
maSigPro
March 24, 2012

PlotGroups Function for plotting gene expression profile at different experimental
groups

Description

This function displays the gene expression profile for each experimental group in a time series gene
expression experiment.

Usage

PlotGroups(data, edesign = NULL, time = edesign[,1], groups = edesign[,c(3:ncol(edesign))],
repvect = edesign[,2], show.fit = FALSE, dis = NULL, step.method = "backward",
min.obs = 2, alfa = 0.05, nvar.correction = FALSE, summary.mode = "median", show.lines = TRUE, groups.vector = NULL,
xlab = "time", cex.xaxis = 1, ylim = NULL, main = NULL, cexlab = 0.8, legend = TRUE, sub = NULL)

Arguments

data vector or matrix containing the gene expression data

edesign matrix describing experimental design. Rows must be arrays and columns ex-
periment descriptors

time vector indicating time assigment for each array

groups matrix indicating experimental group to which each array is assigned

repvect index vector indicating experimental replicates

show.fit logical indicating whether regression fit curves must be plotted

dis regression design matrix

step.method stepwise regression method to fit models for cluster mean profiles. It can be ei-
ther "backward", "forward", "two.ways.backward" or "two.ways.forward"

min.obs minimal number of observations for a gene to be included in the analysis

alfa significance level used for variable selection in the stepwise regression
nvar.correction

argument for correcting stepwise regression significance level. See T.fit

summary.mode the method to condensate expression information when more than one gene is
present in the data. Possible values are "representative" and "median"

1

2 PlotGroups

show.lines logical indicating whether a line must be drawn joining plotted data points for
reach group

groups.vector
vector indicating experimental group to which each variable belongs

xlab label for the x axis

cex.xaxis graphical parameter maginfication to be used for x axis in plotting functions

ylim range of the y axis

main plot main title

cexlab graphical parameter maginfication to be used for x axis label in plotting func-
tions

legend logical indicating whether legend must be added when plotting profiles

sub plot subtitle

Details

To compute experimental groups either a edesign object must be provided, or separate values must
be given for the time, repvect and groups arguments.

When data is a matrix, the average expression value is displayed.

When there are array replicates in the data (as indicated by repvect), values are averaged by
repvect.

PlotGroups plots one single expression profile for each experimental group even if there are more
that one genes in the data set. The way data is condensated for this is given by summary.mode.
When this argument takes the value "representative", the gene with the lowest distance to
all genes in the cluster will be plotted. When the argument is "median", then median expression
value is computed.

When show.fit is TRUE the stepwise regression fit for the data will be computed and the regres-
sion curves will be displayed.

If data is a matrix of genes and summary.mode is "median", the regression fit will be computed
for the median expression value.

Value

Plot of gene expression profiles by-group.

Author(s)

Ana Conesa, <aconesa@ivia.es>; Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

PlotProfiles

PlotProfiles 3

Examples

GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}

create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
tc.DATA <- tc.GENE(n = 10,r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
rownames(tc.DATA) <- paste("gene", c(1:10), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")

CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Ctl <- c(rep(1, 9), rep(0, 27))
Tr1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Tr2 <- c(rep(0, 18), rep(1, 9), rep(0, 9))
Tr3 <- c(rep(0, 27), rep(1, 9))

PlotGroups (tc.DATA, time = Time, repvect = Replicates, groups = cbind(Ctl, Tr1, Tr2, Tr3))

PlotProfiles Function for visualization of gene expression profiles

Description

PlotProfiles displays the expression profiles of a group of genes.

Usage

PlotProfiles(data, cond, main = NULL, cex.xaxis = 0.5, ylim = NULL,
repvect, sub = NULL, color.mode = "rainbow")

4 PlotProfiles

Arguments

data a matrix containing the gene expression data

cond vector for x axis labeling, typically array names

main plot main title

cex.xaxis graphical parameter maginfication to be used for x axis in plotting functions

ylim index vector indicating experimental replicates

repvect index vector indicating experimental replicates

sub plot subtitle

color.mode color scale for plotting profiles. Can be either "rainblow" or "gray"

Details

The repvect argument is used to indicate with vertical lines groups of replicated arrays.

Value

Plot of experiment-wide gene expression profiles.

Author(s)

Ana Conesa, aconesa@ivia.es, Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

PlotGroups

Examples

GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group

T.fit 5

gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}

create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
tc.DATA <- tc.GENE(n = 10,r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
rownames(tc.DATA) <- paste("gene", c(1:10), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")

PlotProfiles (tc.DATA, cond = colnames(tc.DATA), main = "Time Course",
repvect = rep(c(1:12), each = 3))

T.fit Makes a stepwise regression fit for time series gene expression experi-
ments

Description

T.fit selects the best regression model for each gene using stepwise regression.

Usage

T.fit(data, design = data$dis, step.method = "backward",
min.obs = data$min.obs, alfa = data$Q, nvar.correction = FALSE)

Arguments

data can either be a p.vector object or a matrix containing expression data with
the same requirements as for the p.vector function

design design matrix for the regression fit such as that generated by the make.design.matrix
function. If data is a p.vector object, the same design matrix is used by de-
fault

step.method argument to be passed to the step function. Can be either "backward", "forward",
"two.ways.backward" or "two.ways.forward"

min.obs genes with less than this number of true numerical values will be excluded from
the analysis

alfa significance level used for variable selection in the stepwise regression
nvar.correction

argument for correcting T.fit significance level. See details

Details

In the maSigPro approach p.vector and T.fit are subsequent steps, meaning that significant
genes are first selected on the basis of a general model and then the significant variables for each
gene are found by step-wise regression.

The step regression can be "backward" or "forward" indicating whether the step proce-
dure starts from the model with all or none variables. With the "two.ways.backward" or
"two.ways.forward" options the variables are both allowed to get in and out. At each step the

6 T.fit

p-value of each variable is computed and variables get in/out the model when this p-value is lower
or higher than given threshold alfa. When nva.correction is TRUE the given significance level is
corrected by the number of variables in the model

Value

sol matrix for summary results of the stepwise regression. For each selected gene
the following values are given:

• p-value of the regression ANOVA
• R-squared of the model
• p-value of the regression coefficients of the selected variables

sig.profiles expression values for the genes contained in sol

coefficients matrix containing regression coefficients for the adjusted models
groups.coeffs

matrix containing the coefficients of the impiclit models of each experimental
group

variables variables in the complete regression model

G total number of input genes

g number of genes taken in the regression fit

dat input analysis data matrix

dis regression design matrix

step.method imputed step method for stepwise regression

edesign matrix of experimental design

influ.info data frame of genes containing influencial data

Author(s)

Ana Conesa, <aconesa@ivia.es>; Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102

See Also

p.vector, step

Examples

GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,

average.rows 7

var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}

Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values

CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")

run T.fit from a p.vector object
tc.p <- p.vector(tc.DATA, design = make.design.matrix(edesign), Q = 0.01)
tc.tstep <- T.fit(data = tc.p , alfa = 0.05)

run T.fit from a data matrix and a design matrix
dise <- make.design.matrix(edesign)
tc.tstep <- T.fit (data = tc.DATA[271:300,], design = dise$dis,

step.method = "two.ways.backward", min.obs = 10, alfa = 0.05)
tc.tstep$sol # gives the p.values of the significant

regression coefficients of the optimized models

average.rows Average rows by match and index

8 data.abiotic

Description

average.rows matches rownames of a matrix to a match vector and performs averaging of the
rows by the index provided by an index vector.

Usage

average.rows(x, index, match, r = 0.7)

Arguments

x a matrix

index index vector indicating how rows must be averaged

match match vector for indexing rows

r minimal correlation value between rows to compute average

Details

rows will be averaged only if the pearson correlation coefficient between all rows of each given
index is greater than r. If not, that group of rows is discarded in the result matrix.

Value

a matrix of averaged rows

Author(s)

Ana Conesa, aconesa@ivia.es

Examples

create data matrix for row averaging
x <- matrix(rnorm(30), nrow = 6,ncol = 5)
rownames(x) <- paste("ID", c(1, 2, 11, 12, 19, 20), sep = "")
i <- paste("g", rep(c(1:10), each = 2), sep = "") # index vector
m <- paste("ID", c(1:20), sep = "") # match vector
average.rows(x, i, m, r = 0)

data.abiotic Gene expression data potato abiotic stress

Description

data.abiotic contains gene expression of a time course microarray experiment where potato
plants were submitted to 3 different abiotic stresses.

Usage

data(data.abiotic)

data.abiotic 9

Format

A data frame with 1000 observations on the following 36 variables.

Control_3H_1 a numeric vector

Control_3H_2 a numeric vector

Control_3H_3 a numeric vector

Control_9H_1 a numeric vector

Control_9H_2 a numeric vector

Control_9H_3 a numeric vector

Control_27H_1 a numeric vector

Control_27H_2 a numeric vector

Control_27H_3 a numeric vector

Cold_3H_1 a numeric vector

Cold_3H_2 a numeric vector

Cold_3H_3 a numeric vector

Cold_9H_1 a numeric vector

Cold_9H_2 a numeric vector

Cold_9H_3 a numeric vector

Cold_27H_1 a numeric vector

Cold_27H_2 a numeric vector

Cold_27H_3 a numeric vector

Heat_3H_1 a numeric vector

Heat_3H_2 a numeric vector

Heat_3H_3 a numeric vector

Heat_9H_1 a numeric vector

Heat_9H_2 a numeric vector

Heat_9H_3 a numeric vector

Heat_27H_1 a numeric vector

Heat_27H_2 a numeric vector

Heat_27H_3 a numeric vector

Salt_3H_1 a numeric vector

Salt_3H_2 a numeric vector

Salt_3H_3 a numeric vector

Salt_9H_1 a numeric vector

Salt_9H_2 a numeric vector

Salt_9H_3 a numeric vector

Salt_27H_1 a numeric vector

Salt_27H_2 a numeric vector

Salt_27H_3 a numeric vector

10 edesign.OD

Details

This data set is part of a larger experiment in wich gene expression was monitored in both roots and
leaves using a 11K cDNA potato chip. This example data set contains a ramdom subset of 1000
genes of the leave study.

References

Rensink WA, Iobst S, Hart A, Stegalkina S, Liu J, Buell CR. Gene expression profiling of potato
responses to cold, heat, and salt stress. Funct Integr Genomics. 2005 Apr 22.

Examples

data(data.abiotic)

edesign.OD Experimental design with a measured independent variable

Description

edesign.OD contains the experimental design of a E.coli growth time course microarray exper-
iment with a temperature shift treatment. The OD of each culture was measured and used in the
experimental design as independent variable.

Usage

data(edesign.OD)

Format

A data frame with 52 rows and the following 4 variables.

OD a numeric vector. Indicates the OD value of the sampled culture

Replicate a numeric vector

37 a numeric vector. No temperature shitf treatment

SHIFT a numeric vector. Temperature shift treatment

Examples

data(edesign.OD)
maybe str(edesign.OD) ; plot(edesign.OD) ...

edesign.abiotic 11

edesign.abiotic Experimental design potato abiotic stress

Description

edesign.abiotic contains experimental set up of a time course microarray experiment where
potato plants were submitted to 3 different abiotic stresses.

Usage

data(edesign.abiotic)

Format

A matrix with 36 rows and 6 columns
rows [1:36] "Control 3h 1" "Control 3h 2" "Control 3h 3" "Control 9h 1" ...
columns [1:6] "Time" "Replicates" "Control" "Cold" "Heat" "Salt"

Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain
array names.

"Time" indicates the values that variable Time takes in each hybridization.

"Replicates" is an index indicating replicate hyridizations, i.e. hybridizations are numbered,
giving replicates the same number.

"Control", "Cold", "Heat" and "Salt" columns indicate array assigment to experimental
groups, coding with 1 and 0 whether each array belongs to that group or not.

References

Rensink WA, Iobst S, Hart A, Stegalkina S, Liu J, Buell CR. Gene expression profiling of potato
responses to cold, heat, and salt stress. Funct Integr Genomics. 2005 Apr 22.

Examples

data(edesignCR)

edesignCT Experimental design with a shared time

Description

edesignCT contains the experimental set up of a time course microarray experiment where there
is a common starting point for the different experimental groups.

Usage

data(edesignCT)

12 edesignDR

Format

A matrix with 32 rows and 7 colums

rows [1:32] "Array1" "Array2" "Array3" "Array4" ...

columns [1:7] "Time" "Replicates" "Control" "Tissue1" "Tissue2" "Tissue3" "Tissue4"

Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain
array names.

"Time" indicates the values that variable Time takes in each hybridization. There are 4 time points,
which allows an up to 3 degree regression polynome.

"Replicates" is an index indicating replicate hyridizations, i.e. hybridizations are numbered,
giving replicates the same number.

"Control", "Tissue1", "Tissue2", "Tissue3" and "Tissue4" columns indicate ar-
ray assigment to experimental groups, coding with 1 and 0 whether each array belongs to that group
or not.

Examples

data(edesignCT)

edesignDR Experimental design with different replicates

Description

edesignDR contains experimental set up of a replicated time course microarray experiment where
rats were submitted to 3 different dosis of a toxic compound. A control and an placebo treatments
are also present in the experiment.

Usage

data(edesignDR)

Format

A matrix with 54 rows and 7 columns

rows [1:54] "Array1" "Array2" "Array3" "Array4" ...

columns [1:7] "Time" "Replicates" "Control" "Placebo" "Low" "Medium" "High"

Details

Arrays are given in rows and experiment descriptors are given in columns. Row names contain
array names.

"Time" indicates the values that variable Time takes in each hybridization.

"Replicates" is an index indicating replicate hyridizations, i.e. hybridizations are numbered,
giving replicates the same number.

"Control", "Placebo", "Low", "Medium" and "High" columns indicate array assigment
to experimental groups, coding with 1 and 0 whether each array belongs to that group or not.

get.siggenes 13

References

Heijne, W.H.M.; Stierum, R.; Slijper, M.; van Bladeren P.J. and van Ommen B.(2003). Toxicoge-
nomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach.
Biochemical Pharmacology 65 857-875.

Examples

data(edesignDR)

get.siggenes Extract significant genes for sets of variables in time series gene ex-
pression experiments

Description

This function creates lists of significant genes for a set of variables whose significance value has
been computed with the T.fit function.

Usage

get.siggenes(tstep, rsq = 0.7, add.IDs = FALSE, IDs = NULL, matchID.col = 1,
only.names = FALSE, vars = c("all", "each", "groups"),

significant.intercept = "dummy",

groups.vector = NULL, trat.repl.spots = "none",
index = IDs[, (matchID.col + 1)], match = IDs[, matchID.col],

r = 0.7)

Arguments

tstep a T.fit object

rsq cut-off level at the R-squared value for the stepwise regression fit. Only genes
with R-squared more than rsq are selected

add.IDs logical indicating whether to include additional gene id’s in the result

IDs matrix contaning additional gene id information (required when add.IDs is
TRUE)

matchID.col number of matching column in matrix IDs for adding genes ids

only.names logical. If TRUE, expression values are ommited in the results

vars variables for which to extract significant genes (see details)
significant.intercept

experimental groups for which significant intercept coefficients are considered
(see details)

groups.vector
required when vars is "groups".

trat.repl.spots
treatment given to replicate spots. Possible values are "none" and "average"

14 get.siggenes

index argument of the average.rows function to use when trat.repl.spots
is "average"

match argument of the average.rows function to use when trat.repl.spots
is "average"

r minimun pearson correlation coefficient for replicated spots profiles to be aver-
aged

Details

There are 3 possible values for the vars argument:

"all": generates one single matrix or gene list with all significant genes.

"each": generates as many significant genes extractions as variables in the general regression
model. Each extraction contains the significant genes for that variable.

"groups": generates a significant genes extraction for each experimental group.

The difference between "each" and "groups" is that in the first case the variables of the same
group (e.g. "TreatmentA" and "time*TreatmentA") will be extracted separately and in
the second case jointly.

When add.IDs is TRUE, a matrix of gene ids must be provided as argument of IDs, the matchID.col
column of which having same levels as in the row names of sig.profiles. The option only.names
is TRUE will generate a vector of significant genes or a matrix when add.IDs is set also to TRUE.

When trat.repl.spots is "average", match and index vectors are required for the
average.rows function. In gene expression data context, the index vector would contain
geneIDs and indicate which spots are replicates. The match vector is used to match these gen-
esIDs to rows in the significant genes matrix, and must have the same levels as the row names of
sig.profiles.

The argument significant.intercept modulates the treatment for intercept coefficients to
apply for selecting significant genes when vars equals "groups". There are three possible
values: "none", no significant intercept (differences) are considered for significant gene selection,
"dummy", includes genes with significant intercept differences between control and experimental
groups, and "all" when both significant intercept coefficient for the control group and significant
intercept differences are considered for selecting significant genes.

add.IDs = TRUE and trat.repl.spots = "average" are not compatible argumet values.
add.IDs = TRUE and only.names = TRUE are compatible argumet values.

Value

summary a vector or matrix listing significant genes for the variables given by the function
parameters

sig.genes a list with detailed information on the significant genes found for the variables
given by the function parameters. Each element of the list is also a list contain-
ing:

sig.profiles: expression values of significant genes
coefficients: regression coefficients of the adjusted models
groups.coeffs: regression coefficients of the impiclit models of each ex-

perimental group
sig.pvalues: p-values of the regression coefficients for significant genes
g: number of genes
...: arguments passed by previous functions

get.siggenes 15

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102

Examples

GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}
Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values

CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))

16 i.rank

Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")

tc.p <- p.vector(tc.DATA, design = make.design.matrix(edesign), Q = 0.01)
tc.tstep <- T.fit(data = tc.p , alfa = 0.05)

This will obtain sigificant genes per experimental group
which have a regression model Rsquared > 0.9
tc.sigs <- get.siggenes (tc.tstep, rsq = 0.9, vars = "groups")

This will obtain all sigificant genes regardless the Rsquared value.
Replicated genes are averaged.
IDs <- rbind(paste("feature", c(1:300), sep = ""),

rep(paste("gene", c(1:150), sep = ""), each = 2))
tc.sigs.ALL <- get.siggenes (tc.tstep, rsq = 0, vars = "all", IDs = IDs)
tc.sigs.groups <- get.siggenes (tc.tstep, rsq = 0, vars = "groups", significant.intercept="dummy")

i.rank Ranks a vector to index

Description

Ranks the values in a vector to sucessive values. Ties are given the same value.

Usage

i.rank(x)

Arguments

x vector

Value

Vector of ranked values

Author(s)

Ana Conesa, aconesa@ivia.es

See Also

rank,order

Examples

i.rank(c(1, 1, 1, 3, 3, 5, 7, 7, 7))

maSigPro 17

maSigPro Wrapping function for identifying significant differential gene expres-
sion profiles in micorarray time course experiments

Description

maSigPro performs a whole maSigPro analysis for a times series gene expression experiment.
The function sucesively calls the functions make.design.matrix(optional), p.vector, T.fit,
get.siggenes and see.genes.

Usage

maSigPro(data, edesign, matrix = "AUTO", groups.vector = NULL,
degree = 2, time.col = 1, repl.col = 2, group.cols = c(3:ncol(edesign)),
Q = 0.05, alfa = Q, nvar.correction = FALSE, step.method = "backward", rsq = 0.7,
min.obs = 3, vars = "groups", significant.intercept = "dummy", cluster.data = 1,
add.IDs = FALSE, IDs = NULL, matchID.col = 1, only.names = FALSE, k = 9, m = 1.45,
cluster.method = "hclust", distance = "cor", agglo.method = "ward", iter.max = 500,
summary.mode = "median", color.mode = "rainbow", trat.repl.spots = "none",
index = IDs[, (matchID.col + 1)], match = IDs[, matchID.col], rs = 0.7,
show.fit = TRUE, show.lines = TRUE, pdf = TRUE, cexlab = 0.8,
legend = TRUE, main = NULL, ...)

Arguments

data matrix with normalized gene expression data. Genes must be in rows and arrays
in columns. Row names must contain geneIDs
(argument of p.vector)

edesign matrix of experimental design. Row names must contain arrayIDs
(argument of make.design.matrix and see.genes)

matrix design matrix for regression analysis. By default design is calculated with
make.design.matrix
(argument of p.vector and T.fit, by default computed by make.design.matrix)

groups.vector
vector indicating experimental group of each variable
(argument of get.siggenes and see.genes, by default computed by make.design.matrix)

degree the degree of the regression fit polynome. degree = 1 returns lineal regression,
degree = 2 returns quadratic regression, etc...
(argument of make.design.matrix)

time.col column in edesign containing time values. Default is first column
(argument of make.design.matrix and see.genes)

repl.col column in edesign containing coding for replicates arrays. Default is second
column
(argument of make.design.matrix and see.genes)

group.cols columns in edesign indicating the coding for each group of the experiment
(see make.design.matrix)
(argument of make.design.matrix and see.genes)

18 maSigPro

Q level of false discovery rate (FDR) control
(argument of p.vector)

alfa significance level used for variable selection in the stepwise regression
(argument of T.fit)

nvar.correction
logical for indicating correcting of stepwise regression significance level
(argument of T.fit)

step.method argument to be passed to the step function.
Can be either "backward", "forward", "two.ways.backward" or "two.ways.forward"

rsq cut-off level at the R-squared value for the stepwise regression fit.
Only genes with R-squared greater than rsq are selected

min.obs genes with less than this number of true numerical values will be excluded from
the analysis
(argument of p.vector and T.fit)

vars variables for which to extract significant genes
(argument of get.siggenes)

significant.intercept
experimental groups for which significant intercept coefficients are considered
(argument of get.siggenes)

cluster.data Type of data used by the cluster algorithm
(argument of see.genes)

add.IDs logical indicating whether to include additional gene id’s in the significant genes
result
(argument of get.siggenes)

IDs matrix contaning additional gene id information (required when add.IDs is
TRUE)
(argument of get.siggenes)

matchID.col number of matching column in matrix IDs for adding genes ids
(argument ofget.siggenes)

only.names logical. If TRUE, expression values are ommited in the significant genes result
(argument of get.siggenes)

k number of clusters
(argument of see.genes)

m m parameter when "mfuzz" clustering algorithm is used. See mfuzz
(argument of see.genes)

cluster.method
clustering method for data partioning
(argument of see.genes)

distance distance measurement function used when cluster.method is "hclust"
(argument of see.genes)

agglo.method aggregation method used when cluster.method is "hclust"
(argument of see.genes)

iter.max number of iterations when cluster.method is "kmeans"
(argument of see.genes)

maSigPro 19

summary.mode the method to condensate expression information when more than one gene is
present in the data.
Possible values are "representative" and "median"
(argument of PlotGroups)

color.mode color scale for plotting profiles. Can be either "rainblow" or "gray"
(argument of PlotProfiles)

trat.repl.spots
treatment givent to replicate spots. Possible values are "none" and "average"
(argument of get.siggenes)

index argument of the average.rows function to use when trat.repl.spots
is "average"
(argument of get.siggenes)

match argument of the link{average.rows} function to use when trat.repl.spots
is "average"
(argument of get.siggenes)

rs minimun pearson correlation coefficient for replicated spots profiles to be aver-
aged
(argument of get.siggenes)

show.fit logical indicating whether regression fit curves must be plotted
(argument of see.genes)

show.lines logical indicating whether a line must be drawn joining plotted data points for
reach group
(argument of see.genes)

pdf logical indicating whether a pdf results file must be generated
(argument of see.genes)

cexlab graphical parameter maginfication to be used for x labels in plotting functions

legend logical indicating whether legend must be added when plotting profiles
(argument of see.genes)

main title for pdf results file

... other graphical function arguments

Details

maSigPro finds and display genes with significant profile differences in time series gene expres-
sion experiments. The main, compulsory, input parameters for this function are a matrix of gene
expression data (see p.vector for details) and a matrix describing experimental design (see
make.design.matrix or p.vector for details). In case extended gene ID information is
wanted to be included in the result of significant genes, a third IDs matrix containing this informa-
tion will be required (see get.siggenes for details).

Basiscally in the function calls subsequent steps of the maSigPro approach which is:

• Make a general regression model with dummies to indicate different experimental groups.

• Select significant genes on the basis of this general model, applying fdr control.

• Find significant variables for each gene, using stepwise regression.

• Extract and display significant genes for any set of variables or experimental groups.

20 maSigPro

Value

summary a vector or matrix listing significant genes for the variables given by the function
parameters

sig.genes a list with detailed information on the significant genes found for the variables
given by the function parameters. Each element of the list is also a list contain-
ing:

sig.profiles: expression values of significant genes.The cluster assing-
ment of each gene is given in the last column

coefficients: regression coefficients for significant genes

t.score: value of the t statistics of significant genes

sig.pvalues: p-values of the regression coefficients for significant genes

g: number of genes

. . . :arguments passed by previous functions

input.data input analysis data

G number of input genes

edesign matrix of experimental design

dis regression design matrix

min.obs imputed value for minimal number of true observations

p.vector vector containing the computed p-values of the general regression model for
each gene

variables variables in the general regression model

g number of signifant genes

p.vector.alfa
p-vlaue at FDR = Q control

step.method imputed step method for stepwise regression

Q imputed value for false discovery rate (FDR) control

step.alfa inputed significance level in stepwise regression

influ.info data frame of genes containing influencial data

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

make.design.matrix, p.vector, T.fit, get.siggenes, see.genes

maSigPro 21

Examples

GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}

Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA[sample(c(1:(300*36)), 300)] <- NA # introduce missing values

CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")

RUN maSigPro
tc.test <- maSigPro (tc.DATA, edesign, degree = 2, vars = "groups", main = "Test")

tc.test$g # gives number of total significant genes

22 make.design.matrix

tc.test$summary # shows significant genes by experimental groups
tc.test$sig.genes$Treat1$sig.pvalues # shows pvalues of the significant coefficients

in the regression models of the significant genes
for Control.vs.Treat1 comparison

make.design.matrix Make a design matrix for regression fit of time series gene expression
experiments

Description

make.design.matrix creates the design matrix of dummies for fitting time series micorarray
gene expression experiments.

Usage

make.design.matrix(edesign, degree = 2, time.col = 1,
repl.col = 2, group.cols = c(3:ncol(edesign)))

Arguments

edesign matrix describing experimental design. Rows must be arrays and columns ex-
periment descriptors

degree the degree of the regression fit polynome. degree = 1 returns linear regression,
degree = 2 returns quadratic regression, etc

time.col column number in edesign containing time values. Default is first column

repl.col column number in edesign containing coding for replicate arrays. Default is
second column

group.cols column numbers in edesign indicating the coding for each experimental group
(treatment, tissue, ...). See details

Details

rownames of edesign object should contain the arrays naming (i.e. array1, array2, ...). colnames of
edesign must contain the names of experiment descriptors(i.e. "Time", "Replicates", "Treatment A",
"Treatment B", etc.). for each experimental group a different column must be present in edesign,
coding with 1 and 0 whether each array belongs to that group or not.

make.design.matrix returns a design matrix where rows represent arrays and column vari-
ables of time, dummies and their interactions for up to the degree given. Dummies show the rel-
ative effect of each experimental group related to the first one. Single dummies indicate the abcissa
component of each group. $Time*dummy$ variables indicate slope changes, $Time^2*dummy$
indicates curvature changes. Higher grade values could model complex responses. In case experi-
mental groups share a initial state (i.e. common time 0), no single dummies are modeled.

Value

dis design matrix of dummies for fitting time series
groups.vector

vector coding the experimental group to which each variable belongs to

edesign edesign value passed as argument

p.vector 23

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102

Examples

data(edesign.abiotic, edesignCT)
make.design.matrix(edesign.abiotic) # quadratic model
make.design.matrix(edesignCT, degree = 3) # cubic model with common starting time point

p.vector Make regression fit for time series gene expression experiments

Description

p.vector performs a regression fit for each gene taking all variables present in the model given
by a regression matrix and returns a list of FDR corrected significant genes.

Usage

p.vector(data, design = NULL, Q = 0.05, MT.adjust = "BH", min.obs = 3)

Arguments

data matrix containing normalized gene expression data. Genes must be in rows and
arrays in columns

design design matrix for the regression fit such as that generated by the make.design.matrix
function

Q significance level

MT.adjust argument to pass to p.adjust function indicating the method for multiple
testing adjustment of p.value

min.obs genes with less than this number of true numerical values will be excluded from
the analysis. Default is 3 (minimun value for a quadratic fit)

Details

rownames(design) and colnames(data) must be identical vectors and indicate array nam-
ing.

rownames(data) should contain unique gene IDs.

colnames(design) are the given names for the variables in the regression model.

24 p.vector

Value

SELEC matrix containing the expression values for significant genes

p.vector vector containing the computed p-values

G total number of input genes

g number of genes taken in the regression fit

BH.alfa p-value at FDR Q control when Benajamini & Holderberg (BH) correction is
used

i number of significant genes

dis design matrix used in the regression fit

dat matrix of expression value data used in the regression fit

... additional values from input parameters

Author(s)

Ana Conesa, <aconesa@ivia.es>; Maria Jose Nueda, <mj.nueda@ua.es>

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102

See Also

T.fit, lm

Examples

GENERATE TIME COURSE DATA
generates n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

position 25

}

Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c2 = 1.3, var32 = 0.03, var33 = 0.03)
Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values

CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")

tc.p <- p.vector(tc.DATA, design = make.design.matrix(edesign), Q = 0.05)
tc.p$i # number of significant genes
tc.p$SELEC # expression value of signficant genes
tc.p$BH.alfa # p.value at FDR control
tc.p$p.adjusted# adjusted p.values

position Column position of a variable in a data frame

Description

Finds the column position of a character variable in the column names of a data frame.

Usage

position(matrix, vari)

Arguments

matrix matrix or data.frame with character column names

vari character variable

Value

numerical. Column position for the given variable.

26 reg.coeffs

Author(s)

Ana Conesa, aconesa@ivia.es

Examples

x <- matrix(c(1, 1, 2, 2, 3, 3),ncol = 3,nrow = 2)
colnames(x) <- c("one", "two", "three")
position(x, "one")

reg.coeffs Calculate true variables regression coefficients

Description

reg.coeffs calculates back regression coefficients for true variables (experimental groups) from
dummy variables regression coefficients.

Usage

reg.coeffs(coefficients, indepen = groups.vector[nchar(groups.vector)==min(nchar(groups.vector))][1], groups.vector,
group)

Arguments

coefficients vector of regression coefficients obtained from a regression model with dummy
variables

indepen idependent variable of the regression formula
groups.vector

vector indicating the true variable of each variable in coefficients

group true variable for which regression coefficients are to be computed

Details

regression coefficients in coefficients vector should be ordered by polynomial degree in a regression
formula, ie: intercept, x term, x^2 term, x^3 term, and so on...

Value

reg.coeff vector of calculated regression coefficients

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

see.genes 27

Examples

groups.vector <-c("CT", "T1vsCT", "T2vsCT", "CT", "T1vsCT","T2vsCT", "CT", "T1vsCT", "T2vsCT")
coefficients <- c(0.1, 1.2, -0.8, 1.7, 3.3, 0.4, 0.0, 2.1, -0.9)
calculate true regression coefficients for variable "T1"
reg.coeffs(coefficients, groups.vector = groups.vector, group = "T1")

see.genes Wrapper function for visualization of gene expression values of time
course experiments

Description

This function provides visualisation tools for gene expression values in a time course experiment.
The function first calls the heatmap function for a general overview of experiment results. Next a
partioning of the data is generated using a clustering method. The results of the clustering are visu-
alized both as gene expression profiles extended along all arrays in the experiment, as provided by
the plot.profiles function, and as summary expression profiles for comparison among experimental
groups.

Usage

see.genes(data, edesign = data$edesign, time.col = 1, repl.col = 2,
group.cols = c(3:ncol(edesign)), names.groups = colnames(edesign)[3:ncol(edesign)],
cluster.data = 1, groups.vector = data$groups.vector, k = 9, m = 1.45,
cluster.method = "hclust", distance = "cor", agglo.method = "ward",
show.fit = FALSE, dis = NULL, step.method = "backward", min.obs = 3,
alfa = 0.05, nvar.correction = FALSE, show.lines = TRUE, iter.max = 500,
summary.mode = "median", color.mode = "rainbow", cexlab = 1, legend = TRUE,
newX11 = TRUE, ylim = NULL, main = NULL, ...)

Arguments

data either matrix or a list containing the gene expression data, typically a get.siggenes
object

edesign matrix of experimental design

time.col column in edesign containing time values. Default is first column

repl.col column in edesign containing coding for replicates arrays. Default is second
column

group.cols columns indicating the coding for each group (treatment, tissue,...) in the exper-
iment (see details)

names.groups names for experimental groups

cluster.data type of data used by the cluster algorithm (see details)
groups.vector

vector indicating the experimental group to which each variable belongs

k number of clusters for data partioning

m m parameter when "mfuzz" clustering algorithm is used. See mfuzz
cluster.method

clustering method for data partioning. Currently "hclust", "kmeans" and
"mfuzz" are supported

28 see.genes

distance distance measurement function for when cluster.method is hclust

agglo.method aggregation method used when cluster.method is hclust

show.fit logical indicating whether regression fit curves must be plotted

dis regression design matrix

step.method stepwise regression method to fit models for cluster mean profiles. Can be either
"backward", "forward", "two.ways.backward" or "two.ways.forward"

min.obs minimal number of observations for a gene to be included in the analysis

alfa significance level used for variable selection in the stepwise regression
nvar.correction

argument for correcting T.fitsignificance level. See T.fit

show.lines logical indicating whether a line must be drawn joining plotted data points for
reach group

iter.max maximum number of iterations when cluster.method is kmeans

summary.mode the method PlotGroups takes to condensate expression information when
more than one gene is present in the data. Possible values are "representative"
and "median"

color.mode color scale for plotting profiles. Can be either "rainblow" or "gray"

cexlab graphical parameter maginfication to be used for x labels in plotting functions

legend logical indicating whether legend must be added when plotting profiles

main plot title

ylim range of the y axis to be used by PlotProfiles and PlotGroups

newX11 when TRUE, plot each type of plot in a diferent graphical device

... other graphical function argument

Details

Data can be provided either as a single data matrix of expression values, or a get.siggenes
object. In the later case the other argument of the fuction can be taken directly from data.

Data clustering can be done on the basis of either the original expression values, the regression
coefficients, or the t.scores. In case data is a get.siggenes object, this is given by provid-
ing the element names of the list c("sig.profiles","coefficients","t.score") of
their list position (1,2 or 3).

Value

Experiment wide gene profiles and by group profiles plots are generated for each data cluster in the
graphical device.

cut vector indicating gene partioning into clusters

c.algo.used clustering algorith used for data partioning

groups groups matrix used for plotting functions

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

see.genes 29

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2006. maSigPro: a Method to Identify Sig-
nificant Differential Expression Profiles in Time-Course Microarray Experiments. Bioinformatics
22, 1096-1102

See Also

PlotProfiles, PlotGroups

Examples

GENERATE TIME COURSE DATA
generate n random gene expression profiles of a data set with
one control plus 3 treatments, 3 time points and r replicates per time point.

tc.GENE <- function(n, r,
var11 = 0.01, var12 = 0.01,var13 = 0.01,
var21 = 0.01, var22 = 0.01, var23 =0.01,
var31 = 0.01, var32 = 0.01, var33 = 0.01,
var41 = 0.01, var42 = 0.01, var43 = 0.01,
a1 = 0, a2 = 0, a3 = 0, a4 = 0,
b1 = 0, b2 = 0, b3 = 0, b4 = 0,
c1 = 0, c2 = 0, c3 = 0, c4 = 0)

{

tc.dat <- NULL
for (i in 1:n) {
Ctl <- c(rnorm(r, a1, var11), rnorm(r, b1, var12), rnorm(r, c1, var13)) # Ctl group
Tr1 <- c(rnorm(r, a2, var21), rnorm(r, b2, var22), rnorm(r, c2, var23)) # Tr1 group
Tr2 <- c(rnorm(r, a3, var31), rnorm(r, b3, var32), rnorm(r, c3, var33)) # Tr2 group
Tr3 <- c(rnorm(r, a4, var41), rnorm(r, b4, var42), rnorm(r, c4, var43)) # Tr3 group
gene <- c(Ctl, Tr1, Tr2, Tr3)
tc.dat <- rbind(tc.dat, gene)

}
tc.dat

}

Create 270 flat profiles
flat <- tc.GENE(n = 270, r = 3)
Create 10 genes with profile differences between Ctl and Tr1 groups
twodiff <- tc.GENE (n = 10, r = 3, b2 = 0.5, c2 = 1.3)
Create 10 genes with profile differences between Ctl, Tr2, and Tr3 groups
threediff <- tc.GENE(n = 10, r = 3, b3 = 0.8, c3 = -1, a4 = -0.1, b4 = -0.8, c4 = -1.2)
Create 10 genes with profile differences between Ctl and Tr2 and different variance
vardiff <- tc.GENE(n = 10, r = 3, a3 = 0.7, b3 = 1, c3 = 1.2, var32 = 0.03, var33 = 0.03)
Create dataset
tc.DATA <- rbind(flat, twodiff, threediff, vardiff)
rownames(tc.DATA) <- paste("feature", c(1:300), sep = "")
colnames(tc.DATA) <- paste("Array", c(1:36), sep = "")
tc.DATA [sample(c(1:(300*36)), 300)] <- NA # introduce missing values

CREATE EXPERIMENTAL DESIGN
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))

30 stepback

Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")

see.genes(tc.DATA, edesign = edesign, k = 4, main = "Time Course")

This will show the regression fit curve
dise <- make.design.matrix(edesign)
see.genes(tc.DATA, edesign = edesign, k = 4, main = "Time Course", show.fit = TRUE,

dis = dise$dis, groups.vector = dise$groups.vector, distance = "euclidean")

stepback Fitting a linear model by backward-stepwise regression

Description

stepback fits a linear regression model applying a backward-stepwise strategy.

Usage

stepback(y = y, d = d, alfa = 0.05)

Arguments

y dependent variable

d data frame containing by columns the set of variables that could be in the se-
lected model

alfa significance level to decide if a variable stays or not in the model

Details

The strategy begins analysing a model with all the variables included in d. If all variables are
statistically significant (all variables have a p-value less than alfa) this model will be the result. If
not, the less statistically significant variable will be removed and the model is re-calculated. The
process is repeated up to find a model with all the variables statistically significant.

Value

stepback returns an object of the class lm, where the model uses y as dependent variable and all
the selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results.
The generic accessor functions coefficients, effects, fitted.values and residuals
extract various useful features of the value returned by lm.

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

stepfor 31

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

lm, step, stepfor, two.ways.stepback, two.ways.stepfor

Examples

create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0.040,
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
-1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)

s.fit <- stepback(y = y, d = dis)
summary(s.fit)

stepfor Fitting a linear model by forward-stepwise regression

Description

stepfor fits a linear regression model applying forward-stepwise strategy.

Usage

stepfor(y = y, d = d, alfa = 0.05)

Arguments

y dependent variable

d data frame containing by columns the set of variables that could be in the se-
lected model

alfa significance level to decide if a variable stays or not in the model

32 stepfor

Details

The strategy begins analysing all the possible models with only one of the variables included in d.
The most statistically significant variable (with the lowest p-value) is included in the model and then
it is considered to introduce in the model another variable analysing all the possible models with two
variables (the selected variable in the previous step plus a new variable). Again the most statistically
significant variable (with lowest p-value) is included in the model. The process is repeated till there
are no more statistically significant variables to include.

Value

stepfor returns an object of the class lm, where the model uses y as dependent variable and all
the selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results.
The generic accessor functions coefficients, effects, fitted.values and residuals
extract various useful features of the value returned by lm.

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

lm, step, stepback, two.ways.stepback, two.ways.stepfor

Examples

create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0.040,
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
-1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)

s.fit <- stepfor(y = y, d = dis)
summary(s.fit)

suma2Venn 33

suma2Venn Creates a Venn Diagram from a matrix of characters

Description

suma2Venn transforms a matrix of characters into a binary matrix and creates a vennDiagram of
the common elements between columns

Usage

suma2Venn(x, ...)

Arguments

x data frame of character values

... plotting arguments for the vennDiagram function

Details

suma2Venn creates a list of all elements of a matrix or data frame of characters and computes the
presence/absence of each element in each column of the matrix. This results is a numeric matrix of
1 and 0 which can be taken by the vennDiagram to generate a Venn Plot

Value

suma2Venn returns a Venn Plot such as that created by the vennDiagram funcion

Author(s)

Ana Conesa, aconesa@ivia.es

See Also

vennDiagram

Examples

a <- c("a","b","c", "d", "e", NA, NA)
b <- c("a","b","f", NA, NA, NA, NA)
c <- c("b","e","f", "h", "i", "j", "k")
x <- cbind(a, b,c)
suma2Venn(x)

34 two.ways.stepback

two.ways.stepback Fitting a linear model by backward-stepwise regression

Description

two.ways.stepback fits a linear regression model applying backward-stepwise strategy.

Usage

two.ways.stepback(y = y, d = d, alfa = 0.05)

Arguments

y dependent variable

d data frame containing by columns the set of variables that could be in the se-
lected model

alfa significance level to decide if a variable stays or not in the model

Details

The strategy begins analysing a model with all the variables included in d. If all the variables are
statistically significant (all the variables have a p-value less than alfa) this model will be the result.
If not, the less statistically significant variable will be removed and the model is re-calculated. The
process is repeated up to find a model with all the variables statistically significant (p-value < alpha).
Each time that a variable is removed from the model, it is considered the possibility of one or more
removed variables to come in again.

Value

two.ways.stepback returns an object of the class lm, where the model uses y as dependent
variable and all the selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results.
The generic accessor functions coefficients, effects, fitted.values and residuals
extract various useful features of the value returned by lm.

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

lm, step, stepfor, stepback, two.ways.stepfor

two.ways.stepfor 35

Examples

create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0.040,
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
-1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)

s.fit <- two.ways.stepback(y = y, d = dis)
summary(s.fit)

two.ways.stepfor Fitting a linear model by forward-stepwise regression

Description

two.ways.stepfor fits a linear regression model applying forward-stepwise strategy.

Usage

two.ways.stepfor(y = y, d = d, alfa = 0.05)

Arguments

y dependent variable

d data frame containing by columns the set of variables that could be in the se-
lected model

alfa significance level to decide if a variable stays or not in the model

Details

The strategy begins analysing all the possible models with only one of the variables included in d.
The most statistically significant variable (with the lowest p-value) is included in the model and then
it is considered to introduce in the model another variable analysing all the possible models with two
variables (the selected variable in the previous step plus a new variable). Again the most statistically
significant variable (with lowest p-value) is included in the model. The process is repeated till there
are no more statistically significant variables to include. Each time that a variable enters the model,
the p-values of the current model vairables is recalculated and non significant variables will be
removed.

36 two.ways.stepfor

Value

two.ways.stepfor returns an object of the class lm, where the model uses y as dependent
variable and all the selected variables from d as independent variables.

The function summary are used to obtain a summary and analysis of variance table of the results.
The generic accessor functions coefficients, effects, fitted.values and residuals
extract various useful features of the value returned by lm.

Author(s)

Ana Conesa, aconesa@ivia.es; Maria Jose Nueda, mj.nueda@ua.es

References

Conesa, A., Nueda M.J., Alberto Ferrer, A., Talon, T. 2005. maSigPro: a Method to Identify
Significant Differential Expression Profiles in Time-Course Microarray Experiments.

See Also

lm, step, stepback, stepfor, two.ways.stepback

Examples

create design matrix
Time <- rep(c(rep(c(1:3), each = 3)), 4)
Replicates <- rep(c(1:12), each = 3)
Control <- c(rep(1, 9), rep(0, 27))
Treat1 <- c(rep(0, 9), rep(1, 9), rep(0, 18))
Treat2 <- c(rep(0, 18), rep(1, 9), rep(0,9))
Treat3 <- c(rep(0, 27), rep(1, 9))
edesign <- cbind(Time, Replicates, Control, Treat1, Treat2, Treat3)
rownames(edesign) <- paste("Array", c(1:36), sep = "")
dise <- make.design.matrix(edesign)
dis <- as.data.frame(dise$dis)

expression vector
y <- c(0.082, 0.021, 0.010, 0.113, 0.013, 0.077, 0.068, 0.042, -0.056, -0.232, -0.014, -0.040,
-0.055, 0.150, -0.027, 0.064, -0.108, -0.220, 0.275, -0.130, 0.130, 1.018, 1.005, 0.931,
-1.009, -1.101, -1.014, -0.045, -0.110, -0.128, -0.643, -0.785, -1.077, -1.187, -1.249, -1.463)

s.fit <- two.ways.stepfor(y = y, d = dis)
summary(s.fit)

Index

∗Topic aplot
PlotGroups, 1
PlotProfiles, 3
see.genes, 27
suma2Venn, 33

∗Topic arith
average.rows, 7
i.rank, 16
position, 25

∗Topic datasets
data.abiotic, 8
edesign.abiotic, 11
edesign.OD, 10
edesignCT, 11
edesignDR, 12

∗Topic design
make.design.matrix, 22

∗Topic manip
get.siggenes, 13
maSigPro, 17
see.genes, 27

∗Topic misc
reg.coeffs, 26
suma2Venn, 33

∗Topic models
maSigPro, 17
T.fit, 5

∗Topic regression
make.design.matrix, 22
p.vector, 23
stepback, 30
stepfor, 31
T.fit, 5
two.ways.stepback, 34
two.ways.stepfor, 35

average.rows, 7, 14, 19

coefficients, 30, 32, 34, 36

data.abiotic, 8

edesign.abiotic, 11
edesign.OD, 10

edesignCT, 11
edesignDR, 12
effects, 30, 32, 34, 36

fitted.values, 30, 32, 34, 36

get.siggenes, 13, 17–20, 27, 28

hclust, 28

i.rank, 16

kmeans, 28

lm, 24, 30–32, 34, 36

make.design.matrix, 5, 17, 19, 20, 22,
23

maSigPro, 17
mfuzz, 18, 27

order, 16

p.vector, 5, 6, 17–20, 23
PlotGroups, 1, 4, 19, 28, 29
PlotProfiles, 2, 3, 19, 28, 29
position, 25

rank, 16
reg.coeffs, 26
residuals, 30, 32, 34, 36

see.genes, 17–20, 27
step, 6, 31, 32, 34, 36
stepback, 30, 32, 34, 36
stepfor, 31, 31, 34, 36
suma2Venn, 33
summary, 30, 32, 34, 36

T.fit, 1, 5, 5, 17, 18, 20, 24, 28
two.ways.stepback, 31, 32, 34, 36
two.ways.stepfor, 31, 32, 34, 35

vennDiagram, 33

37

	PlotGroups
	PlotProfiles
	T.fit
	average.rows
	data.abiotic
	edesign.OD
	edesign.abiotic
	edesignCT
	edesignDR
	get.siggenes
	i.rank
	maSigPro
	make.design.matrix
	p.vector
	position
	reg.coeffs
	see.genes
	stepback
	stepfor
	suma2Venn
	two.ways.stepback
	two.ways.stepfor
	Index

