\name{adjBaseOlig.error} \alias{adjBaseOlig.error} \title{ Evaluates LPE variance function of M for quantiles of A within and experimental condition and then interpolates it for all genes. } \description{ Calls adjBaseOlig.error.step1 and adjBaseOlig.error.step2 functions in order to calculate the baseline distribution. } \usage{ adjBaseOlig.error(y, stats=median, q=0.01, min.genes.int=10,div.factor=1, setMax1=FALSE) } \arguments{ \item{y}{y is a preprocessed matrix or data frame of expression intensities in which columns are expression intensities for a particular experimental condition and rows are genes.} \item{stats}{It determines whether mean or median is to be used for the replicates} \item{q}{q is the quantile width; q=0.01 corresponds to 100 quantiles i.e. percentiles. Bins/quantiles have equal number of genes and are split according to the average intensity A.} \item{min.genes.int}{Determines the minimum number of genes in a subinterval for selecting the adaptive intervals.} \item{div.factor}{Determines the factor by which sigma needs to be divided for selecting adaptive intervals.} \item{setMax1}{If T then all variances below the max variance in the ordered distribution of variances are set to the maximum variance. If F then variances are left as is (recommended)} } \value{ Returns object of class baseOlig comprising a data frame with 2 columns: A and var M, and rows for each quantile specified. The A column contains the median values of A for each quantile/bin and the M columns contains the pooled variance of the replicate chips for genes within each quantile/bin. } \author{Carl Murie \email{carl.murie@mcgill.ca}, Nitin Jain \email{nitin.jain@pfizer.com} } \references{ J.K. Lee and M.O.Connell(2003). \emph{An S-Plus library for the analysis of differential expression}. In The Analysis of Gene Expression Data: Methods and Software. Edited by G. Parmigiani, ES Garrett, RA Irizarry ad SL Zegar. Springer, NewYork. Jain et. al. (2003) \emph{Local pooled error test for identifying differentially expressed genes with a small number of replicated microarrays}, Bioinformatics, 1945-1951. Jain et. al. (2005) \emph{Rank-invariant resampling based estimation of false discovery rate for analysis of small sample microarray data}, BMC Bioinformatics, Vol 6, 187. } \seealso{ \code{\link{lpeAdj}} } \examples{ # Loading the data from the LPE library data(Ley) dim(Ley) # Gives 12488 by 7 Ley[1:3,] # Returns # ID c1 c2 c3 t1 t2 t3 # 1 AFFX-MurIL2_at 4.06 3.82 4.28 11.47 11.54 11.34 # 2 AFFX-MurIL10_at 4.56 2.79 4.83 4.25 3.72 2.94 # 3 AFFX-MurIL4_at 5.14 4.10 4.59 4.67 4.71 4.67 Ley[,2:7] <- preprocess(Ley[,2:7],data.type="MAS5") subset <- 1:1000 Ley.subset <- Ley[subset,] # Finding the baseline distribution of subset of the data # condition one (3 replicates) var.1 <- adjBaseOlig.error(Ley.subset[,2:4], q=0.01, setMax1=FALSE) dim(var.1) # Returns a matrix of 1000 by 2 (A,M) format, equal to the nrow(data) } \keyword{methods} % from KEYWORDS.db