Typelnfo

October 5, 2010

ClassNameOrExpression-class
Class "ClassNameOrExpression" to represent type information as ei-
ther class names or arbitrary language test

Description

This class is used to represent a type test that is specified either as a collection of class names
(and whether to check for strict equality or inheritance) or a dynamic predicate expression that is
evaluated at run-time to determine whether the test is satisfied.

We may not need this in the "new" class hierarchy. It was created originally to be a union of charac-
ter vectors, callsor expressions. But now that we have NamedTypeTest and DynamicTypeTest,
we could perhaps use a common base class.

Objects from the Class

A virtual Class: No objects may be created from it.

Methods

No methods defined with class "ClassNameOrExpression" in the signature.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

TypedSignature TypedSignature—-class ReturnTypeSpecification

2 DynamicTypeTest-class

DynamicTypeTest-class
Class "DynamicTypeTest" for computed tests on objects.

Description

This virtual class is used interntally to unite type signatures that perform a computation to assess
argument type suitability.

Slots

None.

Extends

Class "ClassNameOrExpression", directly.

Methods

None.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

TypedSignature TypeSpecification-class

Examples

checkedSqgrt <- function (x) {
return (sqrt (x))

}

typelInfo (checkedSqgrt) <-
SimultaneousTypeSpecification(
TypedSignature (x=quote (
is(x, "numeric") && all(x>=0))))

typelInfo (checkedSqgrt)

checkedSqgrt (2)
try (checkedSqgrt (-2))

TypeSpecification-class 3

TypeSpecification-class
Class "TypeSpecification" and derived class

Description

The classes in this collection are used to represent type information about a function in different
ways. TypeSpecification is the virtual base class and provides the common slot to describe
the type for the return value of the function.

The ReturnTypeSpecification—class is used when there is no information about the pa-
rameters of the function (either because there are no parameters or because we have no constraints
on them).

The classes Independent TypeSpecification—-classand SimultaneousTypeSpecification-—
class are used to describe constraints on the arguments to the function. Both are lists, but behave

very differently in the type checking. The difference is more difficult to describe succinctly than it

is conceptually.

SimultaneousTypeSpecification-class is used when we want to specify information
about the types of several arguments in a call taken as a group and imposing a constraint on that
group of values. This corresponds to a call signature in the method dispatching. It says match
each argument in turn with the given types and confirm the match over all of these tests. For
example, we might have a function that accepts either (a) two numbers, or (b) two matrices. In

that case, we need to specify the acceptable argument types as pairs: ¢("numeric", "numeric") and
c("matrix", "matrix"). The key idea here is that the constraints on the types are AND-ed together
across the different arguments. In our example, we impose the constraint is.numeric (argl)

&& is.numeric(arg2).

The IndependentTypeSpecification-class isused when we want to specify something
about the types of different parameters but do not want the types to be AND-ed together. If we had a
function that accepts a matrix or a number for its first parameter, and a matrix or string for its second
parameter or any combination of those, then we would use the IndependentTypeSpecification-
class. The term ’independent’ is intended to suggest that the type checking is done for each pa-
rameter separately or independently of the others and then the check succeeds if all arguments pass.
The phrase simultaneous means that we test the types of the arguments as a unit or simultaneously.
The names can be easily changed to something more suggestive. It is the concept that is important.

A description of a quite different nature may also help and also provide information about the
contents of these different list classes. For IndependentTypeSpecification-class, one
can think of the list as having an element for each parameter for which we want to specify type
information. This element is, at its simplest, a character vector giving the names of the acceptable
classes. (We can have more complex elements such as expressions.) I think of this as being a
collection of column vectors hanging from the parameters.

For SimultaneousTypeSpecification-class, we have rows or tuples of type informa-
tion. These are call signatures. So we have

IndependentTypeSpecification correspondstothe SimultaneousTypeSpecification

in the following computational manner. We can take the cartesian product (e.g. viaexpand.grid)

of the inputs for Independent TypeSpecification to form all possible combinations of

types for the parameters and then we have the tuples for the corresponding SimultaneousTypeSpecification.

4 IndependentTypeSpecification

Constructors

One can create objects of the three non-virtual classes using the corresponding constructor functions
in the package. These are ReturnTypeSpecification, IndependentTypeSpecification,
SimultaneousTypeSpecification.

Slots

.Data: each of the non-virtual classes is really a list. They inherit the list properties and all the
relevant methods. This slot is implementation specific and should not be used.

returnType: Object of class ClassNameOrExpression—class. This describes the return
type for the function. In SimultaneousTypeDescription objects, we can also specify
return type information corresponding to each signature, i.e. in the TypedSignature-
class.

Extends
Class "1ist", from data part. Class "TypeSpecification", directly. Class "vector", by
class "1ist™".

Methods

Available methods are computed in the example below; see the corresponding help page for details.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

IndependentTypeSpecification SimultaneousTypeSpecificationReturnTypeSpecificatio
typelInfo, typeInfo<- checkArgs, checkReturnValue

Examples

showMethods (classes=c (
"TypeSpecification",
"IndependentTypeSpecification",
"SimultaneousTypeSpecification",
"ReturnTypeSpecification"))

IndependentTypeSpecification
Create separate type information for different parameters.

Description

This function is a constructor for the IndependentTypeSpecification—class class. In
short, it collects information about the possible types of parameters that is used to validate argu-
ments in a call separately. This contrasts with checking the combination of arguments in the call
against a particular signature.

IndependentTypeSpecification 5

Usage

IndependentTypeSpecification(..., returnType, obj = new("IndependentTypeSpecific

Arguments

Ce name elements of which are either character vectors or expressions/calls that can
be evaluated. These are of type ClassNameOrExpression-class.

returnType the expected type of the return value. This is optional.

obj the instance of class TypeSpecification—-class that is to be populated
with the values from . . . and returnType.
Value
The return value is ob j after it has been populated with the arguments . . . and returnType.
Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

typeInfo, typeInfo<-checkArgs,checkReturnValue IndependentTypeSpecification-
class SimultaneousTypeSpecification SimultaneousTypeSpecification-class

Examples

pow = function(a, b)
{
the return here is important to ensure the return value is checked.
return (a”b)

typeInfo (pow) =
IndependentTypeSpecification (

a = c("numeric", "matrix", "array"),
b = "numeric",
returnType = quote(class(a))

IndependentTypeSpecification (
a = c¢c("numeric", "matrix", "array"),
= new ("StrictIsTypeTest", "numeric"),
new ("StrictIsTypeTest",c("numeric", "complex")),
as ("numeric", "NamedTypeTest"),
new ("InheritsTypeTest", c("numeric", "complex"))

o QO Q0 O
Il

6 NamedTypeTest-class

NamedTypeTest-class
Class "NamedTypeTest" and sub-classes for tests on class of an object.

Description

These classes are for specifying a test on the type of an object using the class of that object and com-
paring it to target class names. The tests can be either for x inherits from class name
(or is(x, "className"))or x is an instance of class name (i.e. class (x)
== "className"). The first of these is represented by InheritsTypeTest and the second
by StrictTypeTest.

Objects from the NamedTypeTest class

Objects can be created for the non-virtual classes using new ("InheritsTypeTest", ...)

andnew ("StrictIsTypeTest", ...) ortheconvenience functions InheritsTypeTest (...),
StrictIsTypeTest (...) Additionally, where appropriate, a character vector is coerced to
InheritsTypeTest.

Slots

.Data: Objectof class "character". This is an internal data type to represent the class names.
It is not to be used directly. It is inherited from the “character” class.

Extends

Class "character", from data part. Class "ClassNameOrExpression", directly. Class
"vector", byclass "character™".

Methods

coerce signature (from = "character", to = "NamedTypeTest"): converts achar-
acter vector into a InheritsTypeTest.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

TypedSignature TypeSpecification-class DynamicTypeTest-class

Examples

new ("InheritsTypeTest", c("A", "B"))

m = array(1:60, c(3, 4, 5))
tt = new("StrictIsTypeTest", c("matrix"))
TypeInfo:::checkType (m, tt)

tt = new("StrictIsTypeTest", c("array"))
TypeInfo:::checkType (m, tt)

ReturnTypeSpecification 7

ReturnTypeSpecification
Constructor for specifying information about only the return type

Description

This function is a constructor for a class that represents information only about the return type of a
function and explicitly has no information about the parameters.

Usage
ReturnTypeSpecification(type, obj = new ("ReturnTypeSpecification"))
Arguments
type the type specification. This should be an object of class ClassNameOrExpres-
sion or coercible to one.
obj the instance that is to be populated and returned.
Value

By default, an object of class ReturnTypeSpecification-class. However, it merely re-
turns the value of ob j after populating it with the value of t ype. So strictly the return value is the
augmented value of ob j.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

IndependentTypeSpecification SimultaneousTypeSpecification

Examples
ReturnTypeSpecification (quote (length(x) == 3))
ReturnTypeSpecification ("matrix")

ReturnTypeSpecification(new ("StrictIsTypeTest", "matrix"))

8 SimultaneousTypeSpecification

SimultaneousTypeSpecification
Create type signature information governing parameters in a call.

Description

This function is a constructor for specifying different permissible combinations of argument types
in a call to a function. Each combination of types identifies a signature and in a call, the types of
the arguments are compared with these types. If all are compatible with the specification, then the
call is valid. Otherwise, we check other permissible combinations.

Note that if an instance of SimultaneousTypeSpecification—-class is provided to the
checkArgs function, the TypedSignature-class elements are searched sequentially until a
matching one is found. That matching signature is returned. Therefore, the order the signatures are
specified within the SimultaneousTypeSpecification-class object is important. This
could change if we wanted. At present, it is up to the author to specify what they want to have
happen. We could use the S4 signature matching technique when this is finalized and implemented
in C code.

Usage

SimultaneousTypeSpecification(..., returnType, obj = new("SimultaneousTypeSpecif

Arguments

named TypedSignature objects. The names identify the parameter to which
the type specification applies.

returnType if supplied this should be an object of class ClassNameOrExpression—

class.
obj the instance of TypeSpecification-class that is to be populated with
the content of . . . and returnType.

Value
The return value is obj. By default, this has class SimultaneousTypeSpecification-—
class. It should be an object of class TypeSpecification—-class.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

IndependentTypeSpecification typeInfo

Examples

foo =
function (x, vy)
{

X + vy

TypedSignature-class 9

typeInfo(foo) =
SimultaneousTypeSpecification (
TypedSignature (x = "integer", y = "integer"),
TypedSignature (x = "numeric", y = "logical"))

TypedSignature-class
Class "TypedSignature" representing type information about function
parameters and the return type

Description

This class is used to describe an AND or simultaneous condition on the types of several argu-
ments of a function call. The entire test is satisfied if all the individual elements are satisfied.
One can represent the test elements for the different parameters as either class names (i.e. char-
acter strings or NamedTypeTest—-class and sub-classes), and also predicate expressions using
DynamicTypeTest.

In addition to the types on the parameters, one can also specify a test for the return type if a call to
the function matches this signature. This allows us to associate a specific return type with a specific
set of input types.

Currently this class is only used to describe the elements in SimultaneousTypeSpecification—
class objects.

Objects from the Class

Use the constructor function TypedSignature to create objects of this class.

Slots

.Data: This object extends list. But this slot is intended to be opaque and should not be used
directly.

returnType: Object of class "ClassNameOrExpression". This represents the description
of the return type of the function associated with this set of given input types.

Extends

Class "1ist", from data part. Class "vector",byclass "1ist".

Methods
hasParameterType signature (def = "TypedSignature"):
hasReturnType signature (def = "TypedSignature"):
Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

SimultaneousTypeSpecification

10 TypedSignature

TypedSignature Constructor for a TypedSignature object

Description

This is a constructor function for the TypedSignature—class that represents constraints on the

types or values of a combination of parameters. It takes named arguments that identify the types of

the parameters. Each parameter type should be an object that is “compatible with” ClassNameOrExpression—
class, i.e. a test for inheritance or a dynamic expression.

Usage

TypedSignature (..., returnType, obj = new("TypedSignature", list(...)))

Arguments

the types for the parameters given as name = type to identify the parameter
and its type description.

returnType the type description for the return value. This applies to the particular combina-
tion of inputs given in ...

obj the instance to populate with the information given in the other arguments. This
allows us to pass in objects of sub-classes to this function or to populate previ-
ously created objects.

Value

The populated value of ob j, by default an object of class TypedSignature—-class.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

SimultaneousTypeSpecification typeInfo checkArgs

Examples

TypedSignature (x = "logical", y = quote(length(y) == length(x)))

checkArgs 11

checkArgs Validate the arguments in a call to a typed function.

Description

TypeInfo uses checkArgs internally.

This function is used to validate the arguments in a call to a function that has associated type
information about the parameters. The types for the parameters are currently given associated with
the function via an attribute "ParameterTypes". In the body of the function, one can call
checkArgs and the specification is taken and used to compute whether the elements in the call
are compatible with those in the signatures.

There are currently several ways to specify the signatures. One is as a list of explicit parame-
ter name - class name pair vectors given as ¢ (paramName = className, paramName =
className, ...). Alternatively, one can use an expression to perform a dynamic test. For ex-
ample, one can test the length of an object, e.g. c (x = length(x) < 4, y = length(y)
== length (x)). Each expression should return a logical value indicating whether the expected
condition was satisfied. A third form of specifying signatures is given using class names for indi-
vidual parameters and just matching the argument class to these names. This differs from the first
form because the arguments are not checked simultaneoulsy, but rather one at a time. The test for a
given argument is whether it is in the named vector of classes.

Usage

checkArgs (f = sys.function(l), argNames, args = NULL, forceAll = FALSE,
env = sys.frame(l), isMissing = logical (0))

Arguments
f the function object. If this is missing, the function is taken as the function being
called in the previous frame, i.e. the one that called checkArgs.
argNames a character vector giving the names of the arguments that are to be checked.
args a list of named argument values.
forceAll a logical value. If this is TRUE, then we evaluate all of the arguments in the call
frame of the function being evaluated whose arguments we are to check. If this
is FALSE, This should be a three-level enum to represent evaluate as needed,
evaluate all referenced in any of the signatures and evaluate all of the arguments
now.
env the environment in which arguments are located.
isMissing named logical vector indicating missing formal arguments; defined internally
when consulting £ of class function.
Value

If the check succeeds in matching the arguments to the parameter types, the signature that matched
is returned. Otherwise, an error is raised. If the signature is returned, this can be used to validate
the return value in the context of that signature.

Note that if an instance of SimultaneousTypeSpecification-class is provided to this
function, the TypedSignature-class elements are searched sequentially until a matching

12 checkReturn Value

one is found. That matching signature is returned. Therefore, the order the signatures are speci-
fied within the SimultaneousTypeSpecification-class objectis important. This could
change if we wanted. At present, it is up to the author to specify what they want to have happen. We
could use the S4 signature matching technique when this is finalized and implemented in C code.

Author(s)

Duncan Temple Lang <duncan @wald.ucdavis.edu>

See Also
typelInfo
Examples
bob = function(x, y) {
checkArgs () # Completely unecessary as we don't specify type information.
"Finished"

a call generates a warning to say that there was no type information.
bob ()

checkReturnvValue Verify the return value from the function has the appropriate type

Description

This function is the counterpart to checkArgs in the type validation for an R function. When
called, either implicitly or explicitly when the function returns, it attempts to determine whether the
value being returned by the function call is valid relative to the type information of the function and
the call itself. Specifically, it uses the signature of the current call to the function if it is available
(returned by checkArgs) to see if it has a specified return type. If so, it compares the return value
to that. Otherwise, it checks to see if the return type for the overall type info object (not just the
specific type signature for the call) is specified and then uses that to validate the type. If neither is
specified, then the value is not validated and the value returned.

Usage

checkReturnvValue (returnType, returnJump, sig, f = sys.function(-1))

Arguments

returnType the specifiedtype of the return value.

returnJump this is a very special value which is a call to return the value of value. It must
be explicitly given in the call to checkReturnValue and is used to ensure
that the return from checkReturnValue returns from the calling function
also in the case that the value is valid. This is a piece of magic in R that is very
powerful using the lazy evaluation of the arguments that allows us to return from
the place that the return call was specified.

hasParameterType 13

sig the signature corresponding to the call of the function f£. This should have a
returnType slot that contains class information or an expression. Otherwise,
the value is taken from the TypeSpecification-class object for the en-
tire function and its returnType slot.

f the function object whose return value is to be validated. It is from this that we
get the type info via typeInfo.

Value

If the validation takes place and is successful or simply doesn’t take place because no returnType
is available, the return value is value. Otherwise, if the validation fails, an error is raised.

Note

This is a prototype to illustrate the idea. It might be done in C code in the future within the R
interpreter.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

checkArgs TypeSpecification-class

hasParameterType Functions to query existence of specific type information

Description

These functions and the associated methods are used to determine if a function has type specification
for any of the parameters and also for the return type. These are used when rewriting the body of the
function to support type checking (see rewriteTypeCheck). We use these predicate functions
to determine if we have information about any parameter types and if not we do not add a check
of the arguments (i.e. a call to checkArgs). Similarly, we determine if we have any information
about the return type before adding a call to checkReturnvalue.

They are used internally. They are exported in order to make them available for others to use in
providing alternatives to this prototype implementation and also to overcome an anomoly in the
callNextMethod () mechanism that appears to disappear when the generic is exported from
the NAMESPACE.

Usage

hasParameterType (def)

Arguments

def the object which is to be queried. This can be a functionora TypeSpecification-
class instance which is typically extracted from the function. Generally, a
user would pass the function to the function call and the resulting sequence of
recursive method calls will occur.

14 paramNames

Value

A logical value indicating if the object de f “has” the relevant facet/property.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

rewriteTypeCheck checkArgs checkReturnValue
Examples

hasReturnType (SimultaneousTypeSpecification (
TypedSignature (x="integer", returnType = "duncan")))

FALSE
hasReturnType (SimultaneousTypeSpecification (TypedSignature (x="integer")))

TRUE
hasReturnType (SimultaneousTypeSpecification (returnType = "duncan"))

TRUE
hasReturnType (ReturnTypeSpecification ("duncan"))

hasReturnType (IndependentTypeSpecification(x = c("integer", "logical"),
y = "character",
returnType = "duncan"))
hasReturnType (IndependentTypeSpecification(x = c("integer", "logical"),
y = "character"))
paramNames Compute the names of all the specified parameters in a TypeSpecifica-

tion object

Description

This generic function has methods for computing the names of all the parameters in a type specifi-
cation for a function for which type information is explicitly specified. There is also a method for
functions which merely returns the names of the formal parameters, i.e. a call to formals.

Usage

paramNames (def)

Arguments

def the object from which we are to identify the names of the parameters

rewriteTypeCheck 15

Value

A character vector giving the names of the parameters that were found.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

typelInfo

rewriteTypeCheck Insert code to support type validation

Description

This generic function and its methods are used to modify the expressions in the body of a function
in order to support the validation of type information in calls to this function. This changes the form
of explicit calls to return, modifies the last expression if it is not an explicit call to return, and
adds an initial command to compute check the arguments in the cal via checkArgs.

Usage

rewriteTypeCheck (£, doReturn = TRUE, checkArgs = TRUE, addInvisible = FALSE)

Arguments

£ the object which is to be modified to add the information for checking the return
value and checking the input arguments. These are functions, expressions, calls,
and other language objects.

doReturn a logical value. If this is FALSE, the modifications are greatly simplified and
no additions are made to handle the validation of the return value. This is used
when the type information provides no information about the return type and so
it cannot be validated or constrained.

checkArgs a logical value indicating whether the modifications should including check the

arguments. If the only type information given is about the return type, no check-
ing of the arguments is necessary (in the current model).

addInvisible logical indicating whether returned argument needs to be cloaked in invisible.

Value

The potentially modified version of the original input argument. The modifications contain any
necessary changes to support the type checking at run-time.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

See Also

typelInfo checkArgs checkReturnValue

16 showTypelnfo

Examples
f = function(x, vy) {
z = X ty
sum(z)
}
showTypeInfo Display information about argument types
Description

This generic function returns type specifications as a list. Elements in the list contain information
about different parts of the signature. The order and white spece of the list suggests structure of the
type specification.

showTypeInfo is usually invoked with a single argument, the name of the function with type

information.
Usage
showTypeInfo (object, name=character (), prefix="", ...)
Arguments
object The object about which type information is required
name Class name, not normally specified by user.
prefix Used by methods to ensure pretty indentation type specifications.
Additional arguments used for derivatives of NamedTypeTest, not noramlly
assigned by user.
Value

A list containing type information for de £

Author(s)

MT Morgan <mtmorgan@fhcrc.org>

See Also

typelInfo

Examples

foo <- function(x) { return(x) }

typeInfo(foo) <- SimultaneousTypeSpecification (
TypedSignature (x = "numeric"),
returnType = "numeric")

res <- showTypeInfo(foo)

cat (res, sep="\n")

typelnfo 17

typeInfo Get or set type information for a function.

Description

These functions provide controlled access to type information for a function. They encapsulate the
way the information is stored for the function (although it is trivial to find out how it is done and
where the information is)

Usage
typeInfo (func)
"typeInfo<-" (func, rewrite = TRUE, value)
Arguments
func the function whose type information is to be accessed
rewrite a logical value. This controls whether the body of the function func is rewritten

so that checks for the arguments and return type are added to the code and the
appropriate actions are taken when the function returns control to the caller. This
is necessary to get calls to return in the function to behave correctly and allow
the return value to be validated.

value an object of class TypeSpecification-class

Value

typeInfo returns the type information associated with the function. typeInfo<- returns the
modified function.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

http://www.omegahat.org/OptionalTyping

See Also

checkArgs checkReturnValue

http://www.omegahat.org/OptionalTyping

Index

*Tb@cl() checkArgs,missing-method
rewriteTypeCheck, 15 (checkArgs), 11
xTopic classes checkArgs, SimultaneousTypeSpecification—-methoc
ClassNameOrExpression-class, (checkArgs), 11
1 checkArgs—methods (checkArgs), 11
DynamicTypeTest-class, 2 checkReturnValue,4, 5, 12, 13-15, 17
NamedTypeTest-class, 6 ClassNameOrExpression-class,4, 5,
TypedSignature-class,9 8, 10
TypeSpecification-class,3 ClassNameOrExpression-class, 1
*Tbmcinuﬂface coerce, character, NamedTypeTest—-method
checkArgs, 11 (NamedTypeTest—-class), 6
checkReturnvValue, 12
hasParameterType, 13 DynamicTypeTest
IndependentTypeSpecification, (DynamicTypeTest—-class),?2
4 DynamicTypeTest-class, 6
paramNames, 14 DynamicTypeTest-class,?2
ReturnTypeSpecification,?
showTypeInfo, 16 expand.grid, 3
SimultaneousTypeSpecification,
8 formals, 14
TypedSignature, 10
typelInfo, 17 hasParameterType, 13
+Topic programming hasParameterType, function-method
checkArgs, 11 (hasParameterType), 13
checkReturnvalue, 12 hasParameterType, IndependentTypeSpecification-
hasParameterType, 13 (hasParameterType), 13
IndependentTypeSpecification, hasParameterType, NamedTypeTest—-method
4 (hasParameterType), 13
paramNames, 14 hasParameterType, SimultaneousTypeSpecificatior
ReturnTypeSpecification,? (hasParameterType), 13
rewriteTypeCheck, 15 hasParameterType, TypedSignature-method
showTypelnfo, 16 (TypedSignature-class),9
SimultaneousTypeSpecification, hasParameterType, TypeSpecification—-method
8 (hasParameterType), 13
TypedSignature, 10 hasReturnType (hasParameterType),
typeInfo, 17 13
hasReturnType, function-method
checkArgs, 4, 5,8,10,11, 12-15,17 (hasParameterType), 13
checkArgs, function-method hasReturnType, SimultaneousTypeSpecification—me
(checkArgs), 11 (hasParameterType), 13
checkArgs, IndependentTypeSpecificatiomasRatadnType, TypedSignature-method
(checkArgs), 11 (TypedSignature-class),9
checkArgs, InheritsTypeTest-method hasReturnType, TypeSpecification-method
(checkArgs), 11 (hasParameterType), 13

18

INDEX

IndependentTypeSpecification,4,
4,7, 8
IndependentTypeSpecification-
class,
3-5
IndependentTypeSpecification-class
(TypeSpecification—-class),
3
InheritsTypeTest
(NamedTypeTest—-class), 6
InheritsTypeTest-class
(NamedTypeTest—-class), 6
initialize, TypeSpecifcation-method
(TypeSpecification—-class),
3
initialize, TypeSpecification-method
(TypeSpecification—-class),
3

NamedTypeTest-class, 9
NamedTypeTest-class, 6

paramNames, 14
paramNames, function-method
(paramNames), 14

19

showTypeInfo, IndependentTypeSpecification-met!
(showTypeInfo), 16

showTypeInfo, InheritsTypeTest-method
(showTypeInfo), 16

showTypeInfo, SimultaneousTypeSpecification—met
(showTypeInfo), 16

showTypeInfo, StrictIsTypeTest-method
(showTypeInfo), 16

showTypeInfo, TypedSignature-method
(showTypeInfo), 16

SimultaneousTypeSpecification,4,
5,7,8,9 10

SimultaneousTypeSpecification—
class, 3,5,8 9,11,
12

SimultaneousTypeSpecification—-class
(TypeSpecification—class),
3

StrictIsTypeTest
(NamedTypeTest-class), 6

StrictIsTypeTest-class
(NamedTypeTest—-class), 6

TypedSignature, I, 2,6, 8, 9, 10
TypedSignature-class, 1,4,8, 10, 11

paramNames, Independent TypeSpecificatidiyveesSismature—-class,9

(paramNames), 14
paramNames, NamedTypeTest-method
(paramNames), 14

typelInfo,4 5,8, 10,12, 13,15, 16,17
typelInfo<- (typelInfo), 17
typeInfo<—,4,5

paramNames, ReturnTypeSpecification-metlyeeSpecification-class, 2,5, 6,8,

(paramNames), 14

13,17

paramNames, SimultaneousTypeSpecificat Iypategaidication-class,3

(paramNames), 14

paramNames, TypedSignature-method
(paramNames), 14

paramNames, TypeSpecification-method
(paramNames), 14

ReturnTypeSpecification, I,4,7
ReturnTypeSpecification-class, 3,
7
ReturnTypeSpecification-class
(TypeSpecification—-class),
3
rewriteTypeCheck, I3, 14, 15

showTypeInfo, 16

showTypeInfo, ANY-method
(showTypeInfo), 16

showTypeInfo,DynamicTypeTest-method
(showTypeInfo), 16

showTypeInfo, function-method
(showTypeInfo), 16

	ClassNameOrExpression-class
	DynamicTypeTest-class
	TypeSpecification-class
	IndependentTypeSpecification
	NamedTypeTest-class
	ReturnTypeSpecification
	SimultaneousTypeSpecification
	TypedSignature-class
	TypedSignature
	checkArgs
	checkReturnValue
	hasParameterType
	paramNames
	rewriteTypeCheck
	showTypeInfo
	typeInfo
	Index

