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1 Introduction

Label-free differential proteomics is based on comparing the expression of proteins be-
tween different biological conditions [1] [2]. The experimental design involved for these
experiments just requires elementary precautions such as randomization and blocking
[12]. Working with balanced blocks in which all biological conditions are measured by
a number of technical replicates, and within the shortest time window possible, helps to
reduce experimental bias. Unfortunately, there are many factors that may bias the results
in a systematic manner: different operators, different chromatographic columns, different
protein digestions, an eventual repair of the LC-MS system, and different laboratory en-
vironment conditions. Blocking and randomization help to control to some extent these
factors. However, even using the best experimental design some uncontrolled variables
may still interfere with differential proteomics experiments. These uncontrolled variables
may be responsible for batch effects which are a type of bias usually evidenced when
samples do not cluster by their biological condition when using unsupervised techniques
such as Principal Components Analysis (PCA) or Hierarchical Clustering (HC) [3]. The
most benign consequence of batch effects is an increase in the measured variability with a
decreased sensitivity to detect biological differences. In the worst scenario, batch effects
can mask completely the underlying biology in the experiment.
Exploratory Data Analysis (EDA) helps in evidencing confounding factors and eventual
outliers. In front of any ’-omics’ experiment it is always wise to perfom an EDA before
any differential expression statistical analysis [4] [5]. The results of this exploratory anal-
ysis, visualized by PCA maps, HC trees, and heatmaps, will inform about the extent of
batch effects and the presence of putative outliers. As a result the analyst may decide
on the inclusion of a blocking factor to take into account the batch effects, or about the
exclusion of a bad conditioned sample.
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2 An example LC-MS/MS dataset

The dataset of this example [5] is the result of an spiking experiment, showing real LC-
MS/MS data obtained in ideal conditions, and optimal to detect batch effect factors.
Samples of 500 micrograms of a standard yeast lysate are spiked either with 200fm or
600fm of a complex mix of 48 human proteins (UPS1, Sigma-Aldrich). The measures
were done in two different runs, separated by a year time. The first run consisted of
four replicates of each condition, and the second run consisted of three replicates of each
condition.
The dataset consists in an instance of the MSnSet class, defined in the MSnbase package
[6], a S4 class [7] [8]. This MSnSet object contains a spectral counts (SpC) matrix in the
assayData slot, and factors treatment and batch in the phenoData slot. (See also the
expressionSet vignette [9])

> library(msmsEDA)

> data(msms.dataset)

> msms.dataset

MSnSet (storageMode: lockedEnvironment)

assayData: 697 features, 14 samples

element names: exprs

protocolData: none

phenoData

sampleNames: U2.2502.1 U2.2502.2 ... U6.0302.3 (14 total)

varLabels: treat batch

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

pubMedIds: http://www.ncbi.nlm.nih.gov/pubmed/22588121

Annotation:

- - - Processing information - - -

MSnbase version: 1.8.0

> dim(msms.dataset)

[1] 697 14

> head(pData(msms.dataset))

treat batch

U2.2502.1 U200 2502

U2.2502.2 U200 2502

U2.2502.3 U200 2502

U2.2502.4 U200 2502

U6.2502.1 U600 2502

U6.2502.2 U600 2502

> table(pData(msms.dataset)$treat)
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U200 U600

7 7

> table(pData(msms.dataset)$batch)

0302 2502

6 8

> table(pData(msms.dataset)$treat, pData(msms.dataset)$batch)

0302 2502

U200 3 4

U600 3 4

The aim of the exploratory data analysis, in this case, is to evidence the existence of
batch effects between the two runs. And eventually to check the opportunity of a simple
batch effects correction.
Before proceeding to the EDA, improper rows in the spectral counts matrix should be
removed. By improper, we mean here, the rows with all zeroes, which could come from the
subsetting from a bigger SpC matrix, and the rows belonging to artefactual identifications
of ’-R’ proteins, also NAs, common when joining datasets in which not exactly the same
proteins are identified, should be substituted by 0.

> e <- pp.msms.data(msms.dataset)

> processingData(e)

- - - Processing information - - -

Subset [697,14][675,14] Mon Oct 14 22:24:20 2013

Applied pp.msms.data preprocessing: Mon Oct 14 22:24:20 2013

MSnbase version: 1.8.0

> dim(e)

[1] 675 14

> setdiff(featureNames(msms.dataset), featureNames(e))

[1] "YER160C-R" "YJR066W-R" "YEL061C-R" "YJL190C (+1)" "YLL057C"

[6] "YBR189W" "YDR227W" "YER103W" "YGR029W" "YNR032C-A"

[11] "YMR172W" "YJL200C" "YDL126C" "YGL173C" "YML037C"

[16] "YHR102W" "YMR165C" "YJL138C (+1)" "YBL046W" "YJL123C"

[21] "YOR123C" "YGR276C"
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3 SpC distribution

A first glance to the contents of the spectral counts matrix is given by the distribution of
SpC by sample, including the number of proteins identified and the total spectral counts
by sample.

> tfvnm <- count.stats(e)

> { cat("\nSample statistics after removing NAs and -R:\n\n")

cat("SpC matrix dimension:",dim(e),"\n\n")

print(tfvnm)

}

Sample statistics after removing NAs and -R:

SpC matrix dimension: 675 14

proteins counts min lwh med hgh max

U2.2502.1 590 5398 0 2 3 8.0 183

U2.2502.2 592 5501 0 2 3 7.0 205

U2.2502.3 586 5477 0 1 3 8.0 202

U2.2502.4 586 5251 0 1 3 7.0 203

U6.2502.1 582 5692 0 1 3 8.5 194

U6.2502.2 577 5686 0 1 3 8.0 208

U6.2502.3 578 5552 0 1 3 8.0 215

U6.2502.4 560 5601 0 1 3 8.0 217

U2.0302.1 512 5629 0 1 2 7.0 409

U2.0302.2 499 5840 0 0 2 7.0 384

U2.0302.3 513 5726 0 1 2 7.0 364

U6.0302.1 491 5975 0 0 2 7.5 395

U6.0302.2 474 5739 0 0 2 7.5 358

U6.0302.3 474 5891 0 0 2 8.0 355

Two graphical means will contribute to visualize this distribution. A set of boxplots
by sample:

> boxplot(exprs(e),las=2,col="lavender")
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Figure 1: Samples boxplots

And a barplot of total SpC normalizing factors:

> nfact <- median(tfvnm[,2])/tfvnm[,2]

> barplot(nfact,las=2,col="lavender")

> abline(h=1,lty=4)
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Figure 2: Normalizing factors barplot
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4 Principal Components Analysis

A plot on the two principal components of the SpC matrix visualizes the clustering of
samples. Ideally the samples belonging to the same condition should cluster together. Any
mixing of samples of different conditions may indicate the influence of some confounding
factors.
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Figure 3: PCA plot on PC1/PC2, showing confounding. The labels are colored by
treatment level on top, and by batch number bellow. Labels themselves are selfexplicative
of treatment condition and batch.

> facs <- pData(e)

> snms <- substr(as.character(facs$treat),1,2)

> snms <- paste(snms,as.integer(facs$batch),sep=".")

> pcares <- counts.pca(e)
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> smpl.pca <- pcares$pca

> { cat("Principal components analisis on the raw SpC matrix\n")

cat("Variance of the first four principal components:\n\n")

print(summary(smpl.pca)$importance[,1:4])

}

Principal components analisis on the raw SpC matrix

Variance of the first four principal components:

PC1 PC2 PC3 PC4

Standard deviation 163.82011 46.11827 32.26952 22.75380

Proportion of Variance 0.84136 0.06668 0.03265 0.01623

Cumulative Proportion 0.84136 0.90804 0.94068 0.95691

Note how in these plots the samples tend to cluster by batch instead of by treatment,
this is evidence of a confounding factor. Something uncontrolled contributes globally to
the results in a higer extend than the treatment itself.

5 Hierarchical clustering

The hierarchical clustering of samples offers another view of the same phenomenon:

> counts.hc(e,facs=pData(e)[, "treat", drop = FALSE])
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Figure 4: Hirearchical clustering of samples, showing confounding. The labels are colored
by treatment level.
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> counts.hc(e,facs=pData(e)[, "batch", drop = FALSE])
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Figure 5: Hirearchical clustering of samples, showing confounding. The labels are colored
by batch number.

6 Heatmap

A heatmap may be more informative than the dendrogram of samples, in the sense that
it allows to identify the proteins most sensitive to this confounding. In this case we
need a heatmap heigh enough to allow room for all the protein names. The function
counts.heatmap provides two heatmaps, the first one is fitted on an A4 page and offers
a general view, the second one is provided in a separate pdf file and is drawn with 3mm
high rows to allow a confortable identification of each protein and its expression profile
in the experiment.
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> counts.heatmap(e,etit="UPS1",fac=pData(e)[, "treat"])
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Figure 6: Global view heatmap. The column color bar is colored as per treatment levels.

7 Batch effects correction

When counfounding is detected due to batch effects, as in this case, and the runs are
balanced in the two conditions to be compared, blocking may help in the reduction of
the residual variance, improving the sensitivity of the statistical tests. When dealing
with spectral counts the usual model for the differential expression tests is a Generalized
Linear Model (GLM) [10] based on the Poisson distribution, the negative binomial, or
the quasi-likelihood, and these models admit blocking as the usual ANOVA [11] when
dealing with normally distributed continous data.

The visualization of the influence of a batch effects correction, in the exploratory data
analysis step, is easily carried out by the so called mean centering approach [4], by which
the centers of each batch are made to coincide concealing the observed bias between the
different batches. The PCA on the batch mean centered expression matrix will then show
the level of improvement.

> counts <- exprs(e)
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> batch <- msms.dataset$batch

> batch.means <- t(apply(counts,1,function(x)

tapply(x,batch,function(v) mean(v))))

> msms.mc <- matrix(0, nrow=nrow(counts), ncol=ncol(counts))

> msms.mc[,batch=="0302"] <- sweep(counts[,batch=="0302"],1,

batch.means[,"0302"])

> msms.mc[,batch=="2502"] <- sweep(counts[,batch=="2502"],1,

batch.means[,"2502"])

> e.mc <- e

> exprs(e.mc) <- msms.mc

> smpl.pca <- counts.pca(e.mc,snms=snms)$pca

> { cat("Principal components analisis on the batch mean centered SpC matrix\n")

cat("Variance of the first four principal components:\n\n")

print(summary(smpl.pca)$importance[,1:4])

}

Principal components analisis on the batch mean centered SpC matrix

Variance of the first four principal components:

PC1 PC2 PC3 PC4

Standard deviation 47.27872 34.02257 24.72344 20.22368

Proportion of Variance 0.40386 0.20914 0.11044 0.07390

Cumulative Proportion 0.40386 0.61300 0.72344 0.79734

> par(mar=c(4,4,0.5,2)+0.1)

> counts.pca(e.mc, facs = pData(e)[, "treat", drop = FALSE],snms=snms)
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Figure 7: PCA plot on the batch mean centered expression matrix, showing now an
acceptable clustering by treatment level.
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This plots shows a clear improvement in the clustering of samples by treatment con-
dition, and suggest that a model with batch as block factor will give better results than
a model just including the treatment factor 1.

8 Dispersion

The simplest distribution used to explain the observed counts in sampling is the Poisson
distribution. With this distribution the variance is equal to the mean, so that the dis-
persion coefficient -the ratio variance to mean- is one. When there are other sources of
variation, apart of the sampling, such as the usual variability among biological replicates,
we talk of overdispersion. In this situation the coefficient of dispersion is greater than
one and the Poisson distribution is unable to explain this extra source of variance. Al-
ternative GLM models able to explain overdispersion are based on the negative binomial
distribution, or on the quasilikelihood [10].

An EDA of a dataset based on counts should include an exploration of the residual
coefficients of dispersion for each of the factors in the experimental design. This will help
in deciding the model to use in the inference step.

The disp.estimates function plots the distribution of residual dispersion coefficients,
and the scatterplot of residual variances vs mean SpC for each of the factors in the
parameter facs, if this parameter is NULL then the factors are taken as default from the
phenoData slot of the MSnSet object.

> dsp <- disp.estimates(e)

> signif(dsp,4)

0.25 0.5 0.75 0.9 0.95 0.99 1

treat 0.4471 0.7500 1.111 1.677 2.474 12.97 67.210

batch 0.2619 0.4264 0.689 1.279 2.071 5.64 8.273

This function returns silently the quartiles and the quantiles at 0.9, 0.95 and 0.99 of the
residual dispersion of each factor. With technical replicates it is not uncommon to observe
most of the dispersion coefficients lower that one. This is a situation of underdispersion,
most likely due to the competitive sampling at the MS system entrance.

1Take nevertheless into account that mean centering is an additive correction (a shift), whereas in
a GLM model with log link the inclusion of a blocking factor represents a multiplicative correction (a
scaling).
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Figure 8: Residual dispersion density plot, and residual variance vs mean scatterplot in
log10 scale, of the batch factor.
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