\name{qpPCC} \alias{qpPCC} \alias{qpPCC,ExpressionSet-method} \alias{qpPCC,data.frame-method} \alias{qpPCC,matrix-method} \title{ Estimation of Pearson correlation coefficients } \description{ Estimates Pearson correlation coefficients (PCCs) and their corresponding P-values between all pairs of variables from an input data set. } \usage{ \S4method{qpPCC}{ExpressionSet}(data) \S4method{qpPCC}{data.frame}(data, long.dim.are.variables=TRUE) \S4method{qpPCC}{matrix}(data, long.dim.are.variables=TRUE) } \arguments{ \item{data}{data set from where to estimate the Pearson correlation coefficients. It can be an ExpressionSet object, a data frame or a matrix.} \item{long.dim.are.variables}{logical; if TRUE it is assumed that when data are in a data frame or in a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.} } \details{ The calculations made by this function are the same as the ones made for a single pair of variables by the function \code{\link{cor.test}} but for all the pairs of variables in the data set. } \value{ A list with two matrices, one with the estimates of the PCCs and the other with their P-values. } \author{R. Castelo and A. Roverato} \seealso{ \code{\link{qpPAC}} } \examples{ require(graph) require(mvtnorm) nVar <- 50 ## number of variables nObs <- 10 ## number of observations to simulate set.seed(123) g <- randomEGraph(as.character(1:nVar), p=0.15) Sigma <- qpG2Sigma(g, rho=0.5) X <- rmvnorm(nObs, sigma=Sigma) pcc.estimates <- qpPCC(X) ## get the corresponding boolean adjacency matrix A <- as(g, "matrix") == 1 ## Pearson correlation coefficients of the present edges summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & A])) ## Pearson correlation coefficients of the missing edges summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & !A])) } \keyword{models} \keyword{multivariate}