
Counting Alignment Overlaps with

countGenomicOverlaps

Valerie Obenchain Martin Morgan

Edited: 28 April 2011; Compiled: August 18, 2011

1 Introduction

This vignette illustrates how to count reads aligned to a reference genome with
countGenomicOverlaps. This function builds on the properties of findOver-

laps to provide a method that is strand-aware and offers options to resolve
multi-hit reads.

2 Data

For our test cases, we create a GRangesList of regions of interest (subj) and
reads (query), e.g., using short helper functions rng1 and rng2.

> library(GenomicFeatures)

> rng1 <- function(s, w)

+ GRanges(seq="chr1", IRanges(s, width=w), strand="+")

> rng2 <- function(s, w)

+ GRanges(seq="chr2", IRanges(s, width=w), strand="+")

> subj <- GRangesList(G1=rng1(1000, 500),

+ G2=rng2(2000, 900),

+ G3=rng1(c(3000, 3600), c(500, 300)),

+ G4=rng2(c(7000, 7500), c(600, 300)),

+ G5=rng2(c(9000, 9000), c(300, 600)),

+ G6=rng1(4000, 500),

+ G7=rng1(c(4300, 4500), c(400, 400)),

+ G8=rng2(3000, 500),

+ G9=rng1(c(5000, 5600), c(500, 300)),

+ G10=rng1(6000, 500),

+ G11=rng1(6600, 400))

> query <- GRangesList(read1=rng1(1400, 500),

+ read2=rng2(2700, 100),

+ read3=rng1(3400, 300),

+ read4=rng2(7100, 600),

1

+ read5=rng2(9000, 200),

+ read6=rng1(4200, 500),

+ read7=rng2(c(3100, 3300), 50),

+ read8=rng1(c(5400, 5600), 50),

+ read9=rng1(c(6400, 6600), 50))

One might also create subj with makeTranscriptDbFromUCSC, import (for
GFF-like) or other rtracklayer functionality, or from queries to biomaRt or using
the AnnotationDbi , *org , and BSgenome* Bioconductor annotation packages.
query might normally come from BAM files (e.g., readGappedAlignements in
GenomicRanges or scanBam in Rsamtools) or other aligned reads (using base
R functionality for pure text files, or perhaps readAligned from ShortRead ,
if the alignments do not contain gaps). These operations are described in the
vignettes of the corresponding packages.

The subj and query objects contain the genes and reads shown in Figure 1.
The external boxes labeled with “G” represent the genes. The internal boxes
labeled with “F” represent a feature which may be either exons or transcripts.
The unlabeled boxes are the reads. The subj contains 11 genes where G1, G2,
G6, G8, G10 and G11 have a single feature. Genes G3, G4, G5, G7 and G9
have multiple features, some of which are overlapping.

Our query contains a total of nine reads, where reads 7, 8 and 9 are split
reads. BAM files may be read into a GappedAlignments object with readGappedAlign-

ments. When a GappedAlignments object is coerced to a GRangesList, reads
with a gap in their CIGAR string are stored as multiple ranges in the GRanges-

List. Hence, reads 7, 8 and 9 appear as multiple ranges within the list element.
We will use these gene-feature combinations to demonstrate how countGe-

nomicOverlaps counts ’hits’ in various circumstances.

3 countGenomicOverlaps Decision Logic

countGenomicOverlaps first identifies overlaps of a specific type and reads that
hit a single subject are recorded. Reads that hit multiple subjects are resolved
with one of resolve methods.

The logic behind countGenomicOverlaps can be understood through the
type and resolution arguments. The type argument is passed to findOver-

laps and has the same options described in the findOverlaps documentation
(i.e., “any”, “start”, “end”, “within”, “equal”). The resolution argument indi-
cates how multi-hit reads should be resolved; the options are “none”, “divide”,
and “uniqueDisjoint”. Option “none” ignores multi-hit reads. “divide” simply
divides the hit equally among all features hit. For example, three 3 overlapping
features will all get 1/3 of a hit. The “uniqueDisjoint” option first identifies the
disjoint regions of all features hit. Regions that are common to multiple features
(i.e., overlapping) are removed and only unique (i.e., non-overlapping) disjoint
regions are left. If the read overlaps any of the remaining regions, the hit is
assigned to the feature that the disjoint region originated from.

2

G1
F1

Case I & II : Single read, single gene, single feature

Case III, IV & V : Single read, single gene, multiple features

Case VI : Single read, multiple genes, multiple features

F9G6

Case VII : Split read, single gene, single feature

Case VIII & IX : Split read, single or multiple genes, multiple features

G2
F2

G3
F3 F4

G4
F5

F6

G5
F7

F8

F10

F11

G7

G8
F12

G9
F13

G8
F12

F14
G8

F12
G10

F15

G11
F16

Figure 1: Overlap Cases

The primary difference in the handling of split reads vs simple reads (i.e.,
no gap in the CIGAR) is the portion of the read hit each split read fragment
has to contribute. All reads, whether simple or split, have an overall value of
1 to contribute to a subject they hit. In the case of the split reads, this value
is further divided by the number of fragments in the read. For example, if a
split read has 3 fragments (i.e., two gaps in the CIGAR) each fragment has a
value of 1/3 to contribute to the subject they hit. As with the simple reads,
depending upon the resolution chosen the value may be divided, fully assigned

3

or discarded.
The decision process for countGenomicOverlaps is shown graphically in Fig-

ure 2.

countGenomicOverlaps(query, subject,
 type = “any”, “start”, “end”, “within”, “equal”),
 resolution = “none”, “divide”, “uniqueDisjoint”),
 ignore.strand = FALSE)

read/read fragment hit 1 subject

Hit value is assigned
to the subject

resolution

none divide uniqueDisjoint

All multi-hit
reads are dropped

Hit value is
divided evenly among

all subjects hit

Hit value is assigned
to the subject with unique

disjoint interval that is hit by
the read. If none exists,

no hit is assigned.

All reads have a total hit value of 1.
In the case of split reads, each read fragment has

a fraction of the whole. If a split read has 5 fragments,
each fragment has 0.25 of a hit to contribute

to the subject it hits.

read/read fragment hit 1 > subject

Figure 2: countGenomicOverlaps Decision Logic

4 Examples

Below we investigate the counting of reads in the situations depicted in Figure 1
using type “any” and “within”.

4

4.1 type = “any”

When the resolution is “none”, both the multi-hit reads are In this case we
have simple reads hitting F1 and F2 and split reads hitting F12 through F16.
F12 is hit by two fragments of a split read, each with 0.5 of a hit to contribute
which results in a total of 1.0.

When resolution “divide” is used, we see all features in all genes are hit.
This is a quality of the “divide” option; if a read hits a feature that feature
receives either a whole hit or some shared piece of a hit. “divide”does not choose
between features or drop reads it cannot resolve as is done with“uniqueDisjoint”.
Genes G3 and G4 each have two features hit by a single read, thus F3, F4 and
F5, F6 and F7, F8 are assigned 0.5 hit each. F9, F10 and F11 in genes G6 and
G7 are hit by the same read and are assigned 0.33 hit each. Features F13, F14,
F15 and F16 are hit by split reads each having two fragments. F12 is hit by
both fragments and thus gets the full hit value of 1. F13, F14, F15 and F16 are
each hit by a single fragment and get a hit value of 0.5.

The decision making of resolution “uniqueDisjoint” can be explored by
comparing G6 to G3, G4 and G5. “uniqueDisjoint” is able to resolve multi-hits
in cases such as G6 but not in G3, G4 or G5. For “uniqueDisjoint” to resolve a
multi-hit read, there must exist a unique disjoint region (i.e., a region not shared
with the other features) that is hit by the read for only one of the features. In
G6 but there exists such a region for F9 and thus the hit is assigned to it. This is
not the case in G3, G4 or G5. In G3 and G4 unique disjoint regions exist for all
(both) of the features in the gene so“uniqueDisjoint”is unable to make a decision
and the read is discarded. Alternatively, in G5 no unique disjoint regions exist
for either feature so the read is discarded. There are certainly other examples
of feature overlap not depicted in the graphic in Figure 2. However the same
concepts apply in that “uniqueDisjoint” is able to resolve multi-hit reads if there
exists a unique disjoint region of one of the features hit by the read. Multiple
such regions or none at all are cases where “uniqueDisjoint” is unable to resolve
the hit.

> none <- countGenomicOverlaps(query, subj, type="any",

+ resolution="none")

> divide <- countGenomicOverlaps(query, subj, type="any",

+ resolution="divide")

> uniqueDisjoint <- countGenomicOverlaps(query, subj, type="any",

+ resolution="uniqueDisjoint")

> res_any <- data.frame(

+ none = values(unlist(none))[["hits"]],

+ divide = round(values(unlist(divide))[["hits"]], 2),

+ uniqueDisjoint = values(unlist(uniqueDisjoint))[["hits"]])

> rownames(res_any) <- paste("F", seq_len(16), sep="")

> res_any

none divide uniqueDisjoint

F1 1.0 1.00 1.0

5

F2 1.0 1.00 1.0

F3 0.0 0.50 0.0

F4 0.0 0.50 0.0

F5 0.0 0.50 0.0

F6 0.0 0.50 0.0

F7 0.0 0.50 0.0

F8 0.0 0.50 0.0

F9 0.0 0.33 1.0

F10 0.0 0.33 0.0

F11 0.0 0.33 0.0

F12 1.0 1.00 1.0

F13 0.5 0.50 0.5

F14 0.5 0.50 0.5

F15 0.5 0.50 0.5

F16 0.5 0.50 0.5

4.2 type = “within”

When type = “within” is chosen, the resolution option “uniqueDisjoint” is
not available. “uniqueDisjoint” resolves multi-hits by creating disjoint regions
of all overlapping features and removing those regions that are common (i.e.,
where features overlap). If a read was identified as a multi-hit read with type

= “within” then by definition it falls in the common region that resolution

“uniqueDisjoint” discards. Therefore it does not make sense to resolve type

“within” with resolution “uniqueDisjoint”.

> none <- countGenomicOverlaps(query, subj, type="within", resolution="none")

> divide <- countGenomicOverlaps(query, subj, type="within", resolution="divide")

> res_within <- data.frame(none = values(unlist(none))[["hits"]],

+ divide = values(unlist(divide))[["hits"]])

> rownames(res_within) <- paste("F", seq_len(16), sep="")

> res_within

none divide

F1 0.0 0.0

F2 1.0 1.0

F3 0.0 0.0

F4 0.0 0.0

F5 0.0 0.0

F6 0.0 0.0

F7 0.0 0.5

F8 0.0 0.5

F9 0.0 0.0

F10 0.0 0.0

F11 0.0 0.0

F12 1.0 1.0

6

F13 0.5 0.5

F14 0.5 0.5

F15 0.5 0.5

F16 0.5 0.5

Comparing our results with those of the type “any” we see that F1 is now
not hit. When resolution is “divide” we hit F7 and F8 in gene G5 but not
the features in genes G3 and G4. Results for the split reads are the same as for
type “any” because all read fragments fall within the feature they hit.

7

	Introduction
	Data
	countGenomicOverlaps Decision Logic
	Examples
	type = ``any''
	type = ``within''

