down et al., 2008], [Pelizzola et al., 2008], MEDIPS
tries to correct for this effect by incorporating local CpG densities into the
MeDIP-seq signals. In order to correct for local CpG densities, first a coupling
vector has to be calculated. The coupling vector is of the same size as the pre-
defined genome vector (see also section 3.2) but contains local CpG densities
(also called coupling factors) instead of the raw signals for each genomic bin.
Before the coupling vector can be created, it is necessary to previously excecute
the MEDIPS.getPositions function (see section 3.4).

The coupling vector is created and attached to the MEDIPS SET object by
typing e.g.

> CONTROL.SET=MEDIPS.couplingVector(data=CONTROL.SET, fragmentLength=700, func="count")

For each pre-defined genomic bin, the density of surrounding CpGs (or of
another pre-defined sequence pattern, respectively, see section 3.4) is calcu-
lated. For this, first a maximal distance has to be defined by specifying the
parameter fragmentLength. Only CpGs within the range of [(bin_position-
fragmentLength), bin_position+fragmentLength] will contribute to the fi-
nal local coupling factor. The optimized value for the fragmentLength param-
eter will reflect the estimated size of the sonicated DNA fragments. There are
several ways for calculating a coupling factor for a genomic bin. The simplest
way is to count the number of CpGs within the maximal defined distance around

15

a genomic bin. Another approach is to weight each CpG by its distance to the
current genomic bin. CpGs further away from the current genomic bin will re-
ceive smaller weights, whereas CpGs close to the genomic bin will receive higher
weights. Again, there are several possible ways for such a weighting function.
MEDIPS supports the following weighting functions (specified by the parameter
func):

• count: simply count the number of CpGs within the predefined maximal
distance to the current bin

• linear: the weights for CpGs decrease in a linear way and end at 0 at
the predefined maximal distance to the current bin

• exp: the weights for CpGs decrease in an exponential way [Pelizzola et al.,
2008]

• log: the weights for CpGs decrease in a logarithmic way [Pelizzola et al.,
2008]

• custom: by setting the parameter to custom, it is required to specify a
custom distance weights file using the parameter distFile. For exam-
ple, [Down et al., 2008] have generated distance weights in an empirical
way. Based on their results, we have created the file flat_400_700.tab

that can be downloaded from http://medips.molgen.mpg.de. You can
create such a distance file by your own and specify it here. Here, the
fragmentLength parameter will be neglected and the maximal distance
within your provided distance file will be the limit.

We have systematically calculated coupling factors with varying fragmentLength

and func parameters and compared the resulting coupling vectors to DNA-
methylation values derived from bisulphite experiments performed by the human
epigenome project (HEP) [Eckhardt et al., 2006]. The best negative correlation
(that is the higher the CpG density, the lower the bisulfite derived methylation
values) was achieved by setting the parameters to fragmentLength=700 and
func=count (see Supplementary Material in [Chavez et al., 2010]).

The coupling vector can be exported into a wiggle file by typing

> MEDIPS.exportWIG(file="PatternDensity.WIG", data=CONTROL.SET, pattern.density=TRUE, descr="Pattern.density")

The exported Wiggle file can be uploaded into common genome browsers and
allows for visualizing the density of the specified sequence pattern (e.g. CpGs)
along the chromosomes. We recommend to gzip the file before uploading it to
the genome browser.

3.8 Calibration Curve and Linear Regression

As we have created a genome vector containing the raw signals at each genomic
bin as well as an according coupling vector containing coupling factors at each
genomic bin (both stored within the MEDIPS SET object), we can now examine
the dependency of local MeDIP-seq signal intensities and local CpG densities.
This dependency can be made tangible by calculating the calibration curve:

> CONTROL.SET=MEDIPS.calibrationCurve(data=CONTROL.SET)

16

Calculation of the calibration curve is achieved by first dividing the total
range of coupling factors into regular levels. Second, all genomic bins are parti-
tioned into these levels by considering their associated coupling factors. Finally,
for each level of coupling factors, MEDIPS calculates the mean raw signal and
mean coupling factor of all genomic bins that fall into this level. (For a detailed
description see Supplementary Material in [Chavez et al., 2010].)

The calibration curve represents averaged signals and coupling factors over
the full range of coupling factors. It indicates the experiment specific depen-
dency between local signal intensities and CpG densities. The results of the
calibration curve calculation can be visualized by typing e.g.

> MEDIPS.plotCalibrationPlot(data=CONTROL.SET, linearFit=T, plot_chr="chr22")

Because the amount of data to be plotted can become very huge when plot-
ting full genome data, it is strongly recommended to direct the output to a
compressed file. This can be achieved by calling a e.g. png("plot.png") func-
tion before calling the plot command. The plot will be available in the specified
file (do not forget the dev.off() command after the plotting command). Oth-
erwise, R might not be able to visualize the plot in reasonable time. Each data
value within the calibration plot represents a genomic bin. The X-axis shows
the raw signals and the Y-axis shows the coupling factors for the genomic bins.
The red curve represents the calibration curve.

The calibration curve reveals that, in average, an increase of MeDIP-seq
signals is caused by an increasing CpG density. This approximately linear de-
pendency is visible for the low range of coupling factors, only. For higher levels

17

of CpG densities, the mean MeDIP-seq signals decrease. It is assumed that
this decrease is caused by the fact that in mammalian cells, regions of higher
CpG densities are mainly unmethylated. In agreement with this assumption,
Pelizzola and colleagues [Pelizzola et al., 2008] have shown that the dependency
of MeDIP derived signals and CpG density continues for higher levels of CpG
densities, by analyzing artificially fully methylated samples using MeDIP-Chip.
In detail, they have identified a sigmoidal dependency between CpG density and
MeDIP-Chip data. In agreement with Pelizzola et al. [Pelizzola et al., 2008], it
is assumed that their signal plateau in the lower range of chip signals is caused
by background noise. However, it is assumed that their signal plateau in the
upper range of chip signals occurs by a saturation of hybridization events and
is therefore an array specific artefact. Motivated by the observations made by
Pelizzola et al. [Pelizzola et al., 2008] and by visual inspection of the MeDIP-seq
derived calibration curve, a continuing linear dependency of MeDIP-seq signals
for higher levels of CpG densities is assumed. Analogous to Down et al. [Down
et al., 2008], the local maximum of mean MeDIP-seq signals of the calibration
curve in the lower part of coupling factors is identified. Let

y = y1,...,yl

be the mean coupling factors, and let

x = x1,...,xl

be the according mean MeDIP-seq signals of the calibration curve, where l is
the number of tested coupling factor levels and i = 1,...,l, then the smallest
level i is identified, where

xi−3 ≤ xi−2 ≤ xi−1 ≤ xi ≥ xi+1 ≥ xi+2 ≥ xi+3

Let imax be the according identified level of i, then

ymax = y1, ..., yimax

xmax = x1, ..., ximax

are the parts of the calibration curve in the low range of coupling factors, where
an approximately linear dependency between MeDIP-seq signals and coupling
factors is observed. Here, xmax can be explained by a function of ymax as

xmax = f(ymax) + ε

where ε is an error variable (i.e. measurement errors) that is expected to spread
by chance and therefore, its expectation value is E(ε) = 0. Because a linear
dependency between xmax and ymax is assumed, xmax can be described as

xmax = α+ β · ymax + ε

where the parameter α is the theoretical y-intercept, and the parameter β is the
theoretical slope. Based on the pre-calculated xmax and ymax vectors, linear
regression is performed, in order to identify a suitable linear model. Linear
regression estimates regression coefficients a and b for the parameters α and β
so that it is valid:

xmaxi = a+ b · ymaxi + ei

18

where i = 1, ..., imax. Here, the residuum ei reflects the difference between the
regression curve a+ b · ymaxi

and the measurements of xmaxi
. Moreover, xmaxi

can be replaced by an estimate x̂maxi , where

xmaxi − x̂maxi = ei

and therefore, it is valid:

x̂maxi
= a+ b · ymaxi

After having calculated the calibration curve, the MEDIPS.calibrationCurve()
function performs the described linear regression and stores concrete values for
the parameters a (intercept) and b (slope) within the according slots of the
MEDIPS SET. By accessing the received parameters a and b, concrete values
for the parameter x̂maxi

can be calculated by the latter formula. For the low
range of coupling factors, these estimates model the observed progression of the
calibration curve. As discussed above, a continuing linear dependency between
MeDIP-seq signals and CpG density is expected for the higher range of coupling
factors. Based on the obtained linear model parameters, concrete x̂maxi

values
can be calculated for the full range of coupling factors. Therefore,

x̂ = x̂1, ..., x̂maxi , ..., x̂l

are the estimated mean MeDIP-seq signals over the full range of coupling factor
levels l, calculated with respect to the obtained linear model parameters.

When the parameter linearFit of the MEDIPS.plotCalibrationPlot()

function was set to TRUE, the calibration plot contains a linear curve (green
curve) that visualizes the results of the performed linear regression. This curve
represents the calculated linear dependency between signals and CpG densities
as estimated from the low range of coupling factors.

Further parameters that can be specified when plotting the calibration curve
are:

• plot_chr: default="all". Please don’t forget to call a e.g. png("file.png")
function before calling the plot command using all (see above). Alter-
natively, you can specify a selected chromosome (e.g. chr1). Here, the
plot_chr parameter only affects the plot and does not affect the MEDIPS
SET object.

• xrange: The mean signal range of the calibration curve typically falls into
a low signal range. By setting the xrange parameter to e.g. 50 (suitable
for raw data), the calibration plot will only plot genomic bins associated
with signals <=50. Therefore, the effect of an increased CpG density to
an increased signal can be better visualized, especially if the data contains
genomic bins with high signals.

• rpm: can be either TRUE or FALSE. If set to TRUE, the signals will
be transformed into reads per million (rpm) before plotted. Additionally,
the mean signal values of the calibration curve and of the estimated lin-
ear curve will be transformed to rpm scale. The coupling values remain
untouched.

19

The calibration plot is very characteristic for MeDIP-seq experiments. The
quality of the enrichment step of the MeDIP experiment can be estimated by
visual inspection of the progression of the calibration curve. Calibration curves
for data derived from Input experiments look different (please see an example
in section 3.11).

3.9 Relative Methylation Score and Export of Normalized
Data

As soon as the normalization parameters are calculated (see previous section),
the raw signals will be normalized and the normalized data will be stored within
the MEDIPS SET object.

> CONTROL.SET=MEDIPS.normalize(data=CONTROL.SET)

For MeDIP-seq data normalization, x̂ (see section 3.8) is utilized in order
to weight the observed MeDIP-seq signals of the genomic bins with respect to
their associated coupling factors. Let (xbini

, ybini
) be the raw MeDIP-seq signal

of the genomic bin i (i.e. the number of overlapping extended short reads), and
the pre-calculated coupling factor at the genomic bin i, where i = 1, ...,m and
m is the total number of genomic bins, then the normalized relative methylation
score is defined as

rmsbini
=

xbini
·106

(a+b·ybini
)·n =

xbini
·106

x̂bini
·n

where x̂bini
= a + b · ybini

is the estimated weighting parameter obtained by
considering the coupling factor ybini

of the genomic bin i, and a and b are
the pre-calculated regression parameters. Based on the total number of short
reads (n), the raw MeDIP-seq signals are, in parallel, transformed into a reads
per million format in order to assure that rms values are comparable between
methylomes generated from differing amounts of short reads.

The rms values can be exported into a wiggle file by typing

> MEDIPS.exportWIG(file="output.rms.control.WIG", data=CONTROL.SET, raw=F, descr="hESCs.rms")

All slots of the MEDIPS SET are now occupied. You can again have a look
at the MEDIPS SET by typing

> CONTROL.SET

S4 Object of class MEDIPSset

=======================================

Regions information

=======================================

Regions file: MeDIP_hESCs_chr22.txt

Organism: BSgenome.Hsapiens.UCSC.hg19

Chromosomes: chr22

Chromosome lengths: 51304566

Number of regions: 672866

Regions chromosomes: chr22 chr22 chr22...

Regions start positions: 16053184 16054710 16080510...

20

Regions stop positions: 16053220 16054746 16080546...

Regions strand: - - +...

=======================================

Genome vector signals information

=======================================

Genome wide bin size: 50

Reads extended by: 400

Genome vector chromosomes: chr22 chr22 chr22...

Genome vector positions: 1 51 101...

Genome vector signals: 0 0 0...

=======================================

Pattern information

=======================================

Pattern: CG

Number of patterns: 578097

Pattern chromosomes: chr22 chr22 chr22...

Pattern positions: 16050097 16050114 16050174...

=======================================

Genome vector coupling factor information

=======================================

Distance function: count

Distance file: empty

Fragment length: 700

Genome vector coupling factors: 0 0 0...

=======================================

Calibration information

=======================================

Calibration curve mean signals: 0.001075285 1.609182 1.049421...

Calibration curve mean coupling factors: 0 1 2...

Calibration curve variance: NA NA NA...

Intercept: 1.15257423739513

Slope: 2.51962252361513

Calibration chromosome: all

=======================================

Genome vector normalized signal information

=======================================

Normalization output interval: [0:1000]

Genome vector normalized signals: 0 0 0...

3.10 Methylation Profiles and Absolute Methylation Score

A typical question of MeDIP based DNA-methylation experiments is to exam-
ine the methylation state of specific genomic regions, like e.g. CpG islands,
promoters and other regions of interest (ROI).

MEDIPS provides the functionalities to calculate averaged methylation val-
ues for either pre-defined ROIs or for genome wide windows. In order to receive
the methylation state of targeted genomic regions, first a ROI file has to be
created. The required structure of any file containing regions of interest is:

• the first column contains the chromosome of the ROI (e.g. chr1)

21

• the second column contains the start position of the ROI

• the third column contains the stop position of the ROI

• the fourth column contains an identifier of the ROI

As an example, you can access the file hg19.chr22.txt in the extdata

subdirectory of the MEDIPS package.
The file contains hg19 promoter regions of Ensembl transcripts located on

the chromosome 22 as received from www.biomart.org. Here, the genomic
coordinates start at -1kb of the transcript start sites (TSSs) and stop at +0.5kb
downstream of the TSSs. Mean methylation values for these regions can be
summarized based on the generated MEDIPS SET object by typing:

> file=system.file("extdata", "hg19.chr22.txt", package="MEDIPS")

> promoter = MEDIPS.methylProfiling(data1 = CONTROL.SET, ROI_file = file, math = mean, select = 2)

Further parameters that can be specified are:

• chr: only the specified chromosome will be evaluated (e.g. chr1).

• select: can be either 1 or 2. If set to 1, variances will be calculated based
on the rpm values; if set to 2, variances will be calculated based on the
rms values.

• transf: default=TRUE; If set to TRUE, MEDIPS transforms the mean rms
and ams values into log2 scale and subsequently transforms their resulting
data range into the consistent interval [0, 1000] before finally stored.

• math: default=mean; Here, you can specify other functions available in R
for summarizing values like median or sum.

• data2: default=NULL; Here, a second MEDIPS SET can be provided, in
case two MEDIPS SETs have to be compared (see also section 3.12).

• input: default=NULL; Here, an INPUT SET can be provided. An INPUT
SET is a MEDIPS SET but generated from data derived from an Input
sample. An Input sample is generated by sonication of the DNA but
without a subsequent methylated cytosine specific immunoprecipitation
step. Therefore, Input data reflects the genomic background. MEDIPS
allows for accessing Input data (if available) in order to calculate a genomic
background signal distribution. Such genomic background signals can be
utilized for identifying hyper-methylated regions when two MEDIPS SETs
are compared (see also section 3.12).

• frame_size: default=NULL; In spite of calculating averaged methylation
values for given regions of interest, MEDIPS allows for calculating methy-
lation levels for genome wide windows. The frame_size parameter defines
the size of the genomic windows to be tested. It is obvious that either the
frame_size or the ROI_file parameter has to be specified.

• step: default=NULL; In case the frame_size parameter is specified, the
step parameter can be set to any arbitrary positive value. The step pa-
rameter defines the number of bases by which the genomic windows are

22

shifted along the chromosomes. If step remains NULL, non overlapping
adjacent genomic windows will be examined. By setting the step param-
eter to e.g. 250 bp and by setting the frame_size parameter to e.g. 500
bp, overlapping genomic windows will be examined, where the overlap of
neighbouring genomic windows is 250 bp (see also the example below).

The results are stored as a list at the specified object (here promoter). All
list objects are vectors of the same length, where the length is defined by the
number of tested ROIs. Please note, as we have generated and specified only
one MEDIPS SET object so far, the results object only contains results (e.g.
mean rpm and rms values) from one MEDIPS SET (provided at data1). The
remaining vectors are empty and will be occupied when two MEDIPS SET
objects will be compared (see section 3.12). Each row refers to a ROI, the row
names contain the IDs of the provided ROIs, and the vectors of the list are:

1. chr: the chromosome of the ROI

2. start: the start position of the ROI

3. stop: the stop position of the ROI

4. length: the number of genomic bins included in the ROI

5. coupling: the mean coupling factor of the ROI

6. input: the mean rpm value of the INPUT SET at input (if provided)

7. rpm_A: the mean rpm value for the MEDIPS SET at data1

8. rpm_B: the mean rpm value for the MEDIPS SET at data2 (if a second
MEDIPS SET is provided)

9. rms_A: the (transformed, see below) mean rms value for the MEDIPS SET
at data1

10. rms_B: the (transformed, see below) mean rms value for the MEDIPS SET
at data2 (if a second MEDIPS SET is provided)

11. ams_A: the (transformed, see below) mean absolute methylation score (see
below) for the MEDIPS SET at data1

12. ams_B: the (transformed, see below) mean absolute methylation score (see
below) for the MEDIPS SET at data2 (if a second MEDIPS SET is pro-
vided)

13. var_A: the variance of the rpm (or rms, respectively, please see the pa-
rameter select) values of the MEDIPS SET at data1

14. var_B: the variance of the rpm (or rms, respectively, please see the param-
eter select) of the MEDIPS SET at data2 (if a second MEDIPS SET is
provided)

15. var_co_A: the coefficient of variation of the rpm (or rms, respectively,
please see the parameter select) of the MEDIPS SET at data1

23

16. var_co_B: the coefficient of variation of the rpm (or rms, respectively,
please see the parameter select) of the MEDIPS SET at data2 (if a
second MEDIPS SET is provided)

17. ratio: rpm A/rpm B (or rms A/rms B, respectively, please see the pa-
rameter select) (if a second MEDIPS SET is provided)

18. pvalue.wilcox: the p.value returned by R’s wilcox.test function for
comparing the rpm values (or rms values, respectively, please see the pa-
rameter select) of the MEDIPS SET on data1 and of the MEDIPS SET
at data2 (if a second MEDIPS SET is provided)

19. pvalue.ttest: the p.value returned by R’s t.test function for compar-
ing the rpm values (or rms values, respectively, please see the parameter
select) of the MEDIPS SET on data1 and of the MEDIPS SET at data2
(if a second MEDIPS SET is provided)

Mean rms values (rms_A and rms_B) are calculated based on the pre-calculated
rmsbini values of the genomic bins enclosed by the ROI. In case, the parameter
transf was set to TRUE, MEDIPS transforms the mean rms values into log2
scale and subsequently transforms the resulting data range into the consistent
interval [0, 1000] before finally stored. Therefore, the minimal transformed mean
rms_A (or mean rms_B, respectively) value will always be 0 and the maximal
transformed mean rms_A (or mean rms_B, respectively) will always be 1000.
This transformation assures that the resulting mean rms values of the tested
ROIs will spread over a consistent interval. Therefore, highly methylated ROIs
may be subsequently identified by selecting ROIs associated to e.g. rms_A>600.
The other way round, lowly methylated ROIs may be subsequently identified
by selecting ROIs associated to e.g. rms_A<400. However, it has to be kept in
mind that the resulting data range ([0, 1000]) reflects the relative methylation
levels of the tested ROIs.

We consider the rms values as experiment specific normalized MeDIP-seq
signals corrected for the varying efficiency of antibody binding and immunopre-
cipitation in genomic regions with different CpG densities. In order to identify
an absolute methylation estimate for any specified region of interest, i.e. ei-
ther for any functional genomic regions like promoters or CpG islands or for
genome wide windows of arbitrary length, the raw MeDIP-seq values can be
normalized into absolute methylation scores (ams). The absolute methylation
scores additionally correct for the general CpG density of the region of inter-
est and therefore, allow for comparing methylation profiles of genomic regions
with different CpG densities. This is especially needful, when local methylation
levels are associated to further functional and regulatory mechanism like e.g.
gene expression alterations. As an example, it is supposed that methylation
levels of proximal promoters influence the transcription rate of the according
genes. However, promoters are known to show a wide spread spectrum of CpG
densities. Therefore, a fully methylated high CpG density promoter will show
much higher MeDIP signals than a fully methylated low CpG density promoter,
although in both cases the promoter methylation level may influence the tran-
scription rate in a comparable way. Therefore, it remains inaccurate to conclude
an absolute measure of promoter methylation by comparing MeDIP-seq derived
rpm or rms signals from promoters with different CpG densities.

24

Let

ROI = ((xbin1
, ybin1

), ..., (xbins
, ybins

))

be the raw MeDIP-seq signals and coupling factors of adjacent genomic bins i
that define a region of interest (ROI), where i = 1, ..., s and s is the total number
of genomic bins comprised by the ROI, then the absolute methylation score for
the ROI is defined as:

amsROI =

1
s

s∑
i=1

xbini
·106

(a+b·ybini
)·n

1
s

s∑
i=1

ybini

After having exectuted the MEDIPS.methylProfiling() function for the
specified ROI file containing promoter regions, one can have a look at e.g. the
histogram of CpG densities or methylation levels. Simply call Rs hist() func-
tion and specify the desired column of the matrix. For the mean coupling factors
type e.g.

> hist(promoter$coupling, breaks=100, main="Promoter CpG densities", xlab="CpG coupling factors")

Promoter CpG densities

CpG coupling factors

F
re

qu
en

cy

0 50 100 150 200

0
50

10
0

15
0

The histogram shows a bimodal distribution of promoter CpG densities. For
a histogram of mean rpm values type

> hist(promoter$rpm_A[promoter$rpm_A!=0], breaks=100, main="RPM signals", xlab="reads/bin")

25

RPM signals

reads/bin

F
re

qu
en

cy

0 20 40 60 80 100

0
10

0
20

0
30

0
40

0
50

0

Because there are promoter regions without any signals, we do not consider
them for the histogram. The plot shows that a bimodal methylation distribution
of the promoters is not visible for the rpm signals. The rms or ams values
indicate a bimodal distribution of promoter methylation:

> hist(promoter$ams_A[promoter$ams_A!=0], breaks=100, main="AMS signals", xlab="absolute methylation score (ams)")

26

AMS signals

absolute methylation score (ams)

F
re

qu
en

cy

0 200 400 600 800 1000

0
20

40
60

80
10

0
12

0
14

0

We have shown [Chavez et al., 2010] that such summarized methylation
values for ROIs, especially the ams values, are most suitable for comparing
MeDIP data to e.g. bisulphite sequencing or whole genome shotgun bisulphite
sequencing data.

Besides summarizing methylation values for pre-defined ROIs, MEDIPS al-
lows for calculating mean methylation values along the chromosomes. For this,
you have to specify a desired frame size using the parameter frame_size. Ad-
ditionally, you can specify the step parameter. The step parameter defines the
number of bases by which the frames are shifted along the chromosome. If you
e.g. set the frame_size parameter to 500 and the step parameter to 250, then
MEDIPS calculates mean methylation values for overlapping 500bp windows,
where the size of the overlap will be 250bp for all neighbouring windows. With-
out specifying the step parameter, MEDIPS will calculate mean methylation
values for all none-overlapping windows of size frame_size.

> frames.frame500.step250=MEDIPS.methylProfiling(data1=CONTROL.SET, frame_size=500, step=250, math=mean, select=2)

Please note, the MEDIPS.methylProfiling() function takes a comparable
long processing time when called for genome wide short windows. For example,
the processing of the full human genome using overlapping 500bp windows takes
approx. 10h on our hardware. Therefore, you may want to store the received
matrix afterwards by using R’s write.table() function like:

> write.table(frames.frame500.step250, file="frames.chr22.meth.txt", sep="\t", quote=F, col.names=T, row.names=F)

Here, you do not need to store the row.names as genome wide frames will
not have identifiers. For ROIs provided within a ROI file, you might want to
set row.names=T in order to keep the identifiers.

27

You can upload the results table at any later time into R by typing

> frames.frame500.step250=read.table(file="frames.chr22.meth.txt", header=T)

3.11 Additional MEDIPS SET Objects

In order to identify differentially methylated regions (DMRs) between two dif-
ferent conditions, a second MEDIPS SET has to be created and processed. In
our example, the file MeDIP_DE_chr22.txt contains MeDIP-seq data of chromo-
some 22 derived from human embryonic stem cells after differentiation along the
endodermal lineage into definitive endoderm (DE) ([Chavez et al., 2010]). We
now process the data using the same parameter settings as for the previously
created CONTROL.SET:

> file=system.file("extdata", "MeDIP_DE_chr22.txt", package="MEDIPS")

> TREAT.SET=MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file, numrows=863054)

> TREAT.SET=MEDIPS.genomeVector(data=TREAT.SET, bin_size=50, extend=400)

> TREAT.SET=MEDIPS.getPositions(data=TREAT.SET, pattern="CG")

> TREAT.SET=MEDIPS.couplingVector(data=TREAT.SET, fragmentLength=700, func="count")

> TREAT.SET=MEDIPS.calibrationCurve(data=TREAT.SET)

> TREAT.SET=MEDIPS.normalize(data=TREAT.SET)

So far, we have the second MEDIPS SET sufficiently processed for the subse-
quent comparison of two MEDIPS SETs. Here, we will not perform the quality
controls or further diagnostic analyses for the TREAT.SET. However, it is rec-
ommended to calculate these quality metrics for each data set.

For identification of differentially methylated regions, it is recommended (but
not necessary) to provide background data from an Input experiment (that is
sequencing of non-enriched DNA fragments). By providing an Input data set,
MEDIPS will calculate a background data distribution used for the identification
of DMRs. Therefore, we now process the available Input data given in the
example file Input_StemCells_chr22.txt:

> file=system.file("extdata", "Input_StemCells_chr22.txt", package="MEDIPS")

> INPUT.SET=MEDIPS.readAlignedSequences(BSgenome="BSgenome.Hsapiens.UCSC.hg19", file=file, numrows=352756)

> INPUT.SET=MEDIPS.genomeVector(data=INPUT.SET, bin_size=50, extend=400)

In case of Input data, we do not correct for CpG denstities because no
enrichment for methylated CpG’s was performed. Only the rpm values will
be considered. Therefore, the INPUT SET is already sufficiently processed for
beeing integrated into the DMR identification process. In the context of this
manual, we do not perform the quality controls and further diagnostic analyses
for the INPUT.SET. However, we strongly recommend to calculate the quality
control metrics as described for the CONTROL.SET, in order to work out the
differences between MeDIP and Input data (e.g. saturation-, coverage-, CpG
enrichment analyses, and creation of the calibration plot). These analyses can
be performed for the INPUT.SET by typing e.g.:

28

> MEDIPS.exportWIG(file="output.rpm.input.WIG", data=INPUT.SET, raw=T, descr="INPUT.rpm")

> sr.input=MEDIPS.saturationAnalysis(data=INPUT.SET, bin_size=50, extend=400, no_iterations=10, no_random_iterations=1)

> MEDIPS.plotSaturation(sr.input)

The saturation analysis will show that the reproducibility increases more
slowly for Input data than for MeDIP data. This is due to an increased com-
plexity of available genomic DNA that has to be sequenced when no specific
enrichment was performed.

> INPUT.SET=MEDIPS.getPositions(data=INPUT.SET, pattern="CG")

> cr.input=MEDIPS.coverageAnalysis(data=INPUT.SET, extend=400, no_iterations=10)

> MEDIPS.plotCoverage(cr.input)

> er.input=MEDIPS.CpGenrich(data=INPUT.SET)

The CpG enrichment values indicate that Input data is not as strong enriched
for CpGs as MeDIP data.

> INPUT.SET=MEDIPS.couplingVector(data=INPUT.SET, fragmentLength=700, func="count")

> INPUT.SET=MEDIPS.calibrationCurve(data=INPUT.SET)

> png("CalibrationPlotINPUT.png")

> MEDIPS.plotCalibrationPlot(data=INPUT.SET, linearFit=F, plot_chr="chr22")

> dev.off()

The calibration curve of the calibration plot allows for discriminating MeDIP
from Input data.

3.12 Methylation Profiles of Two MEDIPS SET Objects

As we have generated two MEDIPS SETs and one INPUT SET, we will now
calculate mean methylation values for all three sets in parallel and compare
the methylation profiles of the two MEDIPS SETs with respect to the INPUT
SET. Methylation profiles and comparisons can be performed for given regions
of interest (see section 3.10) or for genome wide (sliding) frames. This is all
done by the MEDIPS.methylProfiling() function.

Here, we process genome wide adjacent 500bp windows:

> diff.meth=MEDIPS.methylProfiling(data1=CONTROL.SET, data2=TREAT.SET, input=INPUT.SET, frame_size=500, select=2)

Please note, the MEDIPS.methylProfiling() function takes a comparatively
long processing time when called for genome wide short windows. In fact, this
is the most time-consuming bottleneck of the whole procedure for identifying
DMRs.

The results are stored as a list at the specified object (here diff.meth). All
list objects are vectors of the same length, where the length is defined by the
number of tested frames. Each row refers to a ROI and the individual vectors
are as described in section 3.10. Here, all vectors are occupied, including mean
methylation values for the two MEDIPS SETs and for the INPUT SET, as well
as ratios and p-values obtained from comparing the two MEDIPS SETs.

29

Let C, T , and I be the genome vectors generated based on the sequencing
data from the CONTROL.SET, TREAT.SET, and INPUT.SET objects using
an arbitrary bin size b and let ROI be a set of ROIs (e.g. genome wide windows),
whereROI = ROI1, ..., ROIi, ...ROIn, and n is the number of ROIs to be tested.
Let the ROIs be of length m1, ...,mn. In the following, the identification of
DMRs is only supported for any ROIi of length mi ≥ 5·b. Therefore, each ROIi
includes at least five genomic bins bini,j , where bini,1, ..., bini,j , ..., bini,ki

εROIi
and ki = floor(mi

b). For each ROIi, mean rpm and mean rms values are
calculated based on C and T as:

C.RPMROIi = 1
ki

ki∑
j=1

rpm(C.bi,j)

C.RMSROIi = 1
ki

ki∑
j=1

rms(C.bi,j)

T.RPMROIi = 1
ki

ki∑
j=1

rpm(T.bi,j)

T.RMSROIi = 1
ki

ki∑
j=1

rms(T.bi,j)

where rpm(C.bi,j), rms(C.bi,j), rpm(T.bi,j), and rms(T.bi,j) are the pre-
calculated rpm and rms (see sections 3.2 and 3.9) values of the genomic bins
from the Control and Treatment samples. In addition, for each ROIi, mean
rpm values are calculated based on I as:

I.RPMROIi = 1
ki

ki∑
j=1

rpm(I.bi,j)

where rpm(I.bi,j) are the pre-calculated rpm values of the genomic bins
from the Input sample. Based on the mean rms values of the Control and of
the Treatment sample, for each ROIi the following ratios are calculated:

r.rmsROIi =
C.RMSROIi

T.RMSROIi

In addition, by considering the mean rpm values of the Control or of the
Treatment sample, respectively, the following ratios are calculated with respect
to mean rpm values of the Input sample:

r.rpm.CROIi =
C.RPMROIi

I.RPMROIi

r.rpm.TROIi =
T.RPMROIi

I.RPMROIi

Because local background sequencing signals are variable along the chro-
mosomes due to differing DNA availability, a global background rpm signal
threshold is estimated based on the distribution of all calculated I.RPMROIi

values. This is done by defining a targeted quantile qt (e.g. qt = 0.95) and
by identifying the I.RPMROIi value (t), where qt% of all I.RPMROIi values
are < t. This estimated global minimal mean rpm threshold t will serve as an

30

additional parameter for selecting genomic regions that show a mean MeDIP-
seq derived rpm signal of at least t in the Control or the Treatment sample,
respectively (see next section).

In addition, statistical testing is utilized in order to rate whether the ob-
tained rms data series of the genomic bins within any ROIi significantly differ
in the Control sample compared to the Treatment sample. For each ROIi it is
tested, whether the rpm (or rms, respectively, see parameter select) values of
the genomic bins bini,1, ..., bini,j , ..., bini,ki

εROIi of the Control sample signifi-
cantly differ from the rpm (or rms, respectively, see parameter select) values
of the according genomic bins of the Treatment sample. For this, the MEDIPS
package utilizes the t.test() and wilcox.test() functions of the R environ-
ment with default parameter settings (two-sided tests in both cases). Therefore,
for each tested ROIi, two p-values (ROI.p.value.ti and ROI.p.value.wi) will be
calculated and serve as a further level for discriminating between local methy-
lation profiles (see next section).

Please note, in case the trasnf parameter was set to TRUE, the returned
mean rms and ams values within the diff.meth object are in log2 scale and
were transformed into the consistent interval [0:1000]. However, ratios and
p.values were calculated before the data was log2 scaled and shifted into the
interval [0:1000]. Ratios and p.values can be calculated based on the rpm or rms
values by specifying the parameter select of the MEDIPS.methylProfiling()

function.
You may want to store the received result matrix by using R’s write.table()

function like:

> write.table(diff.meth, file="diff.meth.txt", sep="\t", quote=F, col.names=T, row.names=F)

You can upload the result matrix at any later time into R by typing

> diff.meth=read.table(file="diff.meth.txt", header=T)

3.13 Selecting Candidate DMRs and Annotation

Based on the results returned from the MEDIPS.methylProfiling() function in
section 3.12 (here diff.meth), we now select candidate ROIs that show signifi-
cant differential methylation between the CONTROL.SET and the TREAT.SET
in consideration of the background data included in the INPUT.SET. For this,
MEDIPS offers the possibility to specify the following parameters in order to
apply several filters to the full set of ROIs:

• frames: specifies the result table

• input: default=T; Setting the parameter to TRUE requires that the re-
sults table includes a column for summarized rpm values of an INPUT
SET. In case there is no Input data available, the input parameter has to
be set to a rpm value that will be used as a lower threshold during the sub-
sequent analysis. How to estimate such a threshold without background
data is not yet solved by MEDIPS.

• quant: default=0.9; from the distribution of all Input rpm values, MEDIPS
calculates the rpm value that represents the quant quantile of the whole
Input distribution.

31

• control: can be either TRUE or FALSE. MEDIPS allows for selecting
ROIs that are higher methylated in the CONTROL SET compared to
the TREAT SET and vice versa but both approaches have to be per-
fomed in two independent runs. By setting control=TRUE, ROIs will be
selected that are higher methylated in the CONTROL SET. By setting
control=FALSE, ROIs will be selected that are higher methylated in the
TREAT SET.

• up: default=1.333333; defines the lower threshold for the ratio CON-
TROL/TREATMENT as well as the lower ratio for CONTROL/INPUT
(if control=T) or TREATMENT/INPUT (if control=F), respectively.

• down: default=0.75; defines the upper threshold for the ratio: CON-
TROL/TREATMENT (only if control=F).

• p.value: default=0.01; defines the threshold for the p-values. One of the
two p-values derived from the wilcox.test and t.test functions has to
be <= p.value.

The following command filters for candidate frames that are higher methy-
lated in human embryonic stem cells than in differentiated hESCs:

> diff.meth.control=MEDIPS.selectSignificants(frames=diff.meth, control=T, input=T, up=2, p.value=0.0001, quant=0.99)

[1] Processing input distribution...

[1] Done.

[1] Total number of frames: 102610

[1] Number of frames where control or treatment !=0: 66656

[1] Remaining number of frames with p.value<=1e-04: 7567

[1] Remaining number of frames where control/treatment ratio >= 2: 4108

[1] Estimated rpm threshold for input quantile 0.99 is: 27.4977604916713

[1] Remaining number of frames with control rpm >=27.4977604916713: 433

[1] Remaining number of frames with control/input ratio>=2: 294

[1] [Note: There are 0 frames associated to a p-value==0.]

[1] [Note: There are 0 frames, where control/treatment ratio = Inf (i.e. treatment==0).]

For identifying ROIi’s that show differential methylation between the Con-
trol and the Treatment sample with respect to the Input sample, based on the
pre-calculated parameters (see previous section), a filtering procedure is per-
formed. The following filtering procedure also discriminates between increased
methylation in the Control sample compared to the Treatment sample (Con-
trol>Treatment, a) and vice versa (Treatment>Control, b):

1. ROIi’s where C.RPMROIi = T.RPMROIi = 0 are neglected,

2. ROIi’s where ROI.p.value.ti > p.value and ROI.p.value.wi > p are ne-
glected, where p.value is any targeted level of significance (e.g. p.value =
0.01),

3. Filtering for the ratio:

• a) ROIi’s where r.rmsROIi < up are neglected, where up is an upper
ratio threshold (e.g. up = 1.33),

32

• b) ROIi’s where r.rmsROIi > down are neglected, where down is a
lower ratio threshold (e.g. down = 0.75),

4. Filtering for global Input derived background signals:

• a) ROIi’s where C.RPMROIi < t are neglected,

• b) ROIi’s where T.RPMROIi < t are neglected,

5. Filtering for local Input derived background signals:

• a) ROIi’s where r.rpm.CROIi < up are neglected,

• b) ROIi’s where r.rpm.TROIi < up are neglected.

In our example, there are 294 frames of length 500bp that remain after the
MEDIPS.selectSignificants() step. In case, the MEDIPS.methylProfiling()
function was executed in order to test overlapping frames (i.e. specifying
the step parameter), overlapping significant frames may be returned to the
diff.meth.control results table. For these cases it is worthwhile to merge
overlapping regions by typing:

> diff.meth.control.merged=MEDIPS.mergeFrames(frames=diff.meth.control)

Please note, merged frames are represented only by their genomic coordinates
within the diff.meth.control.merged table (these are the chromosome names,
new start, and new stop positions). The result table does not contain any merged
rpm, rms, variance, p.value, etc. values any more.

Moreover, it is important to keep in mind, that there are three main reasons
why an analysis of only a subset of the full genome (here only chromosome
22) will probably end up in a different number of significant DMRs: First, the
calibration parameters were calculated for only one chromosome. Second, the
total number of given regions differs and therefore, the reads per million values
will differ. Third, the rpm threshold derived from the background Input data
distribution was calculated based on data from only one chromosome.

You can write out the obtained regions by typing some suitable R code like:

> write.table(diff.meth.control, file = "DiffMethyl.Up.hESCs.bed", sep = "\t", quote = F, row.names = F, col.names = F)

You can upload the resulting file into a genome browser and the DMRs will
be visualized as black blocks.

Finally, it might be of interest to annotate the DMRs. We fall back on the
example ROI file hg19.chr22.txt that contains pre-defined promoter regions
(-1kb to +0.5kb around the TSSs). We annotate the identified DMRs by the
transcript promoters included in the ROI file by typing

> file=system.file("extdata", "hg19.chr22.txt", package="MEDIPS")

> diff.meth.control.annotated=MEDIPS.annotate(diff.meth.control, anno=file)

The resulting table is of the following format:

1. chr: the chromosome name of the DMR

2. start: the start position of the DMR

33

3. end: the stop position of the DMR

4. feature: the name of the matched annotation

For each provided region (DMR), the function returns all overlapping anno-
tations included in the provided annotation file. Note, in case there are several
overlapping annotations, the region (DMR) is returned several times in sepa-
rated rows, each entry associated to one annotation. In order to receive e.g. a
unique list of ensembl transcript names whose promoter regions overlap with a
DMR, you can now easily select for the appropriate entries using standard R
commands, e.g.

> length(unique(diff.meth.control.annotated[,4]))

[1] 25

In our example, the 294 identified DMRs on chromosome 22 can be asso-
ciated to promoter regions of 25 unique transcripts (including genes as well
as pseudogenes and small RNAs). These DMRs can be interpreted as regions
where de-methylation events occur during the differentiation of hESCs along
the endodermal lineage.

The other way round, we now select for frames higher methylated in differ-
entiated hESCs (DE) than in pluripotent hESCs:

> diff.meth.treat=MEDIPS.selectSignificants(frames=diff.meth, control=F, input=T, up=2, down=0.5, p.value=0.0001, quant=0.99)

[1] Processing input distribution...

[1] Done.

[1] Total number of frames: 102610

[1] Number of frames where control or treatment !=0: 66656

[1] Remaining number of frames with p.value<=1e-04: 7567

[1] Remaining number of frames where treatment/control ratio <= 0.5: 1605

[1] Estimated rpm threshold for input quantile 0.99 is: 27.4977604916713

[1] Remaining number of frames with treatment rpm >=27.4977604916713: 64

[1] Remaining number of frames with treatment vs. input ratio>=2: 47

[1] [Note: There are 0 frames associated to a p-value==0.]

[1] [Note: There are 0 frames, where control/treatment ratio = 0 (i.e. control=0).]

> write.table(diff.meth.treat, file = "DiffMethyl.Up.DE.bed", sep = "\t", quote = F, row.names = F, col.names = F)

> file=system.file("extdata", "hg19.chr22.txt", package="MEDIPS")

> diff.meth.treat.annotated=MEDIPS.annotate(diff.meth.treat, anno=file)

> length(unique(diff.meth.treat.annotated[,4]))

[1] 28

In our example, there are 47 non-overlapping DMRs on chromosome 22 as-
sociated to promoter regions of 28 unique transcripts. These DMRs can be
interpreted as regions where de-novo methylation events occur during the dif-
ferentiation of hESCs along the endodermal lineage.

34

4 Concluding Remarks

In our opinion, MEDIPS provides several helpful functionalities for analysing
MeDIP-seq data in reasonable time compared to other available approaches.
Nevertheless, there are some limitations that have to be adressed in the future.
Main issues are:

• Because MEDIPS processes full genome data at once, MEDIPS needs a
lot of memory. Especially, when two MEDIPS SETs as well as an INPUT
SET is uploaded and utilized for the identification of DMRs, the need for
memory is very huge.

• The runtime, especially calculation of mean methylation values or identi-
fication of DMRs at genome wide short windows remains a bottleneck.

• The MEDIPS.methylProfiling() function is a novel approach for the
identification of DMRs, and is especially suitable for MeDIP-seq data be-
cause DNA methylation is expected to occur on longer DNA stretches
compared to smaller enrichments derived from e.g. ChIP-seq data. How-
ever, identification of DMRs is very static. The definition of fixed windows,
although when overlapping windows are allowed, is not very flexible. A
dynamic method for the identification of optimized DMRs might be of
interest.

However, to the best of our knowledge, MEDIPS is currently the most com-
prehensive software for processing MeDIP-seq data. It starts where the mapping
tools stop, touches several aspects of data quality checks, allows for exporting
raw and normalized methylation profiles, calculates mean methylation values
for any specified ROI and identifies genome wide DMRs when hunting for dif-
ferential DNA-methylation comparing two conditions.

References

Lukas Chavez, Justyna Jozefczuk, Christina Grimm, Joern Dietrich, Bernd Tim-
mermann, Hans Lehrach, Ralf Herwig, and James Adjaye. Computational
analysis of genome-wide dna methylation during the differentiation of human
embryonic stem cells along the endodermal lineage. Genome Res, Aug 2010.

Thomas A Down, Vardhman K Rakyan, Daniel J Turner, Paul Flicek, Heng
Li, Eugene Kulesha, Stefan Graef, Nathan Johnson, Javier Herrero, Eleni M
Tomazou, Natalie P Thorne, Liselotte Baeckdahl, Marlis Herberth, Kevin L
Howe, David K Jackson, Marcos M Miretti, John C Marioni, Ewan Birney,
Tim J P Hubbard, Richard Durbin, Simon Tavare, and Stephan Beck. A
bayesian deconvolution strategy for immunoprecipitation-based dna methy-
lome analysis. Nat Biotechnol, 26(7):779–785, Jul 2008.

Florian Eckhardt, Joern Lewin, Rene Cortese, Vardhman K Rakyan, John
Attwood, Matthias Burger, John Burton, Tony V Cox, Rob Davies, Thomas A
Down, Carolina Haefliger, Roger Horton, Kevin Howe, David K Jackson,
Jan Kunde, Christoph Koenig, Jennifer Liddle, David Niblett, Thomas Otto,
Roger Pettett, Stefanie Seemann, Christian Thompson, Tony West, Jane

35

Rogers, Alex Olek, Kurt Berlin, and Stephan Beck. Dna methylation pro-
filing of human chromosomes 6, 20 and 22. Nat Genet, 38(12):1378–1385, Dec
2006.

Ryan Lister, Mattia Pelizzola, Robert H Dowen, R. David Hawkins, Gary Hon,
Julian Tonti-Filippini, Joseph R Nery, Leonard Lee, Zhen Ye, Que-Minh Ngo,
Lee Edsall, Jessica Antosiewicz-Bourget, Ron Stewart, Victor Ruotti, A. Har-
vey Millar, James A Thomson, Bing Ren, and Joseph R Ecker. Human dna
methylomes at base resolution show widespread epigenomic differences. Na-
ture, 462(7271):315–322, Nov 2009.

Mattia Pelizzola, Yasuo Koga, Alexander Eckehart Urban, Michael Krautham-
mer, Sherman Weissman, Ruth Halaban, and Annette M Molinaro. Medme:
an experimental and analytical methodology for the estimation of dna methy-
lation levels based on microarray derived medip-enrichment. Genome Res, 18
(10):1652–1659, Oct 2008.

Michael Weber, Jonathan J Davies, David Wittig, Edward J Oakeley, Michael
Haase, Wan L Lam, and Dirk Schuebeler. Chromosome-wide and promoter-
specific analyses identify sites of differential dna methylation in normal and
transformed human cells. Nat Genet, 37(8):853–862, Aug 2005.

36

