segmentSeq

October 25, 2011

SL Example data selected from a set of lllumina sequencing experiments.

Description

Each of the files ’SL9’, ’SL10’, °SL26’ and *SL32’ represents a subset of the data from an Illumina
sequencing experiment. These data consist of alignment information; the tag sequence, and the
number of times that each sequence is observed.

Usage

SL

Format

A set of tab-delimited files containing data from four sequencing experiments.

Source

In-house Illumina sequencing experiments

alignmentData-class
Class "alignmentData"

Description

The alignmentData class records information about a set of alignments of high-throughput se-
quencing data to a genome. Details include the alignments themselves, details on the chromosomes
of the genome to which the data are aligned, and information on the libraries from which the data
come.

Objects from the Class

Objects can be created by calls of the form new ("alignmentData", ...),butmore usually
by using the processTags function.

2 alignmentData-class

Slots

alignments: Object of class "data.frame". Stores information about the alignments. See
Details.

data: Object of class "matrix". For each alignment described in the alignments slot, con-
tains the number of times the alignment is seen in each sample.

libnames: Object of class "character". The names of the libraries for which alignment data
exists.

libsizes: Object of class "numeric™". The library sizes (see Details) for each of the libraries.

chrs: Object of class "data.frame". Should contain two columns ’chr’ and ’len’ giving the
chromosome names and lengths of each chromosome respectively.

replicates: Object of class "numeric". Replicate information for each of the libraries. See
Details.

Details

The alignments slot is the key element of this class. Thisisa "data.frame" object that con-
tains the columns ’chr’, ’start’, ’end’, duplicated’, ’tag’, count’, ’sampleNumber’ and ’replicate’.
Columns "chr’, ’start’ and "end’ define the chromosome, start and end point of the tag. *duplicated’
indicates whether or not the tag uniquely matches this location (FALSE) or whether the tag matches
some other location on the genome (TRUE). The ’tag’ column gives the sequence of the tag as a
factor. The count’ column gives the number of times the tag appears in the library. Which library is
involved is specified by the ’sampleNumber’ column, and the ’replicate’ column gives the replicate
group that this library is associated with.

The library sizes, defined in the 1ibsizes slot, provide some scaling factor for the observed
number of counts of a tag in different samples. One method of calculating this, for example, would
be to take the number of sequences read from the high-throughput sequencing machine that align
to the reference genome.

The replicates slot should take the form of a vector of integers such that if and only if the

ith sample is a replicate of the jth sample then @replicates[i] == @replicates[]j].In
addition, values in the replicates slot should take values from 1 : n where n is the number of replicate
groups.
Methods
[signature (x = "alignmentData"): ..
dim signature(x = "alignmentData"): ...
initialize signature (.Object = "alignmentData"): ...
show signature (object = "alignmentData"): ...
Note

Methods 'new’, ’dim’, ’[’, cbind’ and ’show’ have been defined for these classes.

Author(s)

Thomas J. Hardcastle

classifySeg 3

See Also

processTags, which will produce a alignmentData’ object from appropriately format-
ted tab-delimited files. processAD, which will convert an ’ alignmentData’ object into a
’segData’ object for segmentation.

Examples

Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1le6)
Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- processTags (file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =
chrlens)
classifySeg A method for defining a genome segment map by an empirical
Bayesian
Description

This function acquires empirical distributions of sequence tag density from an already existing (or
heuristically defined) segment map. It uses these to classify potential segments as either segments
or nulls in order to define a new (and improved) segment map.

Usage

classifySeg(sD, cD, aD, lociCutoff = 0.9, nullCutoff = 0.9, subRegion =
NULL, getLikes = TRUE, 1R = FALSE, samplesize = le5, cl, ...)

Arguments
sD A segData object derived from the "aD’ object.
cD A countData object containing an already existing segmentation map, or
NULL.
ab An alignmentData object.

lociCutoff The minimum posterior likelihood of being a locus for a region to be treated as
a locus.

4 classifySeg

nullCutoff The minimum posterior likelihood of being a null for a region to be treated as a

null.

subRegion A ’data.frame’ object defining the subregions of the genome to be seg-
mented. If NULL (default), the whole genome is segmented.

getLikes Should posterior likelihoods for the new segmented genome (loci and nulls) be
assessed?

1R If TRUE, locus and null calls are made on the basis of likelihood ratios rather

than posterior likelihoods. Not recommended.

samplesize The sample size to be used when estimating the prior distribution of the data
with the getPriors.NB function.

cl A SNOW cluster object, or NULL. See Details.

Any additional parameters to be passed to heuristicSeg.

Details

This function acquires empirical distributions of sequence tag density from the segmentation map
defined by the "cD’ argument (if ’cD = NULL’ then the heuristicSeg function is used to define
a segmentation map. It uses these empirical distributions to acquire posterior likelihoods on each
potential segment being either a true segment or a null region. These posterior likelihoods are then
used to define the segment map.

Value

A postSeg object, containing the segmentation map discovered.

Author(s)

Thomas J. Hardcastle

References

Hardcastle T.J., and Kelly, K.A. (2010). Genome Segmentation From High-Throughput Sequencing
Data. In preparation.

See Also

heuristicSegq fast heuristic alternative to this function. plotGenome, a function for plotting
the alignment of tags to the genome (together with the segments defined by this function). baySeq,
a package for discovering differential expression in countData objects.

Examples
Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1leo6)
Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

filterSegments 5

libnames <- c¢c("SL9", "SL10", "SL26", "SL32")
replicates <- c¢(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- processTags (file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =
chrlens, gap = 200)

Process the alignmentData object to produce a 'segData' object.

sD <- processAD(alignData, cl = NULL)

Use the classifySeg function on the segData object to produce a postSeg object.

pS <- classifySeg(aD = alignData, sD = sD, subRegion = data.frame(chr = ">Chrl", start =
filterSegments Filters an set of segments (given an ordering on the segments) such
Description

This function takes a set of segments, plus an ordering on that set, and filters the set such that no
segments overlap, preferentially keeping the segments first in ordering.

Usage
filterSegments (segs, orderOn, ...)
Arguments
segs A ’data.frame’ containing columns ’chr’, ’start’ and ’end’.
orderOn An vector of some statistic that can be used to create an ordering on the ’segs’
data.frame.
... Additional parameters that can be passed to order when ordering the segments
using the *orderOn’ parameter.
Details

This function takes the set of segments defined by the data.frame ’segs’, together with some
statistic (e.g., likelihood of similarity with background) defined by the *orderOn’ vector. Additional
options can be passed to the *order’ function (for example, relating to the direction of the ordering)
through the ’...” parameter.

The function takes the segment first in the ordering and discards any segments that overlap with
it. It then proceeds to the next remaining segment in the ordering and discards any segments that
overlap with this. This process continues until we have a set of non-overlapping segments.

This function can be used to create a random sample of non-overlapping segments by providing a
randomly chosen set of values for the *orderOn’ vector.

6 findChunks

Value

A vector giving the rows of the data . frame object "segs’ which form a non-overlapping set.

Author(s)

Thomas J. Hardcastle

Examples

Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1leo6)
Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- dir(datadir, pattern = ".txt", full.names = TRUE)

Establish the library names and replicate structure.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c¢c("SL9", "SL10", "SL26", "SL32")
replicates <- c¢(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- processTags (file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =
chrlens, gap = 200)

Process the alignmentData object to produce a 'segData' object.

sD <- processAD(alignData, cl = NULL)

Create random sampling of non-overlapping segments for chromosome 1 of sD object.

filterSegments (subset (sD@segInfo, select = c(chr, start, end)), runif (nrow(sD)))
findChunks Identifies *chunks’ of data within an ’alignmentData’ object.
Description

This function identifies chunks of data within an ’alignmentData’ object by looking for gaps within
the alignments; regions where no tags align. If we assume that a locus should not contain a gap of
sufficient length, then we can separate the analysis of the data into chunks defined by these gaps,
reducing the complexity of the problem of segmentation.

findChunks 7

Usage

findChunks (aD, gap)

Arguments

ab An alignmentData object.

gap The minimum length of a gap across which it is assumed that no locus can exist.
Details

This function is called by the processTags function but may usefully be called again if filtering
of an 1inkS4class{alignmentData} object has altered the data present, or to increase the
computational effort required for subsequent analysis. The lower the *gap’ parameter used to define
the chunks, the faster any subsequent analyses will be.

Value

A modified alignmentData object, in which the *@alignments’ slot contains columns ’chunk’
and ’chunkDup’, identifying the chunk to which the alignment belongs and whether the alignment
of the tag is duplicated within the chunk respectively.

Author(s)

Thomas J. Hardcastle
Examples
Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1leb6)
Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c¢(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- processTags (file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =
chrlens, gap = 200)

Filter the data on number of matches of each tag to the genome
alignData <- alignDatalalignData@alignments$matches < 5,]

Redefine the chunking structure of the data.

alignData <- findChunks (alignData, gap = 200)

8 getCounts

getCounts Gets counts from alignment data from a set of genome segments.

Description
A function for extracting count data from an ’ alignmentData’ object given a set of segments
defined on the genome.

Usage

getCounts (segments, aD, preFiltered = FALSE, cl)

Arguments
segments A ’data.frame’ object which defines a set of segments for which counts are
required.
aD An alignmentData object.

preFiltered The function internally cleans the data; however, this may not be needed and
omitting these steps may save computational time. See Details.

cl A SNOW cluster object, or NULL. See Details.

Details

The function extracts count data from alignmentData object ’aD’ given a set of segments. The
non-trivial aspect of this function is that at a segment which contains a tag that matches to multiple
places in that segment (and thus appears multiple times in the alignmentData object should
count it only once.

If *preFiltered = FALSE’ then the function allows for missing (NA) data in the segments, unordered
segments and duplicated segments. If the segment list has no missing data, is already ordered, and
contains no duplications, then computational time can be saved by setting *preFiltered = TRUE’.

A ’cluster’ object (package: snow) is recommended for parallelisation of this function when
using large data sets. Passing NULL to this variable will cause the function to run in non-parallel
mode.

In general, this function will probably not be accessed by the user as the processAD function
includes a call to ’getCounts’ as part of the standard processing of an alignmentData object
into a segData object.

Value
A matrix, each column of which corresponds to a library in the alignmentData object aD’ and
each row to the segment defined by the corresponding row in the data.frame ’segments’.

Author(s)

Thomas J. Hardcastle

See Also

processAD

getOverlaps 9

Examples

Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1leb6)
Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c¢c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- processTags (file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =

chrlens, gap = 200)
Get count data for three arbitrarily chosen segments on chromosome 1.

getCounts (segments = data.frame(chr = ">Chrl", start = c¢(1,100,2000), end =
c(40, 3000, 5000)), ab = alignbata, cl = NULL)

getOverlaps Identifies overlaps between two sets of genomic coordinates

Description

This function identifies which of a set of genomic segments overlaps with another set of coordi-
nates; either with partial overlap or with the segments completely contained within the coordinates.
The function is used within the ’segmentSeq’ package for various methods of constructing a seg-
mentation map, but may also be useful in downstream analysis (e.g. annotation analyses).

Usage

getOverlaps (coordinates, segments, overlapType = "overlapping", whichOverlaps =

Arguments

coordinates A data.frame object, with columns ’chr’, ’start’ and ’end’, defining the set
of coordinates with which the segments may overlap.

segments A data. frame object, with columns ’chr’, ’start’ and ’end’, defining the set
of segments which may overlap within the coordinates.

overlapType Which kind of overlaps are being sought? Can be one of ’overlapping’, ’con-
tains’ or “within’. See Details.

10 getOverlaps

whichOverlaps
If TRUE, returns the ’segments’ overlapping with the ’coordinates’. If FALSE,
returns a boolean vector specifying which of the ’coordinates’ overlap with the

’segments’.
cl A SNOW cluster object, or NULL. See Details.
Details
IfoverlapType = "overlapping" then any overlap between the ’coordinates’ and the ’seg-
ments’ is sufficient. If overlapType = "contains" then a region defined in ’coordinates’

must completely contain at least one of the ’segments’ to count as an overlap. If overlapType
= "within" then aregion defined in ’coordinates’ must be completely contained by at least one
of the ’segments’ to count as an overlap.

A "cluster’ object (package: snow) may be used for parallelisation of this function when ex-
amining large data sets. Passing NULL to this variable will cause the function to run in non-parallel
mode.

Value

If whichOverlaps = TRUE, then the function returns a list object with length equal to the
number of rows of the ’coordinates’ argument. The ’i’th member of the list will be a numeric
vector giving the row numbers of the ’segments’ data.frame which overlap with the ’i’th row of the
’coordinates’ data.frame, or NA if no segments overlap with this coordinate region.

If whichOverlaps = FALSE, then the function returns a boolean vector with length equal to
the number of rows of the ’coordinates’ argument, indicating which of the regions defined in coor-
dinates have the correct type of overlap with the segments’.

Author(s)

Thomas J. Hardcastle

Examples

Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1le6)
Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SLl10", "SL26", "SL32")
replicates <- c¢(1,1,2,2)

Process the files to produce an 'alignmentData' object.
alignData <- processTags(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =

chrlens, gap = 200)

Find which tags overlap with an arbitrary set of coordinates.

heuristicSeg 11

getOverlaps (coordinates = data.frame(chr = ">Chrl", start =
c(1,100,2000), end = c(40, 3000, 5000)), segments =
alignData@alignments, overlapType = "overlapping", whichOverlaps = TRUE,
cl = NULL)
heuristicSeg A (fast) heuristic method for creation of a genome segment map.
Description

This method identifies by heuristic methods a set of loci from a ’segData’ object. It does this by
identifying within replicate groups regions of the genome that satisfy the criteria for being a locus
and have no region within them that satisfies the criteria for being a null. These criteria can be
defined by the user or inferred from the data.

Usage

heuristicSeg(sD, aD, bimodality = TRUE, RKPM = 30, gap = 100, subRegion
= NULL, getlLikes = TRUE, verbose = TRUE, cl)

Arguments
aD An alignmentData object.
sD A segData object derived from the *aD’ object.
bimodality Should the criteria for loci be inferred from the (likely) bimodaly structure of
the data?
RKPM What RKPM (reads per kilobase per million reads) distinguishes between a lo-
cus and a null region? Ignored if bimodality = TRUE.
gap What is the minimum length of a null region? Ignored if bimodality = TRUE.
subRegion A "data.frame’ object defining the subregions of the genome to be seg-
mented. If NULL (default), the whole genome is segmented.
getLikes Should posterior likelihoods for the new segmented genome (loci and nulls) be
assessed?
verbose Should the function be verbose? Defaults to TRUE.
cl A SNOW cluster object, or NULL. See Details.
Details

A ’cluster’ object (package: snow) may be used for parallelisation of parts of this function
when examining large data sets. Passing NULL to this variable will cause the function to run in
non-parallel mode.

Value

A countData object, containing count information on all the segments discovered.

12 lociLikelihoods

Author(s)

Thomas J. Hardcastle

References

Hardcastle T.J., and Kelly, K.A. (2010). Genome Segmentation From High-Throughput Sequencing
Data. In preparation.

See Also

classifySegq, an alternative approach to this problem using an empirical Bayes approach to
classify segments. plotGenome, a function for plotting the alignment of tags to the genome (to-
gether with the segments defined by this function). baySeq, a package for discovering differential
expression in countData objects.

Examples
Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1le6)
Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c¢(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- processTags (file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =
chrlens, gap = 200)

Process the alignmentData object to produce a 'segData' object.

sD <- processAD(alignData, cl = NULL)

Use the segData object to produce a segmentation of the genome.

segD <- heuristicSeg(sD = sD, aD = alignData, subRegion = data.frame(chr = ">Chrl", start
1, end = 1le5), c¢l = NULL)

lociLikelihoods Evaluates the posterior likelihoods of each region defined by a

Description

An empirical Bayesian approach that takes a segmentation map and uses this to bootstrap posterior
likelihoods on each region being a locus for each replicate group.

lociLikelihoods

Usage

13

locilLikelihoods (cD, aD, newCounts = FALSE, bootStraps = 1,

Arguments

cD
aD

newCounts

bootStraps

inferNulls

naszero

cl

Details

inferNulls = TRUE, nasZero = FALSE, cl)

A countData or postSeg object that defines a segmentation map.
An alignmentData object.

Should new counts be evaluated for the segmentation map in ’cD’ before calcu-
lating loci likelihoods? Defaults to FALSE

What level of bootstrapping should be carried out on the inference of posterior
likelihoods? See getLikelihoods.NB.

Should null regions be inferred from the gaps between segments defined by the
cD’ object?

If FALSE, any locus with a posterior likelihood "NA’ in the existing segmenta-

tion map is treated as a null region for the first bootstrap; If TRUE, it is ignored
for the first bootstrap.

A SNOW cluster object, or NULL. See Details.

A ’cluster’ object (package: snow) may be used for parallelisation of this function when ex-
amining large data sets. Passing NULL to this variable will cause the function to run in non-parallel

mode.

Value

A postSeg object.

Author(s)

Thomas J. Hardcastle

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1leo6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SLl10", "SL26", "SL32")
replicates <- ¢ (1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- processTags (file = libfiles, dir = datadir, replicates =

replicates,

libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =

14 mergeSD

chrlens, gap = 200)
Process the alignmentData object to produce a 'segData' object.
sD <- processAD(alignData, cl = NULL)

Use the segData object to produce a segmentation of the genome, but
without evaluating posterior likelihoods.

segD <- heuristicSeg(sD = sD, aD = alignData,
subRegion = data.frame (chr= ">Chrl", start = 1, end = 1leb),
getLikes = FALSE, cl = NULL)

Use the postSeg function to evaluate the posterior likelihoods directly.

postSeg <- locilLikelihoods (segD, aD = alignData, bootStraps = 5,
inferNulls = TRUE, cl = NULL)

mergeSD Merges multiple 'segData’ objects.

Description

This file takes two or more segData objects, which may have different co-ordinates defined in the
> @segInfo’ slot and merges them into one for subsequent analysis. This is not quite equivalent to
’cbind’ as it may change the co-ordinate structure of the data.

Usage
mergeSD (..., aD, replicates, gap = 200, cl = NULL)
Arguments
. .. Two or more ’segData’ objects.
aD An ’alignmentData’ object that describes (in the same order) all samples that

appear in the ’segData’ objects described in ’...”

replicates The replicate structure of the new "segData’ object’.

gap The maximum gap between aligned tags that should be allowed in constructing
potential segments. See Details.
cl A SNOW cluster object, or NULL.
Value

A ’segData’ object.

Author(s)

Thomas J. Hardcastle

plotGenome 15

Examples

Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1leo6)
Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SLl10", "SL26", "SL32")
replicates <- c¢(1,1,2,2)

Process the first two files to produce an 'alignmentData' object.

alignDatal2 <- processTags(file = libfiles[1:2], dir = datadir, replicates =
replicates[1:2], libnames = libnames[1:2], chrs = c(">Chrl", ">Chr2"), chrlens =
chrlens, gap = 200)

Process the alignmentData object to produce a 'segData' object.
sD12 <- processAD(alignDatal2, cl = NULL)

Repeat with the third and fourth files

alignData34 <- processTags(file = libfiles[3:4], dir = datadir, replicates =
replicates[3:4], libnames = libnames[3:4], chrs = c(">Chrl", ">Chr2"), chrlens =
chrlens, gap = 200)

sD34 <- processAD(alignData34, cl = NULL)

Bind the two alignData objects together
alignData <- cbind(alignDatal2, alignData34)

Merge the two segData objects
sD <- mergeSD(sD12, sD34, aD = alignData, replicates = c(1,1,2,2), gap =200, cl = NULL)

Note missing data in new 'segData' object.
sD

plotGenome Plots the alignment of sequence tags on the genome given an

Description
Plots the data from an alignmentData object for a given set of samples. Can optionally include
in the plot the annotation data from a countData object containing segment information.

Usage

plotGenome (aD, sD, chr = 1, limits = c(0, le4), samples = NULL,
plotType = "chunk", plotDuplicated FALSE, ...)

16 plotGenome
Arguments
aD An alignmentData object.
sD A countData object (produced by the heuristicSegor classifySeqg
function and therefore) containing appropriate annotation information. Can be
omitted if this annotation is not known/required.
chr The name of the chromosome (translated into / character’ type if given in
any other form) to be plotted. Should correspond to a chromosome name in the
alignmentData object.
limits The start and end point of the region to be plotted.
samples The sample numbers of the samples to be plotted. If NULL, plots all samples.
plotType The manner in which the plot is created. Currently only plotType = pileup’
is supported.
plotDuplicated
If TRUE, then any duplicated sequence tags (i.e., sequence tags that match to
multiple places in the genome) in the ’aD’ object will be plotted on a negative
scale for each sample. Defaults to FALSE.
Any additional graphical parameters for passing to plot.
Value

Plotting function.

Author(s)

Thomas J. Hardcastle

See Also

alignmentData, heuristicSeqg, classifySeqg

Examples

Define the chromosome lengths for the genome of interest.

chrlens <- c(2e6, 1leo6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SLl10", "SL26", "SL32")
replicates <- ¢ (1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- processTags (file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =

postSeg-class 17

chrlens, gap = 200)

Plot the alignments to the genome on chromosome 1 between bases 1 and 10000

plotGenome (alignData, chr = ">Chrl", limits = c (1, 1leb))
postSeg-class baySeq - classes
Description

The post Seg class is identical to the countData class defined in the ’baySeq’ package, but has
a different structure in the * @posteriors’ slot and so is given a different class to avoid confusion.

Slots

Objects of the " postSeg’ class should contain the following components:

data: Count data (matrix).

libsizes: Vector of library size for each sample.

groups: Group (model) structure to test on the data (list).

annotation: Annotation data for each count (data.frame).

priorType: Character string describing the type of prior information available in slot ' priors’.

priors: Prior parameter information.

posteriors: Estimated posterior likelihoods for each replicate group of a potential segment being a null (matrix).
estProps: Estimated proportion of tags belonging to each group (numeric). Calculated by the functions described
nullPosts: If calculated, the posterior likelihoods for the data having no true expression of any kind.

seglens: Lengths of segments containing the counts described in data. A matrix, but may be initialised with a

Details

The seglens slot describes, for each row of the data object, the length of the ’segment’ that
contains the number of counts described by that row. For example, if we are looking at the number
of hits matching genes, the seglens object would consist of transcript lengths. Exceptionally, we
may want to use different segment lengths for different samples and so the slot takes the form of a
matrix. If the matrix has only one column, it is duplicated for all samples. Otherwise, it should have
the same number of columns as the *@data’ slot. If the slot is the empty matrix, then it is assumed
that all segments have the same length.

Methods

Methods 'new’, ’dim’, ’[* and ’show’ have been defined for this class.

Author(s)

Thomas J. Hardcastle

18 processAD

processAD Processes an ’alignmentData’ object into a ’segData’ object for

Description

In order to discover segments of the genome with a high density of sequenced data, a ’segData’
object must be produced. This is an object containing a set of potential segments, together with the
counts for each sample in each potential segment.

Usage

processAD (aD, gap = NULL, verbose = TRUE, cl)

Arguments
aD An alignmentData object.
gap The maximum gap between aligned tags that should be allowed in constructing
potential segments. See Details.
verbose Should processing information be displayed? Defaults to TRUE.
cl A SNOW cluster object, or NULL. See Details.
Details

This function takes an alignmentData object and constructs a segData object from it. The
function creates a set of potential segments by looking for all locations on the genome where the
start of a region of overlapping alignments exists in the alignmentData object. A potential
segment then exists from this start point to the end of all regions of overlapping alignments such
that there is no region in the segment of at least length ’gap’ where no tag aligns. The ' gap’
argument thus defines the maximum gap that can exist between tags in a segment of high density of
alignments. The number of potential segments can therefore be increased by increasing this limit,
or (usually more usefully) decreased by decreasing this limit in order to save computational effort.

The *gap’ argument is now by default specified in the processTags function used to create the
’aD’ object, and so "gap’ can be left as NULL providing this has been done.

A " cluster’ object (package: snow) is recommended for parallelisation of this function when
using large data sets. Passing NULL to this variable will cause the function to run in non-parallel
mode.

Value

A segData object.

Author(s)

Thomas J. Hardcastle

See Also

getCounts, which produces the count data for each potential segment. heuristicSeg and
classifySegq, which segment the genome based on the segData object produced by this func-
tion segData alignmentData

processTags 19

Examples

Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1le6)
Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c("SL9", "SLl10", "SL26", "SL32")
replicates <- c¢(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- processTags(file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =
chrlens, gap = 200)

Process the alignmentData object to produce a 'segData' object.

sD <- processAD (alignData, gap = 200, cl = NULL)

processTags Convenience function for processing tab-delimited files in a certain

Description

This function takes files in a text format with defined columns (see Details) that describe the align-
ment of sequencing tags from different libraries.

Usage
processTags (files, dir = ".", replicates, libnames, chrs, chrlens, cols, header
TRUE, gap = 200, verbose = TRUE, ...)
Arguments
files Filenames of the files to be read in.
dir Directory (or directories) in which the files can be found.

replicates Replicate information on the libraries. See Details.

libnames Names of the libraries defined by the file names.

chrs Chromosome names (as ’ character’) used in the alignment files.
chrlens Lengths of the chromosomes to which the alignments were made.

cols A named character vector which describes which column of the input files con-

tains which data. See Details.
header Do the input files have a header line? Defaults to TRUE. See Details.

20

processTags

gap The maximum gap between aligned tags that should be allowed in constructing
potential segments. See Details.

verbose Should processing information be displayed? Defaults to TRUE.

Additional parameters to be passed to read.table.

Details

The purpose of this function is to take a set of plain text files and produce an ’ alignmentData’
object. The function uses read.table to read in the columns of data in the files and so by
default columns are separated by any white space. Alternative separators can be used by passing
the appropriate value for ’ sep’ to read.table.

The files may contain columns with column names ’ chr’, ' tag’,’ count’,’ start’,’ end’,
in which case the ’cols’ argument can be ommitted and "header’ set to TRUE. If this is the case,
there is no requirement for all the files to have the same ordering of columns (although all must
have these column names).

Alternatively, the columns of data in the input files can be specified by the ’cols’ argument in
the form of a named character vector (e.g; ' cols = c(chr = 1, tag = 2, count = 3,
start = 4, end = 5)’ would cause the function to assume that the first column contains
the chromosome information, the second column contained the tag information, &c. If ’cols’ is
specified then information in the header is ignored. If "cols’ is missing and "header = FALSE’ then
it is assumed that the data takes the form described in the example above.

The ' tag’ and ’ count’ columns may optionally be omitted from either the file column headers
or the ’cols’ argument. If the tag’ column is omitted, then the data will not account for duplicated
sequences when estimating the number of counts in loci. If the * count’ column is omitted, the
"processTags’ function will assume that the file contains the alignments of each copy of each
sequence tag, rather than an aggregated alignment of each unique sequence. The unique alignments
will be identified and the number of sequence tags aligning to each position will be calculated.

The replicates argument should take the form of a vector of integers such that if and only if
the ith library is a replicate of the jth library then @replicates[i] == @replicates[]].
In addition, values in the replicates slot should take values from 1:n where n is the number of
replicate groups.

Value

An alignmentData object.

Author(s)

Thomas J. Hardcastle

See Also

alignmentData

Examples

Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1leo6)

Define the files containing sample information.

segData-class 21

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c¢c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an 'alignmentData' object.
alignData <- processTags (file = libfiles, dir = datadir, replicates =

replicates, libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =
chrlens, gap = 200)

segData-class Class "segData"

Description

The segData class contains data about potential segments on the genome containing data about
each potential subsegment.

Objects from the Class

Objects can be created by calls of the form new ("segData", ..., seglens). However,
more usually they will be created by calling the processAD function.

Slots

data: Object of class "matrix". Contains the number of counts observed for each sample in
each potential segment.

leftData: Object of class "matrix". Contains the number of counts observed for the region
to the left of the potential segment.

rightData: Object of class "matrix". Contains the number of counts observed for the region
to the right of the potential segment.

libsizes: Object of class "numeric™". The library sizes for each sample.

chrs: Object of class "data.frame". Should contain two columns ’chr’ and ’len’ giving the
chromosome names and lengths of each chromosome respectively.

replicates: Object of class "numeric". The replicate structure for the samples. This should
be a vector of consecutive integers starting with 1.

priorType: Character string describing the type of prior information available inslot " priors’.

priors: Prior parameter information, estimated from the data (or otherwise acquired). See De-
tails.

segInfo: Object of class "data.frame". A data.frame containing the following columns;
“chr’, “start’, ’end’, ’leftSpace’, ‘rightSpace’. See Details.

22 segData-class

Details

The @segInfo slot contains information on each of the potential segments; specifically, chro-
mosome, start and end of the segment, together with the distance from each segment to the next
segment on the left and right hand sides. These data are contained in the columns ’chr’, ’start’,
’end’, ’leftSpace’, 'rightSpace’ respectively. Each row of the @segInfo slot should correspond to
the same row of the @data slot.

In almost all cases objects of this class should be produced by the processAD function.

Methods

Methods 'new’, ’dim’, ’[* and ’show’ have been defined for this class.

Author(s)

Thomas J. Hardcastle

See Also
processAD, the function that will most often be used to create objects of this class. classifySeg,
an empirical Bayesian method for defining a segmentation based on a segData object.

Examples

Define the chromosome lengths for the genome of interest.
chrlens <- c(2e6, 1leo6)
Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

Establish the library names and replicate structure.

libnames <- c¢c("SL9", "SL10", "SL26", "SL32")
replicates <- c(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- processTags (file = libfiles, dir = datadir, replicates =
replicates, libnames = libnames, chrs = c(">Chrl", ">Chr2"), chrlens =
chrlens, gap = 200)

Process the alignmentData object to produce a 'segData' object.

sD <- processAD(alignData, cl = NULL)

Estimate prior parameters for the segData object.

segmentSeq-package 23

segment Seq-package Segmentation of the genome based on multiple samples of high-
throughput

Description

The segmentSeq package is intended to take multiple samples of high-throughput data (together
with replicate information) and identify regions of the genome which have a (reproducibly) high
density of tags aligning to them.

Details
Package: segmentSeq
Type: Package
Version: 0.0.2
Date: 2010-01-20

License: GPL-3
LazyLoad: yes
Depends: baySeq, ShortRead

To use the package, we construct an alignmentData object (either explicitly or using the processTags
function). containing the alignment information for each sample. We then use the processAD
function to identify all potential subsegments of the data and the number of tags that align to

these subsegments. We then empirically determine the prior parameters of the data using the
getPriors function, and finally identify all segments to which a high density of tags align in

at least one replicate group using the segment Seq function. The output from this segmentation

is designed to be usable by the baySeq package.

The package (optionally) makes use of the ’snow’ package for parallelisation of computationally
intensive functions. This is highly recommended for large data sets.

See the vignette for more details.

Author(s)

Thomas J. Hardcastle

Maintainer: Thomas J. Hardcastle <tjh48 @cam.ac.uk>

References

Hardcastle T.J., and Kelly, K.A. (2010). Genome Segmentation from High-Throughput Sequencing
Data. In submission.

See Also

baySeq

Examples

Define the chromosome lengths for the genome of interest.

24

chrlens <- c(2e6, 1le6)

Define the files containing sample information.

datadir <- system.file("extdata", package = "segmentSeqg")
"SL32.txt")

libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt",

Establish the library names and replicate structure.

libnames <- c("SL9", "SL10", "SL26", "SL32")
replicates <- c¢(1,1,2,2)

Process the files to produce an 'alignmentData' object.

alignData <- processTags (file = libfiles, dir =

replicates, libnames = libnames, chrs = c(">Chrl",

chrlens, gap = 200)
Process the alignmentData object to produce a

sD <- processAD(alignData, cl = NULL)

datadir,

'segData’

segmentSeq-package

replicates =

">Chr2"), chrlens =

object.

Index

*Topic classes
alignmentData-class, 1
postSeg-class, 17
segData-class, 21

+Topic classif
classifySeq,3
heuristicSeq, 11

*Topic datasets
SL, 1

xTopic files
processTags, 19

+Topic hplot
plotGenome, 15

*Topic manip
classifySeq,3
filterSegments,5
findChunks, 6
getCounts, 8
getOverlaps, 9
heuristicSeq, 11
locilLikelihoods, 12
mergeSD, 14
processAD, 18

*Topic misc
filterSegments, 5

+Topic package
segmentSeg-package, 23

[,alignmentData, ANY, ANY-method

(alignmentData-class), |
[,alignmentData-method
(alignmentData-class), 1

[, postSeg-method (postSeg-class),
17

[, segData, ANY, ANY-method
(segbata-class), 21

[, segData-method (seghata-class),
21

alignmentData, 3,7, 8,11, 13, 16, 18, 20,
23

alignmentData
(alignmentData-class), 1

alignmentData-class, 1

25

baySeq, 4, 12,23

cbind (alignmentData-class), 1
cbind, alignmentData-method
(alignmentData-class), 1
classifySeq,3,12,16, 18,22
countData, 3, 4, 11-13, 16, 17

dim,alignmentData-method
(alignmentData-class), 1

dim, postSeg-method
(postSeg-class), 17

dim, segData-method
(segbata-class), 21

filterSegments,5
findChunks, 6

getCounts, 8, I8
getLikelihoods, 17
getLikelihoods.NB, I3
getOverlaps,9
getPriors, 23
getPriors.NB, 4

heuristicSeq,4, 11, 16, 18

initialize,alignmentData-method
(alignmentData-class), 1

initialize, segData-method
(seghData-class), 21

lociLikelihoods, 12
mergeSD, 14

plotGenome, 4, 12, 15
postSeq, 4, 13

postSeqg (postSeg—-class), 17
postSeg-class, 17
processAD, 3, 8, 18, 21-23
processTags, 1,3,7,18, 19, 23

read.table, 20

segData, 3,11, 18

26 INDEX

segData-class, 21

segmentSeq, 23

segmentSeq (segment Seqg-package),
23

segment Seg-package, 23

show,alignmentData-method
(alignmentData-class), |

show, postSeg-method
(postSeg—-class), 17

show, segData—-method
(seghData—-class), 21

ST, 1

SL10 (SL), 1

SL26(SL), 1

SL32(SL), 1

SL9 (SL), 1

	SL
	alignmentData-class
	classifySeg
	filterSegments
	findChunks
	getCounts
	getOverlaps
	heuristicSeg
	lociLikelihoods
	mergeSD
	plotGenome
	postSeg-class
	processAD
	processTags
	segData-class
	segmentSeq-package
	Index

