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1 Introduction

This vignette introduces analysis methods for data from high-throughput se-
quencing of bisulphite treated DNA to detect cytosine methylation. The segmentSeq
package was originally designed to detect siRNA loci [1] and many of the meth-
ods developed for this can be used to detect loci of cytosine methylation from
replicated (or unreplicated) sequencing data.

2 Preparation

Preparation of the segmentSeq package proceeds as in siRNA analysis. We begin
by loading the segmentSeq package.

> library(segmentSeq)

Note that because the experiments that segmentSeq is designed to analyse
are usually massive, we should use (if possible) parallel processing as imple-
mented by the parallel package. If using this approach, we need to begin by
define a cluster. The following command will use eight processors on a single
machine; see the help page for ’makeCluster’ for more information.

> cl <- makeCluster(8)

If we don’t want to parallelise, we can proceed anyway with a NULL cluster.
Results may be slightly different depending on whether or not a cluster is used
owing to the non-deterministic elements of the method.

> cl <- NULL

The segmentSeq package is designed to read in output from the YAMA
(Yet Another Methylome Aligner) program. This is a perl-based package using
either bowtie or bowtie2 to align bisulphite treated reads (in an unbiased man-
ner) to a reference and identify the number of times each cytosine is identified
as methylated or unmethylated. Unlike most other aligners, YAMA does not
require that reads that map to more than one location are discarded, instead it
reports the number of alternate matches to the reference for each cytosine. This
is then used by segmentSeq to weight the observed number of methylated/un-
methylated cytosines at a location.
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> datadir <- system.file("extdata", package = "segmentSeq")

> files <- c("short_18B_C24_C24_trim.fastq_CG_methCalls",

+ "short_Sample_17A_trimmed.fastq_CG_methCalls",

+ "short_13_C24_col_trim.fastq_CG_methCalls",

+ "short_Sample_28_trimmed.fastq_CG_methCalls")

> mD <- readMeths(files = files, dir = datadir,

+ libnames = c("A1", "A2", "B1", "B2"), replicates = c("A","A","B","B"),

+ nonconversion = c(0.004777, 0.005903, 0.016514, 0.006134))

We can begin by plotting the distribution of methylation for these samples.
The distribution can be plotted for each sample individually, or as an average
across multiple samples. We can also subtract one distribution from another to
visualise patterns of differential methylation on the genome.

> par(mfrow = c(2,1))

> distA <- plotMethDistribution(mD, samples = 1:2, main = "Distributions of methylation")

> distB <- plotMethDistribution(mD, samples = 3:4, add = TRUE, col = "red")

> plotMethDistribution(mD, samples = 1:2, subtract = distB[,2], main = "Differences between distributions")
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Figure 1: Distributions of methylation on the genome (first two million bases of
chromosome 1.

Next, we process this alignmentData object to produce a segData object.
This segData object contains a set of potential segments on the genome de-
fined by the start and end points of regions of overlapping alignments in the
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alignmentData object. It then evaluates the number of tags that hit in each of
these segments.

> sD <- processAD(mD, gap = 300, squeeze = 10, filterProp = 0.05, verbose = TRUE, strandSplit = TRUE, cl = cl)

We can now construct a segment map from these potential segments.

Segmentation by heuristic Bayesian methods

A fast method of segmentation can be achieved by assuming a binomial dis-
tribution on the data with an uninformative beta prior, and identifying those
potential segments which have a sufficiently large posterior likelihood that the
proportion of methylation exceeds some critical value.

> hS <- heuristicSeg(sD, mD, prop = 0.2, cl = cl, gap = 100, getLikes = FALSE)

> hS

Slot "coordinates"

GRanges with 1580 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] Chr1 [ 108, 948] +

[2] Chr1 [ 150, 837] -

[3] Chr1 [ 929, 929] -

[4] Chr1 [5226, 5465] +

[5] Chr1 [6452, 6452] +

... ... ... ...

[1576] Chr1 [1990187, 1990187] -

[1577] Chr1 [1990298, 1990298] +

[1578] Chr1 [1993118, 1993335] +

[1579] Chr1 [1994611, 1994611] +

[1580] Chr1 [1994857, 1994886] +

---

seqlengths:

Chr1

NA

An object of class "methData"

1580 rows and 4 columns

Slot "replicates"

[1] A A B B

Levels: A B

Slot "libsizes"

A1 A2 B1 B2

1.004777 1.005903 1.016514 1.006134

Slot "data":

A1 A2 B1 B2

[1,] 166 145 128 22

[2,] 81 30 35 3

3



[3,] 0 0 0 3

[4,] 1 1 24 2

[5,] 2 5 0 0

1575 more rows...

Slot "pairData":

A1 A2 B1 B2

[1,] 67 89.02 50 11

[2,] 90 33.00 61 15

[3,] 0 0.00 0 1

[4,] 86 120.00 36 9

[5,] 0 3.00 3 1

1575 more rows...

Slot "annotation":

data frame with 0 columns and 1580 rows

Slot "locLikelihoods" (stored on log scale):

Matrix with 1580 rows.

A B

1 1 1

2 1 1

3 <NA> 1

4 0 1

5 1 0

... ... ...

1576 0 1

1577 1 1

1578 1 1

1579 1 0

1580 0 1

Within a methylation locus, it is not uncommon to find completely unmethy-
lated cytosines. If the coverage of these cytosines is too high, it is possible
that these will cause the locus to be split into two or more fragments. The
mergeMethSegs function can be used to overcome this splitting by merging loci
with identical patterns of expression that are not separated by too great a gap.
Merging in this manner is optional, but recommended.

> hS <- mergeMethSegs(hS, mD, gap = 5000, cl = cl)

We can then estimate posterior likelihoods on the defined loci by applying
empirical Bayesian methods. These will not change the locus definition, but will
assign likelihoods that the identified loci represent a true methylation locus in
each replicate group.

> hSL <- lociLikelihoods(hS, mD, cl = cl)

......
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Visualising loci

By one of these methods, we finally acquire an annotated methData object, with
the annotations describing the co-ordinates of each segment.

We can use this methData object, in combination with the alignmentMeth

object, to plot the segmented genome.

> plotMeth(mD, hSL, chr = "Chr1", limits = c(1, 50000), cap = 10)

Figure 2: Methylation and identified loci on the first ten thousand bases of
chromosome 1.

Differential Methylation analysis

We can also examine the methData object for differentially methylated regions
using the beta-binomial methods [2] implemented in baySeq. We first define a
group structure on the data.

> groups(hSL) <- list(NDE = c(1,1,1,1), DE = c("A", "A", "B", "B"))

We can then determine a prior distribution on the parameters of a beta-
binomial model for the data.

> hSL <- getPriors.BB(hSL, cl = cl)
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We can then find the posterior likelihoods of the models defined in the groups
structure.

> hSL <- getLikelihoods.BB(hSL, cl = cl)

.

We can then retrieve the data for the top differentially methylated regions.

> topCounts(hSL, "DE")

seqnames start end width strand A1 A2 B1 B2 Likelihood

1 Chr1 958479 959092 614 + 0:284 0:702 1121:365 87:33 0.9999227

2 Chr1 1649924 1649957 34 + 56:6 43:2 1:49 0:8 0.9997544

3 Chr1 1509220 1509220 1 + 99:20 26:4 0:42 0:4 0.9997190

4 Chr1 1733868 1733987 120 + 0:23 0:85 48:5 10:1 0.9996601

5 Chr1 1181823 1181829 7 + 0:50 0:66 79:42 14:7 0.9996516

6 Chr1 880854 880896 43 + 22:5 69:11 1:72 0:4 0.9996231

7 Chr1 1439950 1440002 53 + 1:148 0:47 67:12 6:0 0.9995920

8 Chr1 526692 526853 162 + 68:77 64:72 0:145 0:5 0.9995839

9 Chr1 1655890 1656076 187 + 0:154 0:81 28:13 7:3 0.9995712

10 Chr1 76839 76944 106 + 0:40 0:46 128:33 6:1 0.9995650

DE FDR.DE

1 B>A 7.726324e-05

2 A>B 1.614383e-04

3 A>B 2.012903e-04

4 B>A 2.359420e-04

5 B>A 2.584383e-04

6 A>B 2.781753e-04

7 B>A 2.967254e-04

8 A>B 3.116472e-04

9 B>A 3.246610e-04

10 B>A 3.356967e-04
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