Externalized expression plus genotype data structures

VJ Carey
August 25, 2011

1 Introduction

The smlSet class of GGBase has served for some time as a holistic representation of
an expression genetics experiment. As SNP panels have grown to 8 million plus, it is
impractical to employ unified containers for such experiments.

This document describes the first phase of externalizing large genotype data resources
for expression genetics data structures. Given an smlSet instance, the externalize()
function will create an R source package with chromosome-specific files of genotype data
in snpStats::SnpMatrix instances. When this package is installed and loaded, the
getSS function will collect information necessary to construct an smlSet with a specified
number of chromosomes.

2 HapMap Phase 1I for expression genetics

The Bioconductor GGdata package has represented the Phase II HapMap data for
CEPH/CEU cohort as a single smlSet instance. Loading the data for use on an 8GB
macbook pro takes

> library(GGdata)
Loading required package: illuminaHumanvl.db
> unix.time(data(hmceuB36))
user system elapsed
40.309 0.729 41.581

At this point we can access 4 million SNP for each subject very easily, but we seldom
need to do this atomically; we would be just as happy to step across chromosomes and
so the slow load and large memory footprint

> gc() # after above

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 7166465 382.8 10591793 565.7 7167437 382.8
Vcells 73027380 557.2 80745864 616.1 73028403 557.2



are inessential results of a holistic representation approach that is not effective with very
large SNP panels.
The externalize() function can be called

> externalize(hmceuB36, "ggdPack")
now install ggdPack
NULL

After installation we can use
library(ggdPack)
which prints the message

To get a tailored smlSet, use getSS("ggdPack", [chrvec])
available chromosomes are named 1 10 ... X Y

We use getSS

> unix.time(ggl <- getSS("ggdPack", "1"))
user system elapsed
3.514 0.090 3.605
> ggl
SnpMatrix-based genotype set:
number of samples: 90
number of chromosomes present: 1
annotation: illuminaHumanvl.db
Expression data dims: 47293 x 90
Phenodata: An object of class "AnnotatedDataFrame"

sampleNames: NA0O6985 NA06991 ... NA12892 (90 total)
varLabels: famid persid ... male (7 total)
varMetadata: labelDescription

> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3504115 187.2 4953636 264.6 3885278 207.5
Vcells 10444243 79.7 12242489 93.5 11388329 86.9

and see rapid access and a relatively small footprint.
We can easily visit all chromosomes, as this naive code illustrates:

> allc = as.character(1:22)
> unix.time (1l <- lapply(allc, function(x) getSS("ggdPack", x)))

user system elapsed
68.533 1.493 70.131
> gc()

used (Mb) gc trigger (Mb) max used (Mb)

Ncells 7053675 376.8 10591793 565.7 8189107 437.4
Vcells 163291667 1245.9 173709474 1325.3 165150995 1260.1



The memory footprint of growing the entire list is unpleasant. Also, there are excessive
copies of the expression data (one for each chromosome).
Instead, if we process and then discard:

> unix.time(1ll <- lapply(allc, function(x) {tmp <- getSS("ggdPack", x); NULL}))
user system elapsed
44 .805 0.826 45.743
> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3148343 168.2 5241317 280.0 4169255 222.7
Vcells 1828070 14.0 9260197 70.7 11572531 88.3

all is well.



	Introduction
	HapMap Phase II for expression genetics

