
segmentSeq: methods for identifying small RNA

loci from high-throughput sequencing data

Thomas J. Hardcastle

October 15, 2013

1 Introduction

High-throughput sequencing technologies allow the production of large volumes
of short sequences, which can be aligned to the genome to create a set of matches
to the genome. By looking for regions of the genome which to which there are
high densities of matches, we can infer a segmentation of the genome into regions
of biological significance. The methods we propose allows the simultaneous
segmentation of data from multiple samples, taking into account replicate data,
in order to create a consensus segmentation. This has obvious applications in
a number of classes of sequencing experiments, particularly in the discovery of
small RNA loci and novel mRNA transcriptome discovery.

We approach the problem by considering a large set of potential segments
upon the genome and counting the number of tags that match to that segment in
multiple sequencing experiments (that may or may not contain replication). We
then adapt the empirical Bayesian methods implemented in the baySeq package
[1] to establish, for a given segment, the likelihood that the count data in that
segment is similar to background levels, or that it is similar to the regions to
the left or right of that segment. We then rank all the potential segments in
order of increasing likelihood of similarity and reject those segments for which
there is a high likelihood of similarity with the background or the regions to the
left or right of the segment. This gives us a large list of overlapping segments.
We reduce this list to identify non-overlapping loci by choosing, for a set of
overlapping segments, the segment which has the lowest likelihood of similarity
with either background or the regions to the left or right of that segment and
rejecting all other segments that overlap with this segment. For fuller details of
the method, see Hardcastle et al. [2].

2 Preparation

We begin by loading the segmentSeq package.

> library(segmentSeq)

Note that because the experiments that segmentSeq is designed to analyse
are usually massive, we should use (if possible) parallel processing as imple-
mented by the parallel package. If using this approach, we need to begin by

1

define a cluster. The following command will use eight processors on a single
machine; see the help page for ’makeCluster’ for more information.

> cl <- makeCluster(8)

If we don’t want to parallelise, we can proceed anyway with a NULL cluster.
The readGeneric function is able to read in tab-delimited files which have

appropriate column names, and create an alignmentData object. Alternatively,
if the appropriate column names are not present, we can specify which columns
to use for the data. In either case, to use this function we pass a character vector
of files, together with information on which data are to be treated as replicates
to the function. We also need to define the lengths of the chromosome and
specifiy the chromosome names as a character. The data here, drawn from
text files in the ’data’ directory of the segmentSeq package are taken from the
first million bases of an alignment to chromosome 1 and the first five hundred
thousand bases of an alignment to chromosome 2 of Arabidopsis thaliana in a
sequencing experiment where libraries ‘SL9’ and ‘SL10’ are replicates, as are
‘SL26’ and ‘SL32’. Libraries ‘SL9’ and ‘SL10’ are sequenced from an Argonaute
6 IP, while ‘SL26’ and ‘SL32’ are an Argonaute 4 IP.

A similar function, readBAM performs the same operation on files in the BAM
format. Please consult the help page for further details.

> chrlens <- c(1e6, 2e5)

> datadir <- system.file("extdata", package = "segmentSeq")

> libfiles <- c("SL9.txt", "SL10.txt", "SL26.txt", "SL32.txt")

> libnames <- c("SL9", "SL10", "SL26", "SL32")

> replicates <- c("AGO6", "AGO6", "AGO4", "AGO4")

> aD <- readGeneric(files = libfiles, dir = datadir,

+ replicates = replicates, libnames = libnames,

+ chrs = c(">Chr1", ">Chr2"), chrlens = chrlens,

+ polyLength = 10, header = TRUE, gap = 200)

> aD

An object of class "alignmentData"

13765 rows and 4 columns

Slot "libnames":

[1] "SL9" "SL10" "SL26" "SL32"

Slot "replicates":

[1] AGO6 AGO6 AGO4 AGO4

Levels: AGO4 AGO6

Slot "alignments":

GRanges with 13765 ranges and 2 metadata columns:

seqnames ranges strand | tag

<Rle> <IRanges> <Rle> | <character>

[1] >Chr1 [265, 284] - | AAATGAAGATAAACCATCCA

[2] >Chr1 [405, 427] - | AAGGAGTAAGAATGACAATAAAT

[3] >Chr1 [406, 420] - | AAGAATGACAATAAA

[4] >Chr1 [600, 623] + | AAGGATTGGTGGTTTGAAGACACA

2

[5] >Chr1 [665, 688] + | ATCCTTGTAGCACACATTTTGGCA

...

[13761] >Chr2 [179972, 179993] + | ATGAATGGCTCTCTCTAGCGGA

[13762] >Chr2 [179978, 180000] - | GAGATTCTCCGCTAGAGAGAGCC

[13763] >Chr2 [179999, 180022] - | ATTAATATTAATTCATCGGGAAGA

[13764] >Chr2 [180002, 180022] - | ATTAATATTAATTCATCGGGA

[13765] >Chr2 [180014, 180037] + | AATATTAATGGTATTTGTGGAAAA

multireads

<numeric>

[1] 1

[2] 1

[3] 1

[4] 1

[5] 1

... ...

[13761] 1

[13762] 1

[13763] 1

[13764] 1

[13765] 1

seqlengths:

>Chr1 >Chr2

1000000 200000

Slot "data":

Matrix with 13765 rows.

SL9 SL10 SL26 SL32

1 1 0 0 0

2 0 0 0 2

3 0 1 0 0

4 0 1 0 0

5 7 1 0 0

...

13761 2 7 0 0

13762 0 1 0 0

13763 0 1 0 0

13764 0 1 0 0

13765 1 0 0 0

Slot "libsizes":

[1] 4447 6531 9666 6675

Next, we process this alignmentData object to produce a segData object.
This segData object contains a set of potential segments on the genome de-
fined by the start and end points of regions of overlapping alignments in the
alignmentData object. It then evaluates the number of tags that hit in each of
these segments.

> sD <- processAD(aD, gap = 100, cl = cl)

> sD

3

An object of class "segData"

14444 rows and 4 columns

Slot "replicates":

[1] AGO6 AGO6 AGO4 AGO4

Levels: AGO4 AGO6

Slot "coordinates":

GRanges with 14444 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] >Chr1 [265, 284] *

[2] >Chr1 [405, 427] *

[3] >Chr1 [600, 623] *

[4] >Chr1 [600, 688] *

[5] >Chr1 [600, 830] *

...

[14440] >Chr2 [179708, 179872] *

[14441] >Chr2 [179708, 180037] *

[14442] >Chr2 [179738, 179872] *

[14443] >Chr2 [179738, 180037] *

[14444] >Chr2 [179923, 180037] *

seqlengths:

>Chr1 >Chr2

1000000 200000

Slot "locLikelihoods" (stored on log scale):

Matrix with 0 rows.

<0 x 0 matrix>

Slot "data":

Matrix with 14444 rows.Matrix with 14444 rows.

SL9 SL10 SL26 SL32

1 1 0 0 0

2 0 1 0 2

3 0 1 0 0

4 7 2 0 0

5 30 28 51 83

...

14440 32 30 76 88

14441 39 43 85 95

14442 31 30 76 88

14443 38 43 85 95

14444 7 13 9 7

Slot "libsizes":

[1] 4447 6531 9666 6675

We can now construct a segment map from these potential segments.

4

Segmentation by heuristic methods

A fast method of segmentation can be achieved by exploiting the bimodality
of the densities of small RNAs in the potential segments. In this approach, we
assign each potential segment to one of two clusters for each replicate group,
either as a segment or a null based on the density of sequence tags within that
segment. We then combine these clusterings for each replicate group to gain a
consensus segmentation map.

> clustSegs <- heuristicSeg(sD = sD, aD = aD, RKPM = 1000, largeness = 1e8, getLikes = TRUE, cl = cl)

......

Segmentation by empirical Bayesian methods

A more refined approach to the problem uses an existing segment map (or, if
not provided, a segment map defined by the clustSegs function) to acquire
empirical distributions on the density of sequence tags within a segment. We
can then estimate posterior likelihoods for each potential segment as being either
a true segment or a null. We then identify all potential segments in the with
a posterior likelihood of being a segment greater than some value ’locsens’ and
containing no subregion with a posterior likelihood of being a null greater than
’nulsens’. We then greedily select the longest segments satisfying these criteria
that do not overlap with any other such segments in defining our segmentation
map.

> classSegs <- classifySeg(sD = sD, aD = aD, cD = clustSegs,

+ subRegion = NULL, getLikes = TRUE,

+ lociCutoff = 0.9, nullCutoff = 0.9, cl = cl)

............

> classSegs

GRanges with 260 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] >Chr1 [1, 599] *

[2] >Chr1 [600, 938] *

[3] >Chr1 [939, 967] *

[4] >Chr1 [968, 17054] *

[5] >Chr1 [17055, 18728] *

...

[256] >Chr2 [169231, 178343] *

[257] >Chr2 [178344, 178636] *

[258] >Chr2 [178637, 179707] *

[259] >Chr2 [179708, 180037] *

[260] >Chr2 [180038, 200000] *

seqlengths:

>Chr1 >Chr2

1000000 200000

5

An object of class "lociData"

260 rows and 4 columns

Slot "replicates"

[1] AGO6 AGO6 AGO4 AGO4

Levels: AGO4 AGO6

Slot "libsizes"

SL9 SL10 SL26 SL32

4447 6531 9666 6675

Slot "groups":

[[1]]

[1] AGO6 AGO6 AGO4 AGO4

Levels: AGO4 AGO6

Slot "data":

SL9 SL10 SL26 SL32

[1,] 1 1 0 2

[2,] 41 39 65 83

[3,] 13 7 0 0

[4,] 5 3 0 0

[5,] 758 705 1552 1648

255 more rows...

Slot "annotation":

data frame with 0 columns and 260 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 260 rows.

AGO4 AGO6

1 0.226436745373141 0.10262577497818

2 0.948509611802494 0.961992315847301

3 0.112020413011674 0.988595143967127

4 0.0299114146391315 0.0386346701051631

5 0.947818983738627 0.99570150962663

...

256 0.278721899210923 0.0629536357040682

257 0.91955825689712 0.975716763154493

258 0.0451419963441246 0.0602612811954041

259 0.954481226107834 0.967189298722109

260 0.0296573186381157 0.0251570051130336

By one of these methods, we finally acquire an annotated lociData object,
with the annotations describing the co-ordinates of each segment.

We can use this lociData object, in combination with the alignmentData

object, to plot the segmented genome.

> par(mfrow = c(2,1), mar = c(2,6,2,2))

> plotGenome(aD, clustSegs, chr = ">Chr1", limits = c(1, 1e5),

6

+ showNumber = FALSE, cap = 50)

> plotGenome(aD, classSegs, chr = ">Chr1", limits = c(1, 1e5),

+ showNumber = FALSE, cap = 50)

1 20001 40001 60001 80001 100001

SL9

SL10

SL26

SL32

1 20001 40001 60001 80001 100001

SL9

SL10

SL26

SL32

Figure 1: The segmented genome (first 105 bases of chromosome 1.

This countData object can now be examined for differential expression with
the baySeq package.

References

[1] Thomas J. Hardcastle and Krystyna A. Kelly. baySeq: Empirical Bayesian
Methods For Identifying Differential Expression In Sequence Count Data.
BMC Bioinformatics (2010).

[2] Thomas J. Hardcastle and Krystyna A. Kelly and David C. Baulcombe.
Identifying small RNA loci from high-throughput sequencing data. Bioin-
formatics (2012).

7

