maSigPro

March 24, 2012

PlotGroups Function for plotting gene expression profile at different experimental groups

Description

This function displays the gene expression profile for each experimental group in a time series gene expression experiment.

Usage

```
PlotGroups(data, edesign = NULL, time = edesign[,1], groups = edesign[,c(3:ncol
    repvect = edesign[,2], show.fit = FALSE, dis = NULL, step.method = "b
    min.obs = 2, alfa = 0.05, nvar.correction = FALSE, summary.mode = "me
    xlab = "time", cex.xaxis = 1, ylim = NULL, main = NULL, cexlab = 0.8,
```


Arguments

data vector or matrix containing the gene expression data
edesign matrix describing experimental design. Rows must be arrays and columns experiment descriptors
time vector indicating time assigment for each array
groups matrix indicating experimental group to which each array is assigned
repvect index vector indicating experimental replicates
show.fit logical indicating whether regression fit curves must be plotted
dis regression design matrix
step.method stepwise regression method to fit models for cluster mean profiles. It can be either "backward", "forward", "two.ways.backward" or "two.ways.forward"
min.obs minimal number of observations for a gene to be included in the analysis
alfa significance level used for variable selection in the stepwise regression
nvar.correction
argument for correcting stepwise regression significance level. See T.fit
summary.mode the method to condensate expression information when more than one gene is
present in the data. Possible values are "representative" and "median"

```
show.lines logical indicating whether a line must be drawn joining plotted data points for
                reach group
groups.vector
    vector indicating experimental group to which each variable belongs
xlab label for the x axis
cex.xaxis graphical parameter maginfication to be used for x axis in plotting functions
ylim range of the y axis
main plot main title
cexlab graphical parameter maginfication to be used for x axis label in plotting func-
    tions
legend logical indicating whether legend must be added when plotting profiles
sub plot subtitle
```


Details

To compute experimental groups either a edesign object must be provided, or separate values must be given for the time, repvect and groups arguments.

When data is a matrix, the average expression value is displayed.
When there are array replicates in the data (as indicated by repvect), values are averaged by repvect.

PlotGroups plots one single expression profile for each experimental group even if there are more that one genes in the data set. The way data is condensated for this is given by summary.mode. When this argument takes the value "representative", the gene with the lowest distance to all genes in the cluster will be plotted. When the argument is "median", then median expression value is computed.

When show.fit is TRUE the stepwise regression fit for the data will be computed and the regression curves will be displayed.

If data is a matrix of genes and summary.mode is "median", the regression fit will be computed for the median expression value.

Value

Plot of gene expression profiles by-group.

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, <mj. nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

```
PlotProfiles
```


Examples

```
#### GENERATE TIME COURSE DATA
## generate n random gene expression profiles of a data set with
## one control plus 3 treatments, 3 time points and r replicates per time point.
tc.GENE <- function(n, r,
                        var11 = 0.01, var12 = 0.01, var13 = 0.01,
                var21 = 0.01, var22 = 0.01, var23 =0.01,
                    var31 = 0.01, var32 = 0.01, var33 = 0.01,
                var41 = 0.01, var42 = 0.01, var43 = 0.01,
                a1 = 0, a2 = 0, a3 = 0, a4 = 0,
                b1 = 0, b2 = 0, b3 = 0, b4 = 0,
                c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
    tc.dat <- NULL
    for (i in 1:n) {
            Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
            Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
            Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
            Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
            gene <- c(Ctl, Tr1, Tr2, Tr3)
            tc.dat <- rbind(tc.dat, gene)
    }
    tc.dat
}
## create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
```



```
rownames(tc.DATA) <- paste("gene", c(1:10), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
#### CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Ctl <- c(rep(1, 9), rep (0, 27))
Tr1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Tr2 <- c(rep(0, 18), rep(1, 9), rep(0, 9))
Tr}3<- c(rep(0, 27), rep(1, 9))
PlotGroups (tc.DATA, time = Time, repvect = Replicates, groups = cbind(Ctl, Tr1, Tr2, Tr
```


Description

PlotProfiles displays the expression profiles of a group of genes.

Usage

PlotProfiles(data, cond, main = NULL, cex.xaxis $=0.5$, ylim $=$ NULL, repvect, sub $=$ NULL, color.mode $=$ "rainbow")

Arguments

data	a matrix containing the gene expression data
cond	vector for x axis labeling, typically array names
main	plot main title
cex.xaxis	graphical parameter maginfication to be used for x axis in plotting functions
ylim	index vector indicating experimental replicates
repvect	index vector indicating experimental replicates
sub	plot subtitle
color.mode	color scale for plotting profiles. Can be either "rainblow" or "gray"

Details

The repvect argument is used to indicate with vertical lines groups of replicated arrays.

Value

Plot of experiment-wide gene expression profiles.

Author(s)

Ana Conesa, aconesa@ivia.es, Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

```
PlotGroups
```


Examples

```
#### GENERATE TIME COURSE DATA
## generate n random gene expression profiles of a data set with
## one control plus 3 treatments, 3 time points and r replicates per time point.
tc.GENE <- function(n, r,
        var11 = 0.01, var12 = 0.01, var13 = 0.01,
        var21 = 0.01, var22 = 0.01, var23 =0.01,
        var31=0.01, var32=0.01, var33 = 0.01,
        var41=0.01, var42=0.01, var43=0.01,
        a1=0, a2=0, a3 = 0, a4 = 0,
        b1 = 0, b2 = 0, b3 = 0, b4 = 0,
        c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
    tc.dat <- NULL
    for (i in 1:n) {
    Ctl <- c(rnorm(r, al, varl1), rnorm(r, bl, var12), rnorm(r, cl, var13)) # Ctl group
    Tr1<-c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
    Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
    Tr3<-c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
```

```
        gene <- c(Ctl, Tr1, Tr2, Tr3)
        tc.dat <- rbind(tc.dat, gene)
    }
    tc.dat
}
## create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
tc.DATA <- tc.GENE ( }\textrm{n}=10,r=3,\textrm{b}3=0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
rownames(tc.DATA) <- paste("gene", c(1:10), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
PlotProfiles (tc.DATA, cond = colnames(tc.DATA), main = "Time Course",
    repvect = rep(c(1:12), each = 3))
```


T.fit Makes a stepwise regression fit for time series gene expression experiments

Description

T.fit selects the best regression model for each gene using stepwise regression.

Usage

```
T.fit(data, design = data$dis, step.method = "backward",
    min.obs = data$min.obs, alfa = data$Q, nvar.correction = FALSE)
```


Arguments

data can either be a p . vector object or a matrix containing expression data with the same requirements as for the p . vector function
design design matrix for the regression fit such as that generated by the make.design.matrix function. If data is a p. vector object, the same design matrix is used by default
step.method argument to be passed to the step function. Can be either "backward", "forward",
"two.ways.backward" or "two.ways.forward"
min.obs genes with less than this number of true numerical values will be excluded from the analysis
alfa significance level used for variable selection in the stepwise regression
nvar.correction
argument for correcting T.fit significance level. See details

Details

In the maSigPro approach p.vector and T.fit are subsequent steps, meaning that significant genes are first selected on the basis of a general model and then the significant variables for each gene are found by step-wise regression.

The step regression can be "backward" or "forward" indicating whether the step procedure starts from the model with all or none variables. With the "two.ways.backward" or "two.ways.forward" options the variables are both allowed to get in and out. At each step the
p -value of each variable is computed and variables get in/out the model when this p -value is lower or higher than given threshold alfa. When nva.correction is TRUE the given significance level is corrected by the number of variables in the model

Value

sol matrix for summary results of the stepwise regression. For each selected gene the following values are given:

- p-value of the regression ANOVA
- R-squared of the model
- p-value of the regression coefficients of the selected variables
sig.profiles expression values for the genes contained in sol
coefficients matrix containing regression coefficients for the adjusted models
groups.coeffs
matrix containing the coefficients of the impiclit models of each experimental group
variables variables in the complete regression model
G total number of input genes
$9 \quad$ number of genes taken in the regression fit
dat input analysis data matrix
dis regression design matrix
step.method imputed step method for stepwise regression
edesign matrix of experimental design
influ.info data frame of genes containing influencial data

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics 22, 1096-1102

See Also

```
P.vector, step
```


Examples

```
#### GENERATE TIME COURSE DATA
## generate n random gene expression profiles of a data set with
## one control plus 3 treatments, 3 time points and r replicates per time point.
tc.GENE <- function(n, r,
    var11 = 0.01, var12 = 0.01,var13 = 0.01,
    var21 = 0.01, var22 = 0.01, var23 =0.01,
    var31 = 0.01, var32 = 0.01, var33 = 0.01,
```

```
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)
```

\{

```
    tc.dat <- NULI
    for (i in 1:n) {
        Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
        Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
        Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
        Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
        gene <- c(Ctl, Tr1, Tr2, Tr3)
        tc.dat <- rbind(tc.dat, gene)
    }
    tc.dat
}
## Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
## Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE ( }\textrm{n}=10, r=3, b2 = 0.5, c2 = 1.3)
## Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
## Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE (n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03
## Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300* 36)), 300)] <- NA # introduce missing values
```

\#\#\#\# CREATE EXPERIMENTAL DESIGN
Time <- rep (c (rep (c (1:3), each = 3)), 4)
Replicates <- rep (c(1:12), each = 3)
Control <- c(rep (1, 9), rep (0, 27))
Treat $1<-c(\operatorname{rep}(0,9), \operatorname{rep}(1,9), \operatorname{rep}(0,18))$
Treat2 <- c(rep $(0,18), \operatorname{rep}(1,9), \operatorname{rep}(0,9))$
Treat 3 <- c(rep $(0,27)$, rep $(1,9))$
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
\#\# run T.fit from a p.vector object
tc.p <- p.vector(tc.DATA, design = make.design.matrix(edesign), $\mathrm{Q}=0.01$)
tc.tstep $<-$ T.fit (data $=$ tc.p , alfa $=0.05$)
\#\# run T.fit from a data matrix and a design matrix
dise <- make.design.matrix(edesign)
tc.tstep <- T.fit (data $=$ tc.DATA[271:300,], design = dise\$dis,
step.method = "two.ways.backward", min.obs = 10, alfa = 0.05)
tc.tstep\$sol \# gives the p.values of the significant
\# regression coefficients of the optimized models

Description

average. rows matches rownames of a matrix to a match vector and performs averaging of the rows by the index provided by an index vector.

Usage

```
average.rows(x, index, match, r = 0.7)
```


Arguments

x	a matrix
index	index vector indicating how rows must be averaged
match	match vector for indexing rows
r	minimal correlation value between rows to compute average

Details

rows will be averaged only if the pearson correlation coefficient between all rows of each given index is greater than r . If not, that group of rows is discarded in the result matrix.

Value

a matrix of averaged rows

Author(s)

Ana Conesa, aconesa@ivia.es

Examples

```
## create data matrix for row averaging
x <- matrix(rnorm(30), nrow = 6, ncol = 5)
rownames(x) <- paste("ID", c(1, 2, 11, 12, 19, 20), sep = "")
i <- paste("g", rep(c(1:10), each = 2), sep = "") # index vector
m <- paste("ID", c(1:20), sep = "") # match vector
average.rows(x, i, m, r = 0)
```

data.abiotic

Gene expression data potato abiotic stress

Description

data.abiotic contains gene expression of a time course microarray experiment where potato plants were submitted to 3 different abiotic stresses.

Usage

data(data.abiotic)

Format

A data frame with 1000 observations on the following 36 variables.
Control_3H_1 a numeric vector
Control_3H_2 a numeric vector
Control_3H_3 a numeric vector
Control_9H_1 a numeric vector
Control_9H_2 a numeric vector
Control_9H_3 a numeric vector
Control_27H_1 a numeric vector
Control_27H_2 a numeric vector
Control_27H_3 a numeric vector
Cold_3H_1 a numeric vector
Cold_3H_2 a numeric vector
Cold_3H_3 a numeric vector
Cold_9H_1 a numeric vector
Cold_9H_2 a numeric vector
Cold_9H_3 a numeric vector
Cold_27H_1 a numeric vector
Cold_27H_2 a numeric vector
Cold_27H_3 a numeric vector
Heat_3H_1 a numeric vector
Heat_3H_2 a numeric vector
Heat_3H_3 a numeric vector
Heat_9H_1 a numeric vector
Heat_9H_2 a numeric vector
Heat_9H_3 a numeric vector
Heat_27H_1 a numeric vector
Heat_27H_2 a numeric vector
Heat_27H_3 a numeric vector
Salt_3H_1 a numeric vector
Salt_3H_2 a numeric vector
Salt_3H_3 a numeric vector
Salt_9H_1 a numeric vector
Salt_9H_2 a numeric vector
Salt_9H_3 a numeric vector
Salt_27H_1 a numeric vector
Salt_27H_2 a numeric vector
Salt_27H_3 a numeric vector

Details

This data set is part of a larger experiment in wich gene expression was monitored in both roots and leaves using a 11 K cDNA potato chip. This example data set contains a ramdom subset of 1000 genes of the leave study.

References

Rensink WA, Iobst S, Hart A, Stegalkina S, Liu J, Buell CR. Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics. 2005 Apr 22.

Examples

```
data(data.abiotic)
```


Description

edesign. OD contains the experimental design of a E.coli growth time course microarray experiment with a temperature shift treatment. The OD of each culture was measured and used in the experimental design as independent variable.

Usage

data(edesign.OD)

Format

A data frame with 52 rows and the following 4 variables.
OD a numeric vector. Indicates the OD value of the sampled culture
Replicate a numeric vector
37 a numeric vector. No temperature shitf treatment
SHIFT a numeric vector. Temperature shift treatment

Examples

data(edesign.OD)
\#\# maybe str(edesign.OD) ; plot(edesign.OD) ...

Description

edesign.abiotic contains experimental set up of a time course microarray experiment where potato plants were submitted to 3 different abiotic stresses.

Usage

data(edesign.abiotic)

Format

A matrix with 36 rows and 6 columns
rows [1:36] "Control 3h 1" "Control 3h 2" "Control 3h 3" "Control 9h 1" ...
columns [1:6] "Time" "Replicates" "Control" "Cold" "Heat" "Salt"

Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain array names.
"Time" indicates the values that variable Time takes in each hybridization.
"Replicates" is an index indicating replicate hyridizations, i.e. hybridizations are numbered, giving replicates the same number.
"Control", "Cold", "Heat" and "Salt" columns indicate array assigment to experimental groups, coding with 1 and 0 whether each array belongs to that group or not.

References

Rensink WA, Iobst S, Hart A, Stegalkina S, Liu J, Buell CR. Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics. 2005 Apr 22.

Examples

```
data(edesignCR)
```

```
edesignCT Experimental design with a shared time
```


Description

edesignCT contains the experimental set up of a time course microarray experiment where there is a common starting point for the different experimental groups.

Usage

data(edesignCT)

Format

A matrix with 32 rows and 7 colums
rows [1:32] "Array1" "Array2" "Array3" "Array4" ...
columns [1:7] "Time" "Replicates" "Control" "Tissue1" "Tissue2" "Tissue3" "Tissue4"

Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain array names.
"Time" indicates the values that variable Time takes in each hybridization. There are 4 time points, which allows an up to 3 degree regression polynome.
"Replicates" is an index indicating replicate hyridizations, i.e. hybridizations are numbered, giving replicates the same number.
"Control", "Tissue1", "Tissue2", "Tissue3" and "Tissue4" columns indicate array assigment to experimental groups, coding with 1 and 0 whether each array belongs to that group or not.

Examples

```
data(edesignCT)
```

```
edesignDR
```


Description

edesignDR contains experimental set up of a replicated time course microarray experiment where rats were submitted to 3 different dosis of a toxic compound. A control and an placebo treatments are also present in the experiment.

Usage

data(edesignDR)

Format

A matrix with 54 rows and 7 columns
rows [1:54] "Array1" "Array2" "Array3" "Array4" ...
columns [1:7] "Time" "Replicates" "Control" "Placebo" "Low" "Medium" "High"

Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain array names.
"Time" indicates the values that variable Time takes in each hybridization.
"Replicates" is an index indicating replicate hyridizations, i.e. hybridizations are numbered, giving replicates the same number.
"Control", "Placebo", "Low", "Medium" and "High" columns indicate array assigment to experimental groups, coding with 1 and 0 whether each array belongs to that group or not.

References

Heijne, W.H.M.; Stierum, R.; Slijper, M.; van Bladeren P.J. and van Ommen B.(2003). Toxicogenomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach. Biochemical Pharmacology 65 857-875.

Examples

```
data(edesignDR)
```

```
get.siggenes Extract significant genes for sets of variables in time series gene ex-
pression experiments
```


Description

This function creates lists of significant genes for a set of variables whose significance value has been computed with the T.fit function.

Usage

```
get.siggenes(tstep, rsq = 0.7, add.IDs = FALSE, IDs = NULL, matchID.col = 1,
    only.names = FALSE, vars = c("all", "each", "groups"),
    significant.intercept = "dummy",
    groups.vector = NULL, trat.repl.spots = "none",
    index = IDs[, (matchID.col + 1)], match = IDs[, matchID.col],
    r = 0.7)
```


Arguments

tstep aT.fit object
rsq cut-off level at the R-squared value for the stepwise regression fit. Only genes with R-squared more than rsq are selected
add.IDs logical indicating whether to include additional gene id's in the result
IDs matrix contaning additional gene id information (required when add.IDs is TRUE)
matchID.col number of matching column in matrix IDs for adding genes ids
only.names logical. If TRUE, expression values are ommited in the results
vars variables for which to extract significant genes (see details)
significant.intercept
experimental groups for which significant intercept coefficients are considered (see details)
groups.vector
required when vars is "groups".
trat.repl.spots
treatment given to replicate spots. Possible values are "none" and "average"

```
index argument of the average.rows function to use when trat.repl.spots
    is "average"
match argument of the average.rows function to use when trat.repl.spots
    is "average"
r minimun pearson correlation coefficient for replicated spots profiles to be aver-
    aged
```


Details

There are 3 possible values for the vars argument:
"all": generates one single matrix or gene list with all significant genes.
"each": generates as many significant genes extractions as variables in the general regression model. Each extraction contains the significant genes for that variable.
"groups": generates a significant genes extraction for each experimental group.
The difference between "each" and "groups" is that in the first case the variables of the same group (e.g. "TreatmentA" and "time*TreatmentA") will be extracted separately and in the second case jointly.
When add. IDs is TRUE, a matrix of gene ids must be provided as argument of IDs, the mat chID. col column of which having same levels as in the row names of sig.profiles. The option only.names is TRUE will generate a vector of significant genes or a matrix when add. IDs is set also to TRUE.
When trat.repl.spots is "average", match and index vectors are required for the average.rows function. In gene expression data context, the index vector would contain geneIDs and indicate which spots are replicates. The match vector is used to match these genesIDs to rows in the significant genes matrix, and must have the same levels as the row names of sig.profiles.

The argument significant.intercept modulates the treatment for intercept coefficients to apply for selecting significant genes when vars equals "groups". There are three possible values: "none", no significant intercept (differences) are considered for significant gene selection, "dummy", includes genes with significant intercept differences between control and experimental groups, and "all" when both significant intercept coefficient for the control group and significant intercept differences are considered for selecting significant genes.
add.IDs = TRUE and trat.repl.spots = "average" are not compatible argumet values. add. IDs $=$ TRUE and only. names $=$ TRUE are compatible argumet values.

Value

summary
sig.genes a list with detailed information on the significant genes found for the variables given by the function parameters. Each element of the list is also a list containing:
sig.profiles: expression values of significant genes
coefficients: regression coefficients of the adjusted models
groups.coeffs: regression coefficients of the impiclit models of each experimental group
sig.pvalues: p-values of the regression coefficients for significant genes
g : number of genes
. . .: arguments passed by previous functions

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics 22, 1096-1102

Examples

```
#### GENERATE TIME COURSE DATA
## generate n random gene expression profiles of a data set with
## one control plus 3 treatments, }3\mathrm{ time points and r replicates per time point.
tc.GENE <- function(n, r,
                var11 = 0.01, var12 = 0.01,var13 = 0.01,
                var21 = 0.01, var22 = 0.01, var23 =0.01,
                var31 = 0.01, var32 = 0.01, var33 = 0.01,
                var41 = 0.01, var42 = 0.01, var43 = 0.01,
                a1 = 0, a2 = 0, a3 = 0, a4 = 0,
                b1 = 0, b2 = 0, b3 = 0, b4 = 0,
                c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
    tc.dat <- NULL
    for (i in 1:n) {
        Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
        Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
        Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
        Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
        gene <- c(Ctl, Tr1, Tr2, Tr3)
        tc.dat <- rbind(tc.dat, gene)
    }
    tc.dat
}
## Create 270 flat profiles
flat <- tc.GENE (n = 270, r = 3)
## Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
## Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
```



```
## Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE (n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
## Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values
#### CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
```

```
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0, 9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
tc.p <- p.vector(tc.DATA, design = make.design.matrix(edesign), Q = 0.01)
tc.tstep <- T.fit(data = tc.p , alfa = 0.05)
## This will obtain sigificant genes per experimental group
## which have a regression model Rsquared > 0.9
tc.sigs <- get.siggenes (tc.tstep, rsq = 0.9, vars = "groups")
## This will obtain all sigificant genes regardless the Rsquared value.
## Replicated genes are averaged.
IDs <- rbind(paste("feature", c(1:300), sep = ""),
    rep(paste("gene", c(1:150), sep = ""), each = 2))
tc.sigs.ALL <- get.siggenes (tc.tstep, rsq = 0, vars = "all", IDs = IDs)
tc.sigs.groups <- get.siggenes (tc.tstep, rsq = 0, vars = "groups", significant.intercept
```

i.rank Ranks a vector to index

Description

Ranks the values in a vector to sucessive values. Ties are given the same value.

Usage

i. rank(x)

Arguments

$\mathrm{x} \quad$ vector

Value

Vector of ranked values

Author(s)

Ana Conesa, aconesa@ivia.es

See Also

rank,order

Examples

```
i.rank(c(1, 1, 1, 3, 3, 5, 7, 7, 7))
```

```
maSigPro Wrapping function for identifying significant differential gene expres-
sion profiles in micorarray time course experiments
```


Description

maSigPro performs a whole maSigPro analysis for a times series gene expression experiment. The function sucesively calls the functions make. design.matrix(optional), p.vector, T.fit, get.siggenes and see.genes.

Usage

```
maSigPro(data, edesign, matrix = "AUTO", groups.vector = NULL,
    degree = 2, time.col = 1, repl.col = 2, group.cols = c(3:ncol(edesign)),
    Q = 0.05, alfa = Q, nvar.correction = FALSE, step.method = "backward", rsq
    min.obs = 3, vars = "groups", significant.intercept = "dummy", cluster.data
    add.IDs = FALSE, IDs = NULL, matchID.col = 1, only.names = FALSE, k = 9, m =
    cluster.method = "hclust", distance = "cor", agglo.method = "ward", iter.max
    summary.mode = "median", color.mode = "rainbow", trat.repl.spots = "none",
    index = IDs[, (matchID.col + 1)], match = IDs[, matchID.col], rs = 0.7,
    show.fit = TRUE, show.lines = TRUE, pdf = TRUE, cexlab = 0.8,
    legend = TRUE, main = NULL, ...)
```


Arguments

data matrix with normalized gene expression data. Genes must be in rows and arrays in columns. Row names must contain geneIDs
(argument of p .vector)
edesign matrix of experimental design. Row names must contain arrayIDs
(argument of make.design.matrix and see.genes)
matrix design matrix for regression analysis. By default design is calculated with make.design.matrix
(argument of p .vector and T.fit, by default computed by make.design.matrix)
groups.vector
vector indicating experimental group of each variable
(argument of get.siggenes and see.genes, by default computed by make.design.matriz
degree the degree of the regression fit polynome. degree $=1$ returns lineal regression, degree $=2$ returns quadratic regression, etc...
(argument of make.design.matrix)
time.col column in edesign containing time values. Default is first column (argument of make.design.matrix and see.genes)
repl.col column in edesign containing coding for replicates arrays. Default is second column
(argument of make.design.matrix and see.genes)
group.cols columns in edesign indicating the coding for each group of the experiment
(see make.design.matrix)
(argument of make.design.matrix and see.genes)

```
Q level of false discovery rate (FDR) control
    (argument of p.vector)
alfa significance level used for variable selection in the stepwise regression
    (argument of T.fit)
nvar.correction
                            logical for indicating correcting of stepwise regression significance level
    (argument of T.fit)
step.method argument to be passed to the step function.
    Can be either "backward", "forward", "two.ways.backward" or "two.ways.forwar
rsq cut-off level at the R-squared value for the stepwise regression fit.
    Only genes with R-squared greater than rsq are selected
min.obs genes with less than this number of true numerical values will be excluded from
    the analysis
    (argument of p.vector and T.fit)
vars variables for which to extract significant genes
    (argument of get.siggenes)
significant.intercept
    experimental groups for which significant intercept coefficients are considered
    (argument of get.siggenes)
cluster.data Type of data used by the cluster algorithm
    (argument of see.genes)
add.IDs logical indicating whether to include additional gene id's in the significant genes
    result
    (argument of get.siggenes)
IDs matrix contaning additional gene id information (required when add.IDs is
    TRUE)
    (argument of get.siggenes)
matchID.col number of matching column in matrix IDs for adding genes ids
    (argument ofget.siggenes)
only.names logical. If TRUE, expression values are ommited in the significant genes result
    (argument of get.siggenes)
k number of clusters
    (argument of see.genes)
m m parameter when "mfuzz" clustering algorithm is used. See mfuzz
    (argument of see.genes)
cluster.method
    clustering method for data partioning
    (argument of see.genes)
distance distance measurement function used when cluster.method is "hclust"
    (argument of see.genes)
agglo.method aggregation method used when cluster.method is "hclust"
    (argument of see.genes)
iter.max number of iterations when cluster.method is "kmeans"
    (argument of see.genes)
```

```
summary.mode the method to condensate expression information when more than one gene is
                    present in the data.
    Possible values are "representative" and "median"
    (argument of PlotGroups)
color.mode color scale for plotting profiles. Can be either "rainblow" or "gray"
    (argument of PlotProfiles)
trat.repl.spots
    treatment givent to replicate spots. Possible values are "none" and "average"
    (argument of get.siggenes)
index argument of the average.rows function to use when trat.repl.spots
    is "average"
    (argument of get.siggenes)
match argument of the link{average.rows} function to use when trat.repl.spots
    is "average"
    (argument of get.siggenes)
rs minimun pearson correlation coefficient for replicated spots profiles to be aver-
    aged
    (argument of get.siggenes)
show.fit logical indicating whether regression fit curves must be plotted
    (argument of see.genes)
show.lines logical indicating whether a line must be drawn joining plotted data points for
    reach group
    (argument of see.genes)
pdf logical indicating whether a pdf results file must be generated
    (argument of see.genes)
cexlab graphical parameter maginfication to be used for x labels in plotting functions
legend logical indicating whether legend must be added when plotting profiles
    (argument of see.genes)
main title for pdf results file
    other graphical function arguments
```


Details

maSigPro finds and display genes with significant profile differences in time series gene expression experiments. The main, compulsory, input parameters for this function are a matrix of gene expression data (see p.vector for details) and a matrix describing experimental design (see make.design.matrix or p.vector for details). In case extended gene ID information is wanted to be included in the result of significant genes, a third IDs matrix containing this information will be required (see get. siggenes for details).
Basiscally in the function calls subsequent steps of the maSigPro approach which is:

- Make a general regression model with dummies to indicate different experimental groups.
- Select significant genes on the basis of this general model, applying fdr control.
- Find significant variables for each gene, using stepwise regression.
- Extract and display significant genes for any set of variables or experimental groups.

Value

summary	a vector or matrix listing significant genes for the variables given by the function parameters
sig.genes	a list with detailed information on the significant genes found for the variables given by the function parameters. Each element of the list is also a list containing:
	sig.profiles: expression values of significant genes.The cluster assingment of each gene is given in the last column
	coefficients: regression coefficients for significant genes
	t. score: value of the t statistics of significant genes
	sig.pvalues: p-values of the regression coefficients for significant genes g : number of genes
	\ldots...arguments passed by previous functions
input.data	input analysis data
G	number of input genes
edesign	matrix of experimental design
dis	regression design matrix
min.obs	imputed value for minimal number of true observations
p.vector	vector containing the computed p -values of the general regression model for each gene
variables	variables in the general regression model
9	number of signifant genes
p.vector.alfa	
	p-vlaue at $\mathrm{FDR}=\mathrm{Q}$ control
step.method	imputed step method for stepwise regression
Q	imputed value for false discovery rate (FDR) control
step.alfa	inputed significance level in stepwise regression
influ.info	data frame of genes containing influencial data

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

```
make.design.matrix, p.vector, T.fit,get.siggenes, see.genes
```


Examples

```
#### GENERATE TIME COURSE DATA
## generate n random gene expression profiles of a data set with
## one control plus 3 treatments, 3 time points and r replicates per time point.
tc.GENE <- function(n, r,
                    var11 = 0.01, var12 = 0.01,var13 = 0.01,
                    var21 = 0.01, var22 = 0.01, var 23 =0.01,
                    var31 = 0.01, var32 = 0.01, var33 = 0.01,
                    var41 = 0.01, var42 = 0.01, var43 = 0.01,
                    a1 = 0, a2 = 0, a3 = 0, a4 = 0,
                        b1 = 0, b2 = 0, b3 = 0, b4 = 0,
                        c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
    tc.dat <- NULL
    for (i in 1:n) {
        Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
        Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
        Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
        Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
        gene <- c(Ctl, Tr1, Tr2, Tr3)
        tc.dat <- rbind(tc.dat, gene)
    }
    tc.dat
}
## Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
## Create 10 genes with profile differences between Ctl and Trl groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
## Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE ( n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
## Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE (n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03
## Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA[sample(c(1:(300*36)), 300)] <- NA # introduce missing values
```

\#\#\#\# CREATE EXPERIMENTAL DESIGN
Time <- rep (c (rep (c (1:3), each = 3)), 4)
Replicates $<-$ rep $(c(1: 12)$, each $=3)$
Control <- c(rep (1, 9), rep $(0,27))$
Treat1 <- c(rep (0, 9), rep(1, 9), rep(0, 18))
Treat $2<-c(\operatorname{rep}(0,18), \operatorname{rep}(1,9), \operatorname{rep}(0,9))$
Treat $3<-c(r e p(0,27), r e p(1,9))$
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
\#\#\#\# RUN maSigPro
tc.test <- maSigPro (tc.DATA, edesign, degree = 2, vars = "groups", main = "Test")
tc.test\$g \# gives number of total significant genes

```
tc.test$summary # shows significant genes by experimental groups
tc.test$sig.genes$Treat1$sig.pvalues # shows pvalues of the significant coefficients
    # in the regression models of the significant gene
    # for Control.vs.Treat1 comparison
```

make. design.matrix Make a design matrix for regression fit of time series gene expression experiments

Description

make.design.matrix creates the design matrix of dummies for fitting time series micorarray gene expression experiments.

Usage

make.design.matrix(edesign, degree $=2$, time.col = 1,
repl.col $=2$, group.cols $=c(3: n c o l($ edesign)))

Arguments

edesign matrix describing experimental design. Rows must be arrays and columns experiment descriptors
degree the degree of the regression fit polynome. degree $=1$ returns linear regression, degree $=2$ returns quadratic regression, etc
time.col column number in edesign containing time values. Default is first column
repl.col column number in edesign containing coding for replicate arrays. Default is second column
group.cols column numbers in edesign indicating the coding for each experimental group (treatment, tissue, ...). See details

Details

rownames of edesign object should contain the arrays naming (i.e. array 1 , array $2, \ldots$...). colnames of edesign must contain the names of experiment descriptors(i.e. "Time", "Replicates", "Treatment A", "Treatment B", etc.). for each experimental group a different column must be present in edesign, coding with 1 and 0 whether each array belongs to that group or not.
make.design.matrix returns a design matrix where rows represent arrays and column variables of time, dummies and their interactions for up to the degree given. Dummies show the relative effect of each experimental group related to the first one. Single dummies indicate the abcissa component of each group. \$Time*dummy\$ variables indicate slope changes, \$Time ${ }^{\wedge} 2 *$ dummy $\$$ indicates curvature changes. Higher grade values could model complex responses. In case experimental groups share a initial state (i.e. common time 0), no single dummies are modeled.

Value

```
dis design matrix of dummies for fitting time series
groups.vector
    vector coding the experimental group to which each variable belongs to
edesign edesign value passed as argument
```


Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics 22, 1096-1102

Examples

```
data(edesign.abiotic, edesignCT)
make.design.matrix(edesign.abiotic) # quadratic model
make.design.matrix(edesignCT, degree = 3) # cubic model with common starting time point
```

```
p.vector Make regression fit for time series gene expression experiments
```


Description

p.vector performs a regression fit for each gene taking all variables present in the model given by a regression matrix and returns a list of FDR corrected significant genes.

Usage

p.vector (data, design $=$ NULL, $Q=0.05$, MT.adjust $=$ "BH", min.obs $=3$)

Arguments

data matrix containing normalized gene expression data. Genes must be in rows and arrays in columns
design design matrix for the regression fit such as that generated by the make.design.matrix function

Q significance level
MT.adjust argument to pass to p .adjust function indicating the method for multiple testing adjustment of p.value
min.obs genes with less than this number of true numerical values will be excluded from the analysis. Default is 3 (minimun value for a quadratic fit)

Details

rownames (design) and colnames (data) must be identical vectors and indicate array naming.
rownames (data) should contain unique gene IDs.
colnames (design) are the given names for the variables in the regression model.

Value

SELEC
p.vector

G
9
BH.alfa
i
dis
dat
matrix containing the expression values for significant genes vector containing the computed p-values
total number of input genes
number of genes taken in the regression fit
p-value at FDR Q control when Benajamini \& Holderberg (BH) correction is used
number of significant genes
design matrix used in the regression fit
matrix of expression value data used in the regression fit
additional values from input parameters

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, <mj. nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics 22, 1096-1102

See Also

```
T.fit,lm
```


Examples

```
#### GENERATE TIME COURSE DATA
## generates n random gene expression profiles of a data set with
## one control plus 3 treatments, 3 time points and r replicates per time point.
tc.GENE <- function(n, r,
                var11 = 0.01, var12 = 0.01,var13 = 0.01,
                var21 = 0.01, var22 = 0.01, var23 =0.01,
                var31 = 0.01, var32 = 0.01, var33 = 0.01,
                var41 = 0.01, var42 = 0.01, var43 = 0.01,
                a1 = 0, a2 = 0, a3 = 0, a4 = 0,
                b1 = 0, b2 = 0, b3 = 0, b4 = 0,
                c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
    tc.dat <- NULL
    for (i in 1:n) {
        Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
        Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
        Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
        Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
        gene <- c(Ctl, Tr1, Tr2, Tr3)
        tc.dat <- rbind(tc.dat, gene)
    }
    tc.dat
```

```
}
## Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
## Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
## Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
```



```
## Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE (n = 10, r = 3, a3 = 0.7, b3 = 1, c2 = 1.3, var32 = 0.03, var33 = 0.03
## Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values
#### CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep (0, 18), rep (1, 9), rep (0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
tc.p <- p.vector(tc.DATA, design = make.design.matrix(edesign), Q = 0.05)
tc.p$i # number of significant genes
tc.p$SELEC # expression value of signficant genes
tc.p$BH.alfa # p.value at FDR control
tc.p$p.adjusted# adjusted p.values
```


position
 Column position of a variable in a data frame

Description

Finds the column position of a character variable in the column names of a data frame.

Usage

```
position(matrix, vari)
```


Arguments

matrix matrix or data.frame with character column names
vari character variable

Value

numerical. Column position for the given variable.

Author(s)

Ana Conesa, aconesa@ivia.es

Examples

```
x <- matrix(c(1, 1, 2, 2, 3, 3),ncol = 3,nrow = 2)
colnames(x) <- c("one", "two", "three")
position(x, "one")
```

reg.coeffs Calculate true variables regression coefficients

Description

reg.coeffs calculates back regression coefficients for true variables (experimental groups) from dummy variables regression coefficients.

Usage

reg.coeffs(coefficients, indepen $=$ groups.vector[nchar(groups.vector)==min(nchar group)

Arguments

coefficients vector of regression coefficients obtained from a regression model with dummy variables
indepen idependent variable of the regression formula
groups.vector
vector indicating the true variable of each variable in coefficients
group true variable for which regression coefficients are to be computed

Details

regression coefficients in coefficients vector should be ordered by polynomial degree in a regression formula, ie: intercept, $\$ \mathrm{x} \$$ term, $\$ \mathrm{x}^{\wedge} 2 \$$ term, $\$ \mathrm{x}^{\wedge} 3 \$$ term, and so on...

Value

reg.coeff vector of calculated regression coefficients

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments.

Examples

```
groups.vector <-c("CT", "T1vsCT", "T2vsCT", "CT", "T1vsCT","T2vsCT", "CT", "T1vsCT", "T2
coefficients <- c(0.1, 1.2, -0.8, 1.7, 3.3, 0.4, 0.0, 2.1, -0.9)
## calculate true regression coefficients for variable "T1"
reg.coeffs(coefficients, groups.vector = groups.vector, group = "T1")
```

```
see.genes Wrapper function for visualization of gene expression values of time
course experiments
```


Description

This function provides visualisation tools for gene expression values in a time course experiment. The function first calls the heatmap function for a general overview of experiment results. Next a partioning of the data is generated using a clustering method. The results of the clustering are visualized both as gene expression profiles extended along all arrays in the experiment, as provided by the plot.profiles function, and as summary expression profiles for comparison among experimental groups.

Usage

```
see.genes(data, edesign = data$edesign, time.col = 1, repl.col = 2,
        group.cols = c(3:ncol(edesign)), names.groups = colnames(edesign)[3:ncol(ede
        cluster.data = 1, groups.vector = data$groups.vector, k = 9, m = 1.45,
        cluster.method = "hclust", distance = "cor", agglo.method = "ward",
        show.fit = FALSE, dis = NULL, step.method = "backward", min.obs = 3,
        alfa = 0.05, nvar.correction = FALSE, show.lines = TRUE, iter.max = 500,
        summary.mode = "median", color.mode = "rainbow", cexlab = 1, legend = TRUE,
        newX11 = TRUE, ylim = NULL, main = NULL, ...)
```


Arguments

data	either matrix or a list containing the gene expression data, typically a get.siggenes object
edesign	matrix of experimental design
time.col	column in edesign containing time values. Default is first column in edesign containing coding for replicates arrays. Default is second cepl.col
group.cols	columns indicating the coding for each group (treatment, tissue,...) in the exper- iment (see details)
names.groups names for experimental groups	
cluster. data type of data used by the cluster algorithm (see details)	
groups. vector	

```
distance distance measurement function for when cluster.method is hclust
agglo.method aggregation method used when cluster.method is hclust
show.fit logical indicating whether regression fit curves must be plotted
dis regression design matrix
step.method stepwise regression method to fit models for cluster mean profiles. Can be either
    "backward", "forward", "two.ways.backward" or "two.ways.forward"
min.obs minimal number of observations for a gene to be included in the analysis
alfa significance level used for variable selection in the stepwise regression
nvar.correction
    argument for correcting T.fitsignificance level. See T.fit
show.lines logical indicating whether a line must be drawn joining plotted data points for
    reach group
iter.max maximum number of iterations when cluster.method is kmeans
summary.mode the method PlotGroups takes to condensate expression information when
    more than one gene is present in the data. Possible values are "representative"
    and "median"
color.mode color scale for plotting profiles. Can be either "rainblow" or "gray"
cexlab graphical parameter maginfication to be used for x labels in plotting functions
legend logical indicating whether legend must be added when plotting profiles
main plot title
ylim range of the y axis to be used by PlotProfiles and PlotGroups
newX11 when TRUE, plot each type of plot in a diferent graphical device
. . other graphical function argument
```


Details

Data can be provided either as a single data matrix of expression values, or a get.siggenes object. In the later case the other argument of the fuction can be taken directly from data.

Data clustering can be done on the basis of either the original expression values, the regression coefficients, or the t.scores. In case data is a get.siggenes object, this is given by providing the element names of the list c ("sig.profiles", "coefficients","t.score") of their list position (1,2 or 3).

Value

Experiment wide gene profiles and by group profiles plots are generated for each data cluster in the graphical device.
cut vector indicating gene partioning into clusters
c.algo.used clustering algorith used for data partioning
groups groups matrix used for plotting functions

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics 22, 1096-1102

See Also

PlotProfiles, PlotGroups

Examples

```
#### GENERATE TIME COURSE DATA
## generate n random gene expression profiles of a data set with
## one control plus 3 treatments, }3\mathrm{ time points and r replicates per time point.
tc.GENE <- function(n, r,
    var11 = 0.01, var12 = 0.01,var13 = 0.01,
    var21 = 0.01, var22 = 0.01, var23 =0.01,
    var31 = 0.01, var32 = 0.01, var33 = 0.01,
    var41 = 0.01, var42 = 0.01, var43 = 0.01,
    a1 = 0, a2 = 0, a3 = 0, a4 = 0,
    b1 = 0, b2 = 0, b3 = 0, b4 = 0,
    c1 = 0, c2 = 0, c3 = 0, c4 = 0)
{
    tc.dat <- NULL
    for (i in 1:n) {
        Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
        Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
        Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
        Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
        gene <- c(Ctl, Tr1, Tr2, Tr3)
        tc.dat <- rbind(tc.dat, gene)
    }
    tc.dat
}
## Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
## Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE ( }\textrm{n}=10,r=3,\textrm{b}2=0.5, c2 = 1.3
## Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE (n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
## Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE (n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
## Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300* 36)), 300)] <- NA # introduce missing values
#### CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
```

```
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep (0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
see.genes(tc.DATA, edesign = edesign, k = 4, main = "Time Course")
# This will show the regression fit curve
dise <- make.design.matrix(edesign)
see.genes(tc.DATA, edesign = edesign, k = 4, main = "Time Course", show.fit = TRUE,
    dis = dise$dis, groups.vector = dise$groups.vector, distance = "euclidean")
```

```
stepback Fitting a linear model by backward-stepwise regression
```


Description

stepback fits a linear regression model applying a backward-stepwise strategy.

Usage

```
stepback (y = y, d = d, alfa = 0.05)
```


Arguments

y	dependent variable
d	data frame containing by columns the set of variables that could be in the se- lected model
alfa	significance level to decide if a variable stays or not in the model

Details

The strategy begins analysing a model with all the variables included in d. If all variables are statistically significant (all variables have a p-value less than alfa) this model will be the result. If not, the less statistically significant variable will be removed and the model is re-calculated. The process is repeated up to find a model with all the variables statistically significant.

Value

stepback returns an object of the class lm, where the model uses y as dependent variable and all the selected variables from d as independent variables.
The function summary are used to obtain a summary and analysis of variance table of the results. The generic accessor functions coefficients, effects, fitted.values and residuals extract various useful features of the value returned by 1 m .

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

```
lm, step, stepfor, two.ways.stepback, two.ways.stepfor
```


Examples

```
## create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep (0, 18), rep(1, 9), rep (0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)
## expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
    -1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249,
s.fit <- stepback(y = y, d = dis)
summary(s.fit)
```


Description

stepfor fits a linear regression model applying forward-stepwise strategy.

Usage

```
stepfor(y = y, d = d, alfa = 0.05)
```


Arguments

y
d data frame containing by columns the set of variables that could be in the selected model
alfa significance level to decide if a variable stays or not in the model

Details

The strategy begins analysing all the possible models with only one of the variables included in d . The most statistically significant variable (with the lowest p-value) is included in the model and then it is considered to introduce in the model another variable analysing all the possible models with two variables (the selected variable in the previous step plus a new variable). Again the most statistically significant variable (with lowest p-value) is included in the model. The process is repeated till there are no more statistically significant variables to include.

Value

stepfor returns an object of the class 1 m , where the model uses y as dependent variable and all the selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results. The generic accessor functions coefficients, effects, fitted.values and residuals extract various useful features of the value returned by 1 m .

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

```
lm, step, stepback, two.ways.stepback, two.ways.stepfor
```


Examples

```
## create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep (0, 18), rep(1, 9), rep (0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)
## expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
    -1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249,
s.fit <- stepfor(y = y, d = dis)
summary(s.fit)
```


Description

suma2Venn transforms a matrix of characters into a binary matrix and creates a vennDiagram of the common elements between columns

Usage

suma $2 \mathrm{Venn}(\mathrm{x}, ~ . .$.

Arguments

x	data frame of character values
\ldots	plotting arguments for the vennDiagram function

Details

suma 2 Venn creates a list of all elements of a matrix or data frame of characters and computes the presence/absence of each element in each column of the matrix. This results is a numeric matrix of 1 and 0 which can be taken by the vennDiagram to generate a Venn Plot

Value

suma2Venn returns a Venn Plot such as that created by the vennDiagram funcion

Author(s)

Ana Conesa, aconesa@ivia.es

See Also

```
vennDiagram
```


Examples

```
a <- c("a","b","c", "d", "e", NA, NA)
b <- c("a","b","f", NA, NA, NA, NA)
c <- c("b","e","f", "h", "i", "j", "k")
x <- cbind(a, b,c)
suma2Venn(x)
```

two.ways.stepback Fitting a linear model by backward-stepwise regression

Description

two.ways.stepback fits a linear regression model applying backward-stepwise strategy.

Usage

two.ways.stepback (y = y, $d=d, \quad a l f a=0.05)$

Arguments

$y \quad$ dependent variable
d data frame containing by columns the set of variables that could be in the selected model
alfa significance level to decide if a variable stays or not in the model

Details

The strategy begins analysing a model with all the variables included in d . If all the variables are statistically significant (all the variables have a p-value less than alfa) this model will be the result. If not, the less statistically significant variable will be removed and the model is re-calculated. The process is repeated up to find a model with all the variables statistically significant (p-value < alpha). Each time that a variable is removed from the model, it is considered the possibility of one or more removed variables to come in again.

Value

two.ways.stepback returns an object of the class lm, where the model uses y as dependent variable and all the selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results. The generic accessor functions coefficients, effects, fitted.values and residuals extract various useful features of the value returned by 1 m .

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

lm, step, stepfor, stepback, two.ways.stepfor

Examples

```
## create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep (0, 18), rep (1, 9), rep (0, 9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)
## expression vector
Y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
    -1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249,
s.fit <- two.ways.stepback(y = y, d = dis)
summary(s.fit)
```

two.ways.stepfor Fitting a linear model by forward-stepwise regression

Description

two.ways.stepfor fits a linear regression model applying forward-stepwise strategy.

Usage

two.ways.stepfor (y = y, $d=d$, alfa $=0.05)$

Arguments

$y \quad$ dependent variable
d data frame containing by columns the set of variables that could be in the selected model
alfa significance level to decide if a variable stays or not in the model

Details

The strategy begins analysing all the possible models with only one of the variables included in d . The most statistically significant variable (with the lowest p-value) is included in the model and then it is considered to introduce in the model another variable analysing all the possible models with two variables (the selected variable in the previous step plus a new variable). Again the most statistically significant variable (with lowest p -value) is included in the model. The process is repeated till there are no more statistically significant variables to include. Each time that a variable enters the model, the p -values of the current model vairables is recalculated and non significant variables will be removed.

Value

two.ways.stepfor returns an object of the class $1 m$, where the model uses y as dependent variable and all the selected variables from d as independent variables.
The function summary are used to obtain a summary and analysis of variance table of the results. The generic accessor functions coefficients, effects, fitted.values and residuals extract various useful features of the value returned by 1 m .

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

```
lm, step, stepback, stepfor, two.ways.stepback
```


Examples

```
## create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep (0, 18), rep(1, 9), rep (0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)
## expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
    -1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249,
s.fit <- two.ways.stepfor(y = y, d = dis)
summary(s.fit)
```


Index

*Topic aplot

PlotGroups, 1
PlotProfiles, 3
see.genes, 27
suma 2 Venn, 33
$*$ Topic arith
average.rows, 7
i.rank, 16
position, 25
*Topic datasets
data.abiotic, 8
edesign.abiotic, 11
edesign.OD, 10
edesignCt, 11
edesignDR, 12

*Topic design

make.design.matrix, 22
*Topic manip
get.siggenes, 13
maSigPro, 17
see.genes, 27

*Topic misc

reg.coeffs, 26
suma2Venn, 33

*Topic models

maSigPro, 17
T.fit, 5

*Topic regression

make.design.matrix, 22
p.vector, 23
stepback, 30
stepfor, 31
T.fit, 5
two.ways.stepback, 34
two.ways.stepfor, 35
average.rows, $7,14,19$
coefficients, $30,32,34,36$
data.abiotic, 8
edesign.abiotic, 11
edesign. OD, 10

```
edesignCT,11
edesignDR,12
effects, 30, 32, 34,36
fitted.values, 30, 32, 34,36
get.siggenes, 13,17-20, 27, 28
hclust,28
i.rank,16
kmeans,28
lm, 24, 30-32, 34, 36
make.design.matrix, 5, 17, 19, 20, 22,
    23
maSigPro,17
mfuzz,18,27
order, 16
p.vector, 5, 6,17-20,23
PlotGroups, 1, 4, 19, 28, 29
PlotProfiles, 2, 3, 19, 28, 29
position,25
rank,16
reg.coeffs, 26
residuals, 30, 32, 34,36
see.genes, 17-20, 27
step, 6, 31, 32, 34,36
stepback, 30, 32, 34, 36
stepfor, 31, 31, 34, 36
suma2Venn, 33
summary, 30, 32, 34, 36
T.fit, 1, 5, 5, 17, 18, 20, 24, 28
two.ways.stepback, 31, 32, 34, 36
two.ways.stepfor, 31, 32, 34, 35
vennDiagram,33
```

