bgafun

March 24, 2012

```
Calculate_Row_Weights
    Calculate the sequence weights for all the rows in my amino,using
    label as the grouping
```


Description

This will calculate the sequence weights for each group using the Heinkoff and Heinkoff method. Each residue in the sequence is assigned a weight depending on how unique it is in the column. The sequence weight is then the sum of these weights, and the total weight is the number of groups

Usage

Calculate_Row_Weights (my_amino, label)

Arguments

my_amino Matrix representation of alignment generated by convert $\$ _aln $\$ _amino
label Vector or factor that shows the group representation for each sequence in the alignment

References

Henikoff, S. and J. G. Henikoff (1994). "Position-based sequence weights." J Mol Biol 243(4): 574-8.

Examples

```
library("bgafun")
data(LDH.amino.gapless)
data(LDH.groups)
LDH.weights=Calculate_Row_Weights(LDH.amino.gapless,LDH.groups)
sum(LDH.weights)
```


Henikoff_weights Calculates Henikoff weights for each sequence in a binary amino acid matrix

Description

Internal Function Calculates a sequence weight for each sequence in an alignment using the Henikoff method.

References

Henikoff, S. and J. G. Henikoff (1994). "Position-based sequence weights." J Mol Biol 243(4): 574-8.

LDH LDH alignment read in from a file

Description

Seqinr representation of the LDH example alignment.
\qquad

Description

Amino Acid Propties representation of LDH alignment

```
LDH.aap.ave
AAP matrix
```


Description

Amino Acid Properties Matrix after averaging out gaps

> LDH . amino Binary amino acid matrix after converting the Lactate alignment

Description

Binary amino acid matrix after converting the Lactate alignment

```
LDH.amino.gapless Amino acid matrix after removing gaps
```


Description

The amino acid matrix for the lactate example, after removing gappy positions

LDH. amino.pseudo Amino acid matrix after adding pseudo counts

Description

Amino acid matrix after adding pseudo counts to the LDH.amino.gapless matrix

Usage

data(LDH.amino.pseudo)

LDH.groups
Groups in the LDH alignment

Description

Factor assigning the sequences in the LDH alignment into one of two groups

```
Weight_Amino
```


Description

Internal Function Calculates sequence weight for each sequence, and multiples the matrix by this weight. It returns a weighted amino acid matrix.
add_pseudo_counts Add pseudo counts to amino acid matrix based on defined groups

Description

This function will add pseudo counts to binary amino acid matrix based on the defined groups. It is used to minimise the effect of small sample size. The method of Henikoff and Henikoff is used to calculate the pseudocounts An alternative method is to simply add 1 to the binary matrix

Usage

add_pseudo_counts(amino,groups)

Arguments

amino Matrix representation of alignment generated by convert $\$ _aln $\$ amino
groups \quad Vector or factor that shows the group representation for each sequence in the alignment

Examples

```
library(bgafun)
data(LDH.amino.gapless)
data(LDH.groups)
LDH.pseudo=LDH.amino.gapless+1
#or use the function
LDH.pseudo=add_pseudo_counts(LDH.amino.gapless,LDH.groups)
```

```
amino_counts calculate count of amino acid types at each position
```


Description

Internal Function Calculate the counts of amino acid types at each position in an alignment from a binary amino acid matrix

average_cols_aap Replaces gaps with the average of the column

Description

This function will deal with gaps in the Amino Acid Property encoding scheme It replaces gaps with the average in the column for each group, provided the column is highly occupied for that group. It will only average out over columns that have high percentage of gaps It will remove all other columns containing gaps.

Usage

```
average_cols_aap(x,y)
```


Arguments

$\begin{array}{ll}\mathrm{x} & \text { Matrix representation of alignment generated by convert } \backslash \text { aln } _ \text {AAP } \\ \mathrm{y} & \begin{array}{l}\text { Vector or factor that shows the group representation for each sequence in the } \\ \text { alignment }\end{array}\end{array}$

Examples

```
library(bgafun)
data(LDH)
data(LDH.groups)
LDH.aap=convert_aln_AAP(LDH)
LDH.aap.ave=average_cols_aap(LDH.aap, LDH.groups)
dim(LDH.aap.ave)
```

BGAfun BGAfun A method to identify specifity determining residues in protein families

Description

This Package combines between group analysis with sequence alignments to identify specifity determining residues in protein families

Author(s)

Iain Wallace iain.wallace@ucd.ie

References

Wallace, I.M. and Higgins, D.G. (2007) Supervised multivariate analysis of sequence groups to identify specificity determining residues, BMC Bioinformatics, 8,135 .

Examples

```
library(bgafun)
#read in alignment
LDH <- read.alignment(file = system.file("sequences/LDH-MDH-PF00056.fasta", package = "bs
#Assign into groups
LDH.amino=convert_aln_amino(LDH)
LDH.groups=rownames(LDH.amino)
LDH.groups[grep("LDH",LDH.groups)]="LDH"
LDH.groups[grep("MDH",LDH.groups)]="MDH"
LDH.groups=as.factor(LDH.groups)
#Convert to Amino Acid matrix (or Amino Acid properties matrix)
LDH.amino.gapless=remove_gaps_groups(LDH.amino,LDH.groups)
#Add Psuedo counts
LDH.pseudo=LDH.amino.gapless+1
LDH.binary.bga=bga(t(LDH.pseudo), LDH.groups)
plot(LDH.binary.bga)
```

calculate_pseudo Calculates pseudo count for each column in the amino acid matrix

Description

Internal function Calculates the pseudo count for each column in the amino acid matrix

> convertAAP-package Converts an alignment into a matrix using the AAP encoding

Description

Convert an alignment read in by seqinr into a matrix using the AAP encoding. this is suitable for BGA analysis using PCA

Details

Package:	convertAAP
Type:	Package
Version:	1.0
Date:	$2007-03-14$
License:	Artistic License

Author(s)

Iain Wallace

References

BMC hopefully

$$
\begin{array}{ll}
\text { convert_aln_AAP } & \begin{array}{l}
\text { Converts alignment into a matrix using the amino acid property en- } \\
\text { coding }
\end{array}
\end{array}
$$

Description

Each residue in the alignment is represented by a vector of five continuous variables as given by Atchley et al They applied a multivariate statistic approach to reduce the information in 494 amino acid attributes into a set of five factors for each amino acid. Factor A is termed the polarity index. It correlates well with a large variety of descriptors including the number of hydrogen bond donors, polarity versus nonpolarity, and hydrophobicity versus hydrophilicity. Factor B is a secondary structure index. It represents the propensity of an amino acid to be in a particular type of secondary
structure, such as a coil, turn or bend versus the frequency of it in an a-helix. Factor C is correlated with molecular size, volume and molecular weight. Factor D reflects the number of codons coding for an amino acid and amino acid composition. These attributes are related to various physical properties including refractivity and heat capacity. Factor E is related to the electrostatic charge. Gaps are represented by five zeros and should be either removed or replaced by the average of the column for a particular group.

Usage

convert_aln_AAP (Alignment)

Arguments

Alignment Alignment object read in using read.alignment function in seqinr

References

Atchley, W. R., J. Zhao, et al. (2005). "Solving the protein sequence metric problem." Proc Natl Acad Sci U S A 102(18): 6395-400.

Examples

```
library(bgafun)
data(LDH)
data(LDH.groups)
LDH.aap=convert_aln_AAP (LDH)
dim(LDH.aap)
LDH.aap.ave=average_cols_aap(LDH.aap,LDH.groups)
dim(LDH.aap.ave)
```

```
convert_aln_amino Converts an alignment object into binary amino matrix
```


Description

Converts an alignment object, read in by the seqinr package, into a binary matrix. The binary matrix represents the absence or presence of amino acids at each position in the alignment

Usage

convert_aln_amino(Alignment)

Arguments

Alignment Alignment object read in using read.alignment function in seqinr

Examples

```
library(bgafun)
LDH <- read.alignment(file = system.file("sequences/LDH-MDH-PF00056.fasta", package = "b
LDH.amino=convert_aln_amino(LDH)
dim(LDH.amino)
```

```
convert_amino-package
```

The functions required to convert an alignment into a binary matrix suitable for BGA analysis

Description

The functions required to convert an alignment into a binary matrix suitable for BGA analysis

Details

Read in the alignment, then convert into matrix

Author(s)

Iain Wallace

References

```
BMC hopefully
```

```
convert_seq_amino Converts a single seqeunce into a binary string
```


Description

Internal Function Converts a single sequence from an alignment object into a binary string

```
create_colnames_amino
Creates the column names for the binary matrix
```


Description

Internal Function Creates the column names for the matrix in the form "Position" "Amino Acid Letter"

```
create_probab Generates probability matrix for pseudocounts calculation
```


Description

Internal function. Generates an amino acid probability matrix which is based on BLOSUM 62, and is used to calculate how many pseudo counts should be added
create_profile Creates a sequence profile for an binary amino acid matrix

Description

Internal Function Returns a profile matrix, which show how many of each type of amino acids are in each position in an alignmnet It takes in a binary amino acid matrix

```
create_profile_strings
```

Create a profile string for each group in an alignment

Description

This function is used to analysis the amino acids at each position in the alignment. It can be used to analysis the columns that the bga analysis identified as interesting It creates a profile string, 1D vector which shows the number of amino acids at each position in an alignment for each group that has been defined

Usage

```
create_profile_strings(x,y)
```


Arguments

$x \quad$ Matrix representation of alignment generated by convert \backslash aln $\$ amino
$y \quad$ Vector or factor that shows the group representation for each sequence in the alignment

Examples

```
library(bgafun)
data(LDH.groups)
data(LDH.amino.gapless)
#run the analysis
LDH.binary.bga=bga(t (LDH.amino.gapless+1), LDH.groups)
#Get the important residues
top_res=top_residues_2_groups(LDH.binary.bga)
#To tidy up the results
names(top_res)=sub("X","",names(top_res))
# and now look at the amino acid content in the alignment
LDH.profiles=create_profile_strings(LDH.amino.gapless, LDH.groups)
# and now look at only those columns that are identified by BGA
#LDH.profiles[,(colnames(LDH.profiles) %in% names(top_res))]
```

```
pseudo_counts Calculate pseudo counts for a profile
```


Description

Internal function that is used to calculate pseudo counts for an amino acid profile. The Henikoff method is used.

```
remove_gaps Removes gaps from a amino binary matrix
```


Description

Internal Function This removes gappy positions from an alignment represented in a binary matrix.

```
remove_gaps_groups remove gaps from a binary amino matrix
```


Description

This function is used to deal with gaps in the binary amino acid encoding. It will remove positions from a binary amino matrix that contain more a certain fraction of gaps for any group in a column, in the alignment The gap fraction should be between 0 and 1 , and can be changed with the gap $\$ fraction variable.

Usage

```
remove_gaps_groups(x,z,gap_fraction=0.6)
```


Arguments

$x \quad$ Matrix representation of alignment generated by convert $\$ _aln $_$amino
$z \quad$ Vector or factor that shows the group representation for each sequence in the alignment
gap_fraction Float between 0 and 1 indicating the fraction of gaps in a column before it should be removed

Examples

```
library(bgafun)
data(LDH)
data(LDH.groups)
LDH.amino=convert_aln_amino(LDH)
dim(LDH.amino)
LDH.amino.gapless=remove_gaps_groups(LDH.amino,LDH.groups,gap_fraction=0.6)
dim(LDH.amino.gapless)
```

```
run_between_pca run PCA to identify functional positions in an alignment
```


Description

This is a cover function that runs supervised PCA on a matrix that represents an alignment. The matrix can either be a binary matrix (with or without pseudocounts) or one that represents the properties at each position of the alignment

Usage

```
run_between_pca(x,z,y)
```


Arguments

$x \quad$ Matrix representation of alignment generated by convert $\ _$aln $\$ amino
z Matrix representation of alignment generated by convert $\$ aln $\$ amino or convert $\$ aln $\$ AAP
y Vector or factor that shows the group representation for each sequence in the alignment

Examples

```
library(bgafun)
data(LDH)
data(LDH.groups)
#Used to calculate the sequence weights
data(LDH.amino.gapless)
data(LDH.aap.ave)
#Run the analysis
LDH.aap.ave.bga=run_between_pca(LDH.amino.gapless,LDH.aap.ave, LDH.groups)
class(LDH.aap.ave.bga)
#to visualise the results
plot(LDH.aap.ave.bga)
```

```
sum_20_aln
```

Calculates number of amino acids in each group of 20 columns (1 column in an alignment)

Description

Internal Function Calculates number of amino acids in each group of 20 columns which corresponds to 1 column in an alignment It takes in an binary amino acid matrix.

```
sum_20_cols
```

Calculate number of amino acids in a column of an alignment

Description

Internal Function Sum up 20 columns in an amino acid matrix which corresponds to one column in an alignment
sum_aln Calculate number of amino acids in each position in an alignment

Description

Internal Function Calculates the total number of amino acids in each position. It is used to identify positions with a high percentage of gaps It works on an amino acid matrix

```
top_residues_2_groups
```

Return a list of the top residues at either end of the axis

Description

This will identify the residues that are most discriminating between the two groups, and as such are most likely to be specifity determining resdius It will return a list of the residues at the end of the axis in a bga analysis. It is used when there are two groups. The function createl_profile_strings can be used to look at the amino acid content in the column that the analysis identifies

Usage

```
top_residues_2_groups(bga_results,residue_number=20)
```


Arguments

bga_results Results of BGA analysis, either from BGA or run $_$between $\$ pca function residue_number

Number of positions at each end of the axis to return

Examples

```
library(bgafun)
data(LDH.groups)
data(LDH.amino.gapless)
LDH.binary.bga=bga(t(LDH.amino.gapless+1), LDH.groups)
top_res=top_residues_2_groups(LDH.binary.bga)
#To tidy up the results
names(top_res)=sub("X","",names(top_res))
# to look at the amino acid content in the alignment
LDH.profiles=create_profile_strings(LDH.amino.gapless,LDH.groups)
LDH.profiles[, colnames(LDH.profiles) %in% names(top_res)]
```


Index

*Topic IO
average_cols_aap, 4
convert_aln_AAP, 6
convert_aln_amino, 7
convert_seq_amino, 8
LDH, 2
remove_gaps, 10
*Topic datasets
LDH. aap, 2
LDH.aap.ave, 2
LDH. amino, 2
LDH. amino.gapless, 3
LDH. amino.pseudo, 3
LDH.groups, 3

*Topic manip

add_pseudo_counts, 4
amino_counts, 4
calculate_pseudo, 6
Calculate_Row_Weights, 1
create_colnames_amino, 8
create_probab, 8
create_profile, 9
create_profile_strings, 9
Henikoff_weights, 2
pseudo_counts, 10
remove_gaps_groups, 10
run_between_pca, 11
sum_20_aln, 11
sum_20_cols, 12
sum_aln, 12
top_residues_2_groups, 12
Weight_Amino, 3
*Topic package
BGAfun, 5
convert_amino-package, 8
convertAAP-package, 6
add_pseudo_counts, 4
amino_counts, 4
average_cols_aap, 4

BGAfun, 5
bgafun (BGAfun), 5
calculate_pseudo, 6
Calculate_Row_Weights, 1
convert_aln_AAP, 6
convert_aln_amino, 7
convert_amino-package, 8
convert_seq_amino, 8
convertAAP (convertAAP-package), 6
convertAAP-package, 6
create_colnames_amino, 8
create_probab, 8
create_profile, 9
create_profile_strings, 9
Henikoff_weights, 2
LDH, 2
LDH. aap, 2
LDH. aap.ave, 2
LDH.amino, 2
LDH. amino.gapless, 3
LDH.amino.pseudo, 3
LDH.groups, 3
pseudo_counts, 10
remove_gaps, 10
remove_gaps_groups, 10
run_between_pca, 11
sum_20_aln, 11
sum_20_cols, 12
sum_aln, 12
top_residues_2_groups, 12
Weight_Amino, 3

