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Abstract

The R/Bioconductor package, TCC, provides users with a robust and accurate framework
to perform differential expression (DE) analysis of tag count data. We recently developed a
multi-step normalization method (TbT; Kadota et al., 2012 [3]) for two-group RNA-seq data.
The strategy (called DEGES) is to remove data that are potential differentially expressed
genes (DEGs) before performing the data normalization. DEGES in TCC is essential for
accurate normalization of tag count data, especially when the up- and down-regulated DEGs
in one of the groups are extremely biased in their number. A major characteristic of TCC is to
provide the DEGES-based normalization methods for several kinds of count data (two-group
with or without replicates, multi-group, and so on) by virtue of the use of combinations
of functions in other sophisticated packages (especially edgeR, DESeq, and baySeq). The
appropriate combination provided by TCC allows a more robust and accurate estimation to
be performed more easily than directly using original packages and TCC provides a simple
unified interface to perform the robust normalization.
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1 Introduction

Differential expression analysis based on tag count data has become a fundamental task for
identifying differentially expressed genes or transcripts (DEGs). The TCC package (Tag Count
Comparison; Sun et al., 2013 [14]) provides users with a robust and accurate framework to per-
form differential expression analysis of tag count data. TCC provides integrated analysis pipelines
with improved data normalization steps, compared with other packages such as edgeR, DESeq,
and baySeq, by appropriately combining their functionalities. The package incorporates multi-
step normalization methods whose strategy is to remove data that are potential DEGs before
performing the data normalization.

Kadota et al. (2012) [3] recently reported that the normalization methods implemented in R
packages (such as edgeR (Robinson et al., 2010 [1]), DESeq (Anders and Huber, 2010 [8]), and
baySeq (Hardcastle and Kelly, 2010 [6])) for differential expression (DE) analysis between sam-
ples are inadequate when the up- and down-regulated DEGs in one of the samples are extremely
biased in their number (i.e., biased DE). This is because the current methods implicitly assume
a balanced DE, wherein the numbers of highly and lowly expressed DE entities in samples are
(nearly) equal. As a result, methods assuming unbiased DE will not work well on data with
biased DE. Although a major purpose of data normalization is to detect such DE entities, their
existence themselves consequently interferes with their opportunity to be top-ranked. Conven-
tional procedures for identifying DEGs from tag count data consisting of two steps (i.e., data
normalization and identification of DEGs) cannot in principle eliminate the potential DE entities
before data normalization.

To normalize data that potentially has various scenarios (including unbiased and biased
DE), we recently proposed a multi-step normalization strategy (called TbT, an acronym for
the TMM-baySeq-TMM pipeline; Kadota et al., 2012 [3]), in which the TMM normalization
method (Robinson and Oshlack, 2010 [4]) is used in steps 1 and 3 and an empirical Bayesian
method implemented in the baySeq package (Hardcastle and Kelly, 2010 [6]) is used in step 2.
Although this multi-step DEG elimination strategy (called "DEGES” for short) can successfully
remove potential DE entities identified in step 2 prior to the estimation of the normalization
factors using the TMM normalization method in step 3, the baySeq package used in step 2 of
the TbT method is much more computationally intensive than competing packages like edgeR
and DESeq. While the three-step ThT normalization method performed best on simulated and
real tag count data, it is practically possible to make different choices for the methods in each
step. A more comprehensive study regarding better choices for DEGES is needed.

This package provides tools to perform multi-step normalization methods based on DEGES
and enables differential expression analysis of tag count data without having to worry much about
biased distributions of DEGs. The DEGES-based normalization function implemented in TCC
includes the TbT method based on DEGES for two-group data with or without replicates, much
faster method, and methods for multi-group comparison. TCC provides a simple unified interface
to perform data normalization with combinations of functions provided by baySeq, DESeq, and
edgeR. Functions to produce simulation data under various conditions and to plot the data are
also provided.

1.1 Installation

This package is available from the Bioconductor website (http://bioconductor.org/). To install
the package, enter the following command after starting R:

> source("http://bioconductor.org/biocLite.R")
> biocLite("TCC")



1.2 Citations

This package internally uses many of the functions implemented in the other packages. This is
because our normalization procedures consist, in part, of combinations of existing normalization
methods and differential expression (DE) methods.

For example, the ThT normalization method (Kadota et al., 2012 [3]), which is a particular
functionality of the TCC package (Sun et al., 2013 [14]), consists of the TMM normalization
method (Robinson and Oshlack, 2010 [4]) implemented in the edgeR package (Robinson et al.,
2010 [1]) and the empirical Bayesian method implemented in the baySeq package (Hardcastle
and Kelly, 2010 [6]). Therefore, please cite the appropriate references when you publish your
results.

> citation("TCC")

1.3 Quick start

Let us begin by showing two examples (Casesl and 2) of identifying DEGs between two groups
from tag count data consisting of 1,000 genes and a total of six samples (each group has three
biological replicates). The hypothetical count data (termed “hypoData”) is stored in this package
(for details, see section 2.1). We then describe the DE analysis of count data without replicates
(i.e., two samples), using the data of the first and the fourth column of hypoData (Case 3). We
recommend the use of commands in Cases 2 and 3.

Case 1: DE analysis of two-group count data with replicates by using the exact test (Robin-
son and Smyth, 2008 [13]) in edgeR coupled with ThT normalization (termed the ThT-edgeR
combination). The TCC package was originally designed with the ThT normalization method,
and the original study (Kadota et al., 2012 [3]) recommended this analysis pipeline. Note that a
smaller sampling size (i.e., samplesize = 100) is used here to reduce the computation time, but
a larger sampling size of around 10,000 (i.e., samplesize = 10000) is recommended (Hardcastle
and Kelly, 2010 [6]). Suggested citations are as follows: TCC (Sun et al., 2013 [14]), TbT (Kadota
et al., 2012 [3]), TMM (Robinson and Oshlack, 2010 [4]), baySeq (Hardcastle and Kelly, 2010
[6]), and edgeR (Robinson et al., 2010 [1]). For details, see section 3.1.1.

> library(TCC)

> data(hypoData)

> samplesize <- 100

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <~ calcNormFactors(tcc, norm.method = "tmm", test.method = "bayseq",
+ iteration = 1, samplesize = samplesize)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> result <- getResult(tcc, sort = TRUE)

> head(result)

gene_id a.value m.value p.value gq.value rank estimatedDEG
1561 gene_151 9.738808 -2.713958 1.042664e-10 1.042664e-07 1 1
599 gene_599 5.931941 -3.236634 1.935830e-09 7.286572e-07 2 1
39 gene_39 7.112252 -2.420126 2.185972e-09 7.286572e-07 3 1
68 gene_68 6.208340 -2.828355 8.358502e-09 2.089625e-06 4 1
175 gene_175 7.983199 -2.335777 1.527655e-08 3.036351e-06 5 1
144 gene_144 7.588610 -2.089318 2.025461e-08 3.036351e-06 6 1



Case 2: DE analysis for two-group count data with replicates by using the exact test coupled
with iterative DEGES/edgeR normalization (i.e., the iDEGES/edgeR-edgeR combination). This
is an alternative pipeline designed to reduce the runtime (approx. 20 sec.), yet its performance
is comparable to the above pipeline. Accordingly, we recommend using this pipeline as a default
when analyzing tag count data with replicates. A notable advantage of this pipeline is that the
multi-step normalization strategy only needs the methods implemented in the edgeR package.
The suggested citations are as follows: TCC (Sun et al., 2013 [14]), TMM (Robinson and Oshlack,
2010 [4]), the exact test (Robinson and Smyth, 2008 [13]), and edgeR (Robinson et al., 2010 [1]).
For details, see section 3.1.3.

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> result <- getResult(tcc, sort = TRUE)

> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG
151 gene_151 9.736785 -2.753816 4.641083e-11 4.641083e-08 1 1
39 gene_39 7.110842 -2.460691 9.115042e-10 3.270783e-07 2 1
599 gene_599 5.927173 -3.282264 9.812348e-10 3.270783e-07 3 1
68 gene_68 6.209395 -2.867694 4.776945e-09 1.194236e-06 4 1
175 gene_175 7.984265 -2.373657 1.082493e-08 1.899827e-06 5 1
144 gene_144 7.588164 -2.130092 1.139896e-08 1.899827e-06 6 1

Case 3: DE analysis for two-group count data without replicates by using the negative bino-
mial (NB) test in DESeq coupled with iDEGES/DESeq normalization (i.e., the iDEGES/DESeq-
DESeq combination). A procedure using the data of the first and fourth columns of hypoData
is shown here. Similar to Case 2, this pipeline entirely consists of methods implemented in the
DESeq package. Suggested citations are as follows: TCC (Sun et al., 2013 [14]) and DESeq (Anders
and Huber, 2010 [8]). For details, see section 3.2.

> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> tcc <- new("TCC", hypoDatal,c(1,4)], group)
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)
> tcc <- estimateDE(tcc, test.method = "deseq", FDR = 0.1)
> result <- getResult(tcc, sort = TRUE)
> head(result)

gene_id a.value m.value p.value gq.value rank estimatedDEG
36 gene_36 -0.9988563 -8.525340 0.0002119999 0.2011879 1 0
17  gene_17 5.9635499 -5.470058 0.0064590145 1.0000000 2 0
5 gene_5 3.3084986 -6.499805 0.0184836363 1.0000000 3 0



989 gene_989 -0.9988563 -5.839291 0.0252092271 1.0000000
187 gene_187 3.6973024 5.507222 0.0321082546 1.0000000
822 gene_822 -0.9988563 5.436833 0.0522752310 1.0000000

4
5
6

o



2 Preparations

2.1 Reading the count data

Similar to the other packages, TCC typically starts the DE analysis with a count table matrix
where each row indicates a gene (or transcript), each column indicates a sample (or library), and
each cell indicates the number of counts for a gene in a sample. Here, we assume a hypothetical
count matrix consisting of 1,000 rows (or genes) and a total of six columns (the first three columns
are produced from biological replicates of Group 1 and the remaining columns are from Group
2); i.e., {Gl_repl, Gl rep2, Gl_rep3} vs. {G2_repl, G2_rep2, G2_rep3}. We start by loading the
hypothetical data (hypoData) from TCC and giving a numeric vector (group) indicating which
group each sample belongs to.

> library(TCC)
> data(hypoData)
> head (hypoData)

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3

gene_1 34 45 122 16 14 29
gene_2 358 388 22 36 25 68
gene_3 1144 919 990 374 480 239
gene_4 0 0 44 18 0 0
gene_b5 98 48 17 1 8 5
gene_6 296 282 216 86 62 69

> dim(hypoData)
[1] 1000 6

> group <- c(1, 1, 1, 2, 2, 2)

If you want to analyze another count matrix consisting of nine columns (e.g., the first four
columns are produced from biological replicates of G1, and the remaining five columns are from
G2), the group vector should be indicated as follows.

> group <- c(1, 1, 1, 1, 2, 2, 2, 2, 2)

2.2 Constructing TCC class object

The new function has to be used to perform the main functionalities of TCC. This function
constructs a TCC class object, and subsequent analyses are performed on this class object. The
object is constructed from i) a count matrix (hypoData) and ii) the corresponding numeric vector
(group) as follows.

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)
> tcc



Count:
Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3

gene_1 34 45 122 16 14 29
gene_2 358 388 22 36 25 68
gene_3 1144 919 990 374 480 239
gene_4 0 0 44 18 0 0
gene_5 98 48 17 1 8 5
gene_6 296 282 216 86 62 69
Sample:

group norm.factors lib.sizes
Gl_repl 1 1 142177
Gl_rep2 1 1 145289
Gl_rep3 1 1 149886
G2_repl 2 1 112100
G2_rep2 2 1 104107
G2_rep3 2 1 101975

The count matrix and group vector information can be retrieved from the stored class object
by using tcc$count and tcc$group, respectively.

> head(tcc$count)

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3

gene_1 34 45 122 16 14 29
gene_2 358 388 22 36 25 68
gene_3 1144 919 990 374 480 239
gene_4 0 0 44 18 0 0
gene_b5 98 48 17 1 8 5
gene_6 296 282 216 86 62 69

> tcc$group

group
Gl_repl
G1l_rep2
G1l_rep3
G2_repl
G2_rep2
G2_rep3

N NN - = =

The subset of TCC class object can be taken by the subset or "[" functions.

> dim(tcc$count)

[1] 1000 6



> tcc.subl <- subset(tcc, c(rep(TRUE, 20), rep(FALSE, 980)))
> dim(tcc.subl$count)

[1] 20 6

> tcc.sub2 <- tcc[1:20]
> dim(tcc.sub2$count)

[1] 20 6

2.3 Filtering low-count genes (optional)

The way to filter out genes with low-count tags across samples depends on the user’s philosophy.
Although we recommend removing tags with zero counts across samples as a minimum filtering,
this effort is optional. The filterLowCountGenes function performs this filtering.

library (TCC)

data(hypoData)

group <- c(1, 1, 1, 2, 2, 2)

tcc <- new("TCC", hypoData, group)
tcc <- filterLowCountGenes(tcc)
dim(tcc$count)

V V V V Vv V

[1] 996 6

It can be seen that 4(= 1000 —996) genes were filtered as non-expressed. The same procedure
can be performed without the filterLowCountGenes function, in which case the filtering is
performed before the TCC class object is constructed.

> filter <- as.logical(rowSums(hypoData) > 0)
> dim(hypoData[filter, ])

[1] 996 6

> tcc <- new("TCC", hypoDatal[filter, ], group)
> dim(tcc$count)

[1] 996 6



3 Normalization

3.1 Normalization of two-group count data with replicates

This package provides robust normalization methods based on DEGES proposed by Kadota et
al. (2012) [3]. When obtaining normalization factors from two-group data with replicates, users
can select a total of six combinations (two normalization methods x three DEG identification
methods) coupled with an arbitrary number of iterations (n = 0,1,2,...,100) in our DEGES-
based normalization pipeline. We show some of the practical combinations below.

Since the three-step TbT normalization method was originally designed for normalizing tag
count data with (biological) replicates, we will first explain the ThT method (3.1.1 DEGES/TbT).
In relation to the other DEGES-based methods, we will call the method "DEGES/TbT” for
convenience. As mentioned in the original study, DEGES/TbT needs a long computation time.
Accordingly, we present three shorter alternatives (3.1.2 DEGES/edgeR, 3.1.3 iDEGES/edgeR,
and 3.1.4 DEGES/DESeq). Note that the purpose here is to obtain accurate normalization factors
to be used with statistical models (e.g., the exact test or empirical Bayes) for the DE analysis
described in the next section (4 Differential expression).

3.1.1 DEGES/TbT

The DEGES/TbT (Kadota et al., 2012 [3]) with default parameter settings can be performed as
follows.

set.seed(1000)

library(TCC)

data(hypoData)

samplesize <- 100

group <- c(1, 1, 1, 2, 2, 2)

tcc <- new("TCC", hypoData, group)

tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "bayseq",
iteration = 1, samplesize = samplesize)

+ V V V V V V YV

Note that a smaller sampling size (i.e., samplesize = 100) is used here to reduce the compu-
tation time when performing the empirical Bayesian method in step 2, but a larger sampling size
of around 10,000 (i.e., samplesize = 10000) is recommended (Hardcastle and Kelly, 2010 [6]).
This method estimates an empirical distribution of the parameters of the NB distribution by
bootstrapping from the input data. While the sampling size can be made smaller to reduce the
computation time (e.g., samplesize = 40), the resulting normalization factors will vary from
trial to trial. In this vignette, we will call the set.seed function for obtaining reproducible
results (i.e., the tcc$norm.factors values) when using any random function. The calculated
normalization factors and the computation time can be retrieved with the following commands.

> tcc$norm.factors

Gl_repl G1l_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
0.8915273 0.8547597 0.8339354 1.0740765 1.1617617 1.1839393

> tcc$DEGES$execution.time

10



user system elapsed
9.869 0.000 9.958

Of course, the procedure can be performed by using functions in edgeR and baySeq, instead
of using the calcNormFators function in TCC. The calcNormFators function together with the
above parameter settings can be regarded as a wrapper function for the following commands.

set.seed (1000)

library(TCC)

data(hypoData)

samplesize <- 100

group <- c(1, 1, 1, 2, 2, 2)

### STEP 1 ###

d <- DGEList(count = hypoData, group = group)

d <- calcNormFactors(d)

norm.factors <- d$samples$norm.factors

norm.factors <- norm.factors / mean(norm.factors)

### STEP 2 ###

cD <- new("countData", data = hypoData, replicates = group,
groups = list(NDE = rep(1l, length = length(group)), DE = group),
libsizes = colSums(hypoData) * norm.factors)

cD <- getPriors.NB(cD, samplesize = samplesize, estimation = "QL", cl = NULL)

cD <- getLikelihoods.NB(cD, pET = "BIC", cl = NULL)

VV + +V VVVVVVVVVYVYV

is.DEG <- as.logical(rank(-cD@posteriors[, "DE"]) <
(nrow(hypoData) * cD@estProps[2]))
### STEP 3 ###
d <- DGEList(count = hypoDatal[!is.DEG, ], group = group)
d <- calcNormFactors(d)
norm.factors <- d$samples$norm.factors * colSums(hypoData['is.DEG, ]) /
colSums (hypoData)
norm.factors <- norm.factors / mean(norm.factors)
norm.factors

V V + V V V V 4+ V

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
0.8915273 0.8547597 0.8339354 1.0740765 1.1617617 1.1839393

3.1.2 DEGES/edgeR

Now let us describe an alternative approach that is roughly 200-400 times faster than DEGES/TbT,
yet has comparable performance. The TMM-edgeR-TMM pipeline (called DEGES/edgeR) em-
ploys the exact test implemented in edgeR in step 2. To use this pipeline, we have to provide a
reasonable threshold for defining potential DEGs in step 2. We will define the threshold as an
arbitrary false discovery rate (FDR) with a floor value of Ppye. The default FDR is < 0.1, and
the default floor Ppge is 5%, but different choices are of course possible. For example, in case of
the default settings, % (z > 5%) of the top-ranked potential DEGs are eliminated in step 2 if
the percentage (= %) of genes satisfying FDR < 0.1 is over 5%. The DEGES/edgeR pipeline
has an apparent advantage over TbT in computation time. It can be performed as follows:

11



library(TCC)

data(hypoData)

group <- c(1, 1, 1, 2, 2, 2)

tcc <- new("TCC", hypoData, group)

tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
iteration = 1, FDR = 0.1, floorPDEG = 0.05)

V + V V V V V

tcc$norm. factors

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
0.8745111 0.8449577 0.8406663 1.0806355 1.1514213 1.2078082

> tcc$DEGES$execution.time

user system elapsed
0.340 0.000 0.341

The normalization factors calculated from the DEGES/edgeR are very similar to those of
DEGES/TbT with the default parameter settings (i.e., samplesize = 10000). For edgeR users,
we provide commands, consisting of functions in edgeR, to perform the DEGES/edgeR pipeline
without TCC. The calcNormFators function together with the above parameter settings can be
regarded as a wrapper function for the following commands.

library (TCC)
data(hypoData)
group <- c(1, 1, 1, 2, 2, 2)
FDR <- 0.1
floorPDEG <- 0.05
d <- DGEList(counts = hypoData, group = group)
### STEP 1 ###
d <- calcNormFactors(d)
### STEP 2 ###
d <- estimateCommonDisp(d)
d <- estimateTagwiseDisp(d)
result <- exactTest(d)
q.value <- p.adjust(result$table$PValue, method = "BH")
if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {
is.DEG <- as.logical(q.value < FDR)
} else {
is.DEG <- as.logical(rank(result$table$PValue, ties.method = "min") <=
nrow(hypoData) * floorPDEG)
}
### STEP 3 ###
d <- DGEList(counts = hypoDatal!is.DEG, ], group = group)
d <- calcNormFactors(d)
norm.factors <- d$samples$norm.factors * colSums(hypoDatal[!is.DEG, 1) /
colSums (hypoData)
norm.factors <- norm.factors / mean(norm.factors)
norm.factors

VV+VVVYV+ + 4+ 4+ +VVVVVVVVVVVYVVYV

12



Gl_repl G1l_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
0.8745111 0.8449577 0.8406663 1.0806355 1.1514213 1.2078082

3.1.3 iDEGES/edgeR

Our multi-step normalization can be repeated until the calculated normalization factors converge
(Kadota et al., 2012 [3]). An iterative version of DEGES/TbT (i.e., iDEGES/TbT) can be
described as the TMM-(baySeq-TMM),, pipeline with n > 2. Although the iDEGES/TbT
would not be practical in terms of the computation time, the TMM-(edgeR-TMM),, pipeline
(iDEGES/edgeR) is potentially superior to both the DEGES/edgeR and the DEGES/TbT. A
suggested iDEGES/edgeR implementation (n = 3) consists of seven steps, as follows:

library (TCC)

data(hypoData)

group <- c(1, 1, 1, 2, 2, 2)

tcc <- new("TCC", hypoData, group)

tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
iteration = 3, FDR = 0.1, floorPDEG = 0.05)

vV + V V V V V

tcc$norm.factors

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
0.8766053 0.8450605 0.8346595 1.0842097 1.1538160 1.2056491

> tcc$DEGES$execution.time

user system elapsed
1.164 0.000 1.166

3.1.4 DEGES/DESeq

The DEGES pipeline can also be performed by using only the functions in the DESeq package.
Similar to the edgeR case above, this DESeq-DESeq-DESeq pipeline (DEGES/DESeq) changes the
corresponding arguments of the norm.method and test.method as follows:

library(TCC)

data(hypoData)

group <- c(1, 1, 1, 2, 2, 2)

tcc <- new("TCC", hypoData, group)

tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
iteration = 1, FDR = 0.1, floorPDEG = 0.05)

V + V V V V V

tcc$norm. factors

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
0.8885503 0.8810866 0.8298458 1.0698392 1.1513431 1.1793351

> tcc$DEGES$execution.time
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user system elapsed
0.952 0.000 0.956

For DESeq users, we also provide commands, consisting of functions in DESeq, to perform
the DEGES/DESeq pipeline without TCC. The calcNormFators function together with the above
arguments can be regarded as a wrapper function for the following commands.

library(TCC)
data(hypoData)
group <- c(1, 1, 1, 2, 2, 2)
FDR <- 0.1
floorPDEG <- 0.05
cds <- newCountDataSet (hypoData, group)
### STEP 1 ###
cds <- estimateSizeFactors(cds)
### STEP 2 ###
cds <- estimateDispersions(cds)
result <- nbinomTest(cds, 1, 2)
result$pval[is.na(result$pval)] <- 1
result$padjlis.na(result$padj)] <- 1
q.value <- result$padj
if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {
is.DEG <- as.logical(q.value < FDR)
} else {
is.DEG <- as.logical(rank(result$pval, ties.method = "min") <=
nrow(hypoData) * floorPDEG)
}
### STEP 3 ###
cds <- newCountDataSet(hypoDatal!is.DEG, ], group)
cds <- estimateSizeFactors(cds)
norm.factors <- sizeFactors(cds) / colSums(hypoData)
norm.factors <- norm.factors / mean(norm.factors)

VVVVVYV + + + + +VVVVVVVVVVVVYVVYV

norm.factors

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
0.8885503 0.8810866 0.8298458 1.0698392 1.1513431 1.1793351

3.2 Normalization of two-group count data without replicates

It is important to keep in mind that most R packages (including edgeR, DESeq, and baySeq) are
primarily for analyzing data including biological replications because the biological variability
has to be accurately estimated to avoid spurious DE calls (Glaus et al., 2012 [10]). In fact,
the functions for the DEG identification method implemented in edgeR (i.e., the exact test; ver.
3.0.4) do not allow analysis without replicates, though the TMM normalization method in the
package can be applied to data regardless of whether it has replicates. Although the edgeR
manual provides users with some ideas on how to perform the DE analysis, it is difficult to
customize the analysis with DEGES to data without replicates.

When obtaining normalization factors from two-group count data without replicates, users
can select a total of four combinations (two normalization methods x two DEG identification
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methods) coupled with an arbitrary number of iterations (n = 0,1,2,...,100) in our DEGES-
based normalization pipeline. That is, the calcNormFators function with the norm.method =
"deseq" or "tmm" and test.method = "deseq" or "bayseq" can be indicated. Let us explain
the procedure by retrieving the data of the first and the fourth columns of hypoData, i.e.,

> library(TCC)

> data(hypoData)

> group <- c(1, 2)

> tcc <- new("TCC", hypoDatal, c(1, 4)], group)

> head(tcc$count)
Gl_repl G2_repl

gene_1 34 16

gene_2 358 36

gene_3 1144 374

gene_4 0 18

gene_b5 98 1

gene_6 296 86

> tcc$group

group
G1l_repl 1
G2_repl 2

A DEGES pipeline (DEGES/DESeq) for obtaining normalization factors is as follows.

> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)
> tcc$norm.factors

Gl_repl G2_repl
0.921658 1.078342

An advantage of this DEGES/DESeq pipeline is that the multi-step normalization strategy
only needs the methods in the DESeq package. These factors should be the same as those produced
by the following procedure consisting of functions implemented in DESeq.

library (TCC)

data(hypoData)

group <- c(1, 2)

FDR <- 0.1

floorPDEG <- 0.05

cds <- newCountDataSet (hypoDatal, c(1, 4)], group)

### STEP 1 ###

cds <- estimateSizeFactors(cds)

### STEP 2 ###

cds <- estimateDispersions(cds, method = "blind", sharingMode = "fit-only")

V VV V V V V V V.YV
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result <- nbinomTest(cds, 1, 2)

result$pval [is.na(result$pval)] <- 1

result$padjis.na(result$padj)] <- 1

q.value <- result$padj

if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {
is.DEG <- as.logical(q.value < FDR)

} else {
is.DEG <- as.logical(rank(result$pval, ties.method = "min") <=

nrow(hypoData) * floorPDEG)

}

### STEP 3 ###

cds <- newCountDataSet (hypoDatal[!is.DEG, c(1, 4)], group)

cds <- estimateSizeFactors(cds)

norm.factors <- sizeFactors(cds) / colSums(hypoDatal, c(1, 4)]1)

norm.factors <- norm.factors / mean(norm.factors)

norm.factors

VVVVVYV + + + + 4+ V V.V VYV

Gl_repl G2_repl
0.921658 1.078342

3.3 Normalization of multi-group count data with replicates

Many R packages (including edgeR, DESeq, and baySeq) support DE analysis for multi-group
tag count data. TCC provides some prototypes of DEGES-based pipelines for such data. Here,
we analyze another hypothetical three-group count matrix, the hypoData_mg object, provided in
TCC. It consists of 1,000 genes and a total of nine columns for testing any difference among three
groups that each have triplicates.

> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)
> tcc
Count:

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3 G3_repl G3_rep2 G3_rep3
gene_1 63 48 31 15 12 12 24 15 14
gene_2 18 0 7 2 3 8 3 5 2
gene_3 106 66 25 9 14 14 11 11 3
gene_4 4 9 6 1 6 1 0 2 2
gene_b5 0 1 2 1 0 1 0 0 1
gene_6 57 100 83 20 5 16 26 7 21
Sample:

group norm.factors lib.sizes
Gl_repl 1 1 150490
Gl_rep2 1 1 166665
Gl_rep3 1 1 199283
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G2_repl 2 1 183116
G2_rep2 2 1 126651
G2_rep3 2 1 131377
G3_repl 3 1 149828
G3_rep2 3 1 150288
G3_rep3 3 1 141702

> dim(tcc$count)

[1] 1000 9

Of the 1,000 genes, the first 200 genes are DEGs and the remaining 800 genes are non-
DEGs. The breakdowns for the 200 DEGs are as follows: 140, 40, and 20 DEGs are up-regulated
in Groups 1, 2, and 3. Below, we show some DEGES-based normalization pipelines for this
multi-group data (3.3.1 DEGES/TbT, 3.3.2 DEGES/edgeR, and 3.3.3 DEGES/DESeq).

3.3.1 DEGES/TbT

The DEGES/TbT pipeline for multi-group data is essentially the same as those for two-group
data with/without replicates. Note that a smaller sampling size (i.e., samplesize = 100) is
used here to reduce the computation time, but a larger sampling size of around 10,000 (i.e.,
samplesize = 10000) is recommended (Hardcastle and Kelly, 2010 [6]).

> set.seed(1000)

> library(TCC)

> data(hypoData_mg)

> samplesize <- 100

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "bayseq",
+ iteration = 1, samplesize = samplesize)

> tcc$norm.factors

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3 G3_repl G3_rep2
1.0369575 0.9165584 0.7861750 0.8229178 1.1755355 1.1965579 1.0224641 1.0227613
G3_rep3
1.0200725

3.3.2 DEGES/edgeR

edgeR employs generalized linear models (GLMs) to find DEGs between any of the groups. The
DEGES/edgeR normalization pipeline in TCC internally uses functions for the GLM approach
that require two models (a full model and a null model). The full model corresponds to a design
matrix to describe sample groups. The null model corresponds to the model coefficients. The
two models can be defined as follows:
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V V V V V V

library(TCC)

data(hypoData_mg)

group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

tcc <- new("TCC", hypoData_mg, group)
design <- model.matrix(~ as.factor(group))
coef <- 2:length(unique(group))

The design matrix (design) can be constructed by using the model.matrix function. For

the model coefficients (coef), the user should specify all the coefficients except for the intercept
term. The two models (design and coef) will automatically be generated when performing the
following calcNormFactors function if those models are not explicitly indicated.

>
+
>

tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
iteration = 1)
tcc$norm. factors

G1l_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3 G3_repl G3_rep2

.0375941 0.9040316 0.7825986 0.8327883 1.1751212 1.2029691 1.0140550 1.0325848

G3_rep3

.0182572

For edgeR users, we provide commands, consisting of functions in edgeR, to perform the

DEGES/edgeR pipeline without TCC. The calcNormFators function together with the above
parameter settings can be regarded as a wrapper function for the following commands.

+ + + + + VVVVVVVVVVVVVVVVYVYVYVYV

library (TCC)

data(hypoData_mg)

group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

tcc <- new("TCC", hypoData_mg, group)

FDR <- 0.1

floorPDEG <- 0.05

design <- model.matrix(~ as.factor(group))

coef <- 2:length(unique(group))

d <- DGEList(counts = hypoData_mg, group = group)

### STEP 1 ###

d <- calcNormFactors(d)

### STEP 2 ###

d <- estimateGLMCommonDisp(d, design)

d <- estimateGLMTrendedDisp(d, design)

d <- estimateGLMTagwiseDisp(d, design)

fit <- glmFit(d, design)

1rt <- glmLRT(fit, coef = coef)

result <- topTags(lrt, n = nrow(hypoData_mg))

result <- result$table[rownames (hypoData_mg), ]

if (sum(result$FDR < FDR) > (floorPDEG * nrow(hypoData_mg))) {
is.DEG <- as.logical(result$FDR < FDR)

} else A{
is.DEG <- as.logical(rank(result$PValue, ties.method = "min") <=

nrow(hypoData_mg) * floorPDEG)

18



V V. + V V V VvV

### STEP 3 ###

d <- DGEList(counts = hypoData_mg[!is.DEG, ], group = group)

d <- calcNormFactors(d)

norm.factors <- d$samples$norm.factors * colSums(hypoData_mg[!is.DEG, 1) /
colSums (hypoData_mg)

norm.factors <- norm.factors / mean(norm.factors)

norm.factors

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3 G3_repl G3_rep2

.0375941 0.9040316 0.7825986 0.8327883 1.1751212 1.2029691 1.0140550 1.0325848

G3_rep3

.0182572

3.3.3 DEGES/DESeq

DESeq also employs GLMs for analyzing multi-group experiments. Similar to the edgeR package,
it requires two models (full model and reduced model). The full model (£it1) and reduced model
(£1t0) can be created as follows:

vV V V V V V

library (TCC)

data(hypoData_mg)

group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
tcc <- new("TCC", hypoData_mg, group)
fitl <- count ~ condition

£it0 <- count " 1

The two models (fit1 and £it0) will automatically be generated when performing the fol-

lowing calcNormFactors function if those models are not explicitly indicated.

\

tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
iteration = 1)
tcc$norm. factors

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3 G3_repl G3_rep2

.0232434 0.9096572 0.8017352 0.8249186 1.2025101 1.1728534 0.9884002 1.0164697

G3_rep3

.0602121

For DESeq users, we provide commands, consisting of functions in DESeq, to perform the

DEGES/ DESeq pipeline without TCC. The calcNormFators function together with the above
parameter settings can be regarded as a wrapper function for the following commands.

V V V V V V V

library(TCC)

data(hypoData_mg)

group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
FDR <- 0.1

floorPDEG <- 0.05

tcc <- new("TCC", hypoData_mg, group)
fitl <- count ~ condition
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V V V V V V VvV

VVVVVYV + + + + + V VVYV

fit0 <- count " 1

cds <- newCountDataSet (hypoData_mg, group)
### STEP 1 ###

cds <- estimateSizeFactors(cds)

### STEP 2 ###

cds <- estimateDispersions(cds)
reduced.model <- fitNbinomGLMs(cds, £it0)

full.model <- fitNbinomGLMs(cds, fitl)

p.value <- nbinomGLMTest (full.model, reduced.model)
p-valuel[is.na(p.value)] <- 1
q.value <- p.adjust(p.value, method = "BH")
if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData_mg))) {
is.DEG <- as.logical(q.value < FDR)
} else {
is.DEG <- as.logical(rank(p.value, ties.method = "min") <=
nrow(hypoData_mg) * floorPDEG)
}
### STEP 3 ###
cds <- newCountDataSet (hypoData_mg[!is.DEG, ], group)
cds <- estimateSizeFactors(cds)
norm.factors <- sizeFactors(cds) / colSums(hypoData_mg)
norm.factors <- norm.factors / mean(norm.factors)
norm.factors

Gl_repl G1l_rep2 G1l_rep3 G2_repl G2_rep2 G2_rep3 G3_repl

G3_rep3

.0602121

3.4 Retrieving normalized data

G3_rep2

.0232434 0.9096572 0.8017352 0.8249186 1.2025101 1.1728534 0.9884002 1.0164697

Similar functions for calculating normalization factors are the calcNormFators function in edgeR
and the estimateSizeFactors function in DESeq. Note that the terminology used in DESeq
(i.e., size factors) is different from that used in edgeR (i.e., effective library sizes) and ours. The
effective library size in edgeR is calculated as the library size multiplied by the normalization
factor. The size factors in the DESeq package are comparable to the normalized effective library

sizes wherein the summary statistics for the effective library sizes are adjusted to one.

Our

normalization factors, which can be obtained from tcc$norm.factors, have the same names as
those in edgeR. Accordingly, the normalization factors calculated from TCC with arbitrary options
should be manipulated together with the library sizes when normalized read counts are to be
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obtained. Since biologists are often interested in such information (Dillies et al., 2012 [2]), we
provide the getNormalizedData function for retrieving normalized data.

Note that the hypoData consists of 1,000 genes and a total of six samples (three biological
replicates for G1 and three biological replicates for G2); i.e., {Gl_repl, Gl.rep2, Gl rep3} vs.
{G2_repl, G2_rep2, G2_rep3}. These simulation data have basically the same conditions as
shown in Fig. 1 of the TbT paper (Kadota et al., 2012 [3]); i.e., (i) the first 200 genes are
DEGs (Pprg = 200/1000 = 20%), (ii) the first 180 genes of the 200 DEGs are higher in G1
(Pa1 = 180/200 = 90%), and the remaining 20 DEGs are higher in G2, and (iii) the level of
DE is four-fold. The last 800 genes were designed to be non-DEGs. The different normalization
strategies can roughly be evaluated in terms of the similarity of their summary statistics for
normalized data labeled as non-DEGs in one group (e.g., G1) to those of the other group (e.g.,
G2). The basic statistics for the non-DEGs are as follows.

> library(TCC)

> data(hypoData)

> nonDEG <- 201:1000

> summary (hypoData[nonDEG, ])

Gl_repl Gl_rep2 G1l_rep3 G2_repl
Min. : 0.00 Min. : 0 Min. : 0.00 Min. : 0.0
1st Qu.: 3.00 1st Qu.: 4 1st Qu.: 3.00 1st Qu.: 3.0
Median : 20.50 Median : 20 Median : 20.00 Median : 21.0
Mean : 103.36 Mean : 105 Mean : 104.45 Mean : 113.8
3rd Qu.: 74.25 3rd Qu.: 68 3rd Qu.: 73.25 3rd Qu.: 68.0
Max. :8815.00 Max. 19548 Max. :8810.00 Max. :9304.0

G2_rep2 G2_rep3
Min. : 0 Min. : 0.0
1st Qu.: 3 1st Qu.: 3.0
Median : 21 Median : 20.0
Mean : 105 Mean : 104.6
3rd Qu.: 70 3rd Qu.: 70.0
Max. 19466 Max. :9320.0

From now on, we will display only the median values for simplicity, i.e.,
> apply (hypoData[nonDEG, ], 2, median)
Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3

20.5 20.0 20.0 21.0 21.0 20.0

In what follows, we show detailed examples using hypoData. Note, however, that the basic
usage is simple.

> normalized.count <- getNormalizedData(tcc)
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3.4.1 Retrieving two-group DEGES/edgeR-normalized data with replicates

The getNormalizedData function can be applied to the TCC class object after the normalization
factors have been calculated.

library(TCC)

data(hypoData)

nonDEG <- 201:1000

group <- c(1, 1, 1, 2, 2, 2)

tcc <- new("TCC", hypoData, group)

tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
iteration = 1, FDR = 0.1, floorPDEG = 0.05)

normalized.count <- getNormalizedData(tcc)

apply(normalized.count [nonDEG, ], 2, median)

V V + V V V V V V

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
20.26002 20.01902 19.50410 21.30174 21.52711 19.95349

The same procedure consisting of functions in edgeR is

library (TCC)
data(hypoData)
nonDEG <- 201:1000
group <- c(1, 1, 1, 2, 2, 2)
FDR <- 0.1
floorPDEG <- 0.05
d <- DGEList(counts = hypoData, group = group)
### Step 1 ###
d <- calcNormFactors(d)
### Step 2 ###
d <- estimateCommonDisp(d)
d <- estimateTagwiseDisp(d)
result <- exactTest(d)
q.value <- p.adjust(result$table$PValue, method = "BH")
if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {
is.DEG <- as.logical(q.value < FDR)
} else {
is.DEG <- as.logical(order(rank(result$table$PValue)) <=
nrow(hypoData) * floorPDEG)
}
### Step 3 ###
d <- DGEList(counts = hypoDatal[!is.DEG, ], group = group)
d <- calcNormFactors(d)
norm.factors <- d$samples$norm.factors * colSums(hypoDatal[!is.DEG, 1) /
colSums (hypoData)
norm.factors <- norm.factors / mean(norm.factors)
effective.libsizes <- colSums(hypoData) * norm.factors
normalized.count <- sweep(hypoData, 2,
mean(effective.libsizes) / effective.libsizes, "x*")
apply(normalized.count [nonDEG, ], 2, median)

vV +V VYV +VVVYV+ ++++4+VVVVVVVVVVVYVVVYV
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Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
20.26002 20.01902 19.50410 21.30174 21.52711 19.95349

It is obvious that the summary statistics (ranging from 19.50410 to 21.52711) from DEGES/edgeR-
normalized data are close to the truth (i.e., ranging from 20.0 to 21.0). For comparison, the
summary statistics for TMM-normalized data produced using the original normalization method
(i.e., TMM) in edgeR are obtained as follows.

library (TCC)

data(hypoData)

nonDEG <- 201:1000

group <- c(1, 1, 1, 2, 2, 2)

d <- DGEList(count = hypoData, group = group)

d <- calcNormFactors(d)

norm.factors <- d$samples$norm.factors

norm.factors <- norm.factors / mean(norm.factors)

effective.libsizes <- colSums(hypoData) * norm.factors

normalized.count <- sweep(hypoData, 2,
mean(effective.libsizes) / effective.libsizes, "x*")

apply(normalized.count [nonDEG, ], 2, median)

V + VV V V V V V V VYV

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
19.35893 19.01078 18.59060 22.98591 22.16273 21.00685

This is the same as

library (TCC)

data(hypoData)

nonDEG <- 201:1000

group <- c(1, 1, 1, 2, 2, 2)

tcc <- new("TCC", hypoData, group)

tcc <- calcNormFactors(tcc, norm.method = "tmm", iteration = 0)
normalized.count <- getNormalizedData(tcc)
apply(normalized.count [nonDEG, ], 2, median)

V V V V V V V V

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
19.35893 19.01078 18.59060 22.98591 22.16273 21.00685

From the viewpoint of the data distribution of non-DEGs, these statistics (ranging from
18.59060 to 22.98591) are not as good as those of DEGES/edgeR.

3.4.2 Retrieving two-group DEGES/DESeqg-normalized data with replicates
Similar to the DEGES/edgeR case, DEGES /DESeq-normalized data can be retrieved as follows.

> library(TCC)

> data(hypoData)

> group <- c(1, 1, 1, 2, 2, 2)

> nonDEG <- 201:1000

> tcc <- new("TCC", hypoData, group)
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> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)

> normalized.count <- getNormalizedData(tcc)

> apply(normalized.count [nonDEG, ], 2, median)

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
19.98051 19.23724 19.79865 21.56052 21.57241 20.47685

The same procedure consisting of functions in DESeq is

library (TCC)
data(hypoData)
nonDEG <- 201:1000
group <- c(1, 1, 1, 2, 2, 2)
FDR <- 0.1
floorPDEG <- 0.05
cds <- newCountDataSet (hypoData, group)
### Step 1 ###
cds <- estimateSizeFactors(cds)
### Step 2 ###
cds <- estimateDispersions(cds)
result <- nbinomTest(cds, 1, 2)
result$pval[is.na(result$pval)] <- 1
result$padjlis.na(result$padj)] <- 1
q.value <- result$padj
if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {
is.DEG <- as.logical(q.value < FDR)
} else {
is.DEG <- as.logical(rank(result$pval, ties.method = "min") <=
nrow(hypoData) * floorPDEG)
}
### Step 3 ###
cds <- newCountDataSet (hypoDatal[!is.DEG, ], group)
cds <- estimateSizeFactors(cds)
norm.factors <- sizeFactors(cds) / colSums(hypoData)
norm.factors <- norm.factors / mean(norm.factors)
effective.libsizes <- colSums(hypoData) * norm.factors
normalized.count <- sweep(hypoData, 2,
mean(effective.libsizes) / effective.libsizes, "x*")
apply(normalized.count [nonDEG, ], 2, median)

V+VVVVVVYV+ + +++VVVVVVVVVVVVYVVVYV

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3
19.98051 19.23724 19.79865 21.56052 21.57241 20.47685

3.4.3 Retrieving two-group DEGES/DESeqg-normalized data without replicates

Similar to the case of count data with replicates, the DEGES/DESeg-normalized data without
replicates can be retrieved as follows.
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library(TCC)

data(hypoData)

nonDEG <- 201:1000

group <- c(1, 2)

tcc <- new("TCC", hypoDatal, c(1, 4)], group)

tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
iteration = 1, FDR = 0.1, floorPDEG = 0.05)

normalized.count <- getNormalizedData(tcc)

apply(normalized.count [nonDEG, ], 2, median)

V V + V V V V V V

Gl_repl G2_repl
19.70555 21.88220

The same procedure consisting of functions in DESeq is

library(TCC)

data(hypoData)

nonDEG <- 201:1000

group <- c(1, 2)

FDR <- 0.1

floorPDEG <- 0.05

cds <- newCountDataSet (hypoDatal[,c(1, 4)], group)
### Step 1 ###

cds <- estimateSizeFactors(cds)

### Step 2 #H##

result <- nbinomTest(cds, 1, 2)
result$pval[is.na(result$pval)] <- 1
result$padj[is.na(result$padj)] <- 1
q.value <- result$padj
if (sum(q.value < FDR) > (floorPDEG * nrow(hypoData))) {
is.DEG <- as.logical(q.value < FDR)
} else {
is.DEG <- as.logical(rank(result$pval, ties.method = "min") <=
nrow(hypoData) * floorPDEG)
}
### Step 3 ###
cds <- newCountDataSet (hypoDatal[!is.DEG, c(1, 4)], group)
cds <- estimateSizeFactors(cds)
norm.factors <- sizeFactors(cds) / colSums(hypoDatal, c(1, 4)]1)
norm.factors <- norm.factors / mean(norm.factors)
effective.libsizes <- colSums(hypoDatal, c(1, 4)]) * norm.factors
normalized.count <- sweep(hypoDatal, c(1, 4)], 2,

vV +VVVVVYVYV + ++++VVVVVVVVVVVVVYVVYV

apply(normalized.count [nonDEG, ], 2, median)

Gl_repl G2_repl
19.70555 21.88220
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The above summary statistics from DEGES/DESeg-normalized data are closer to the truth
(i.e., 20.5 for G1l_repl and 21.0 for G2_repl) than are the following summary statistics from data
normalized using the original normalization method implemented in DESeq.

library (TCC)

data(hypoData)

nonDEG <- 201:1000

group <- c(1, 2)

cds <- newCountDataSet (hypoDatal, c(1, 4)], group)
cds <- estimateSizeFactors(cds)

normalized.count <- counts(cds, normalized = TRUE)
apply(normalized.count [nonDEG, ], 2, median)

V V.V V V V V V

Gl_repl G2_repl
19.40717 22.18253

3.4.4 Retrieving multi-group iDEGES/edgeR-normalized data with replicates

Here, we analyze another hypothetical three-group count matrix, the hypoData_mg object, pro-
vided in TCC. It consists of 1,000 genes and a total of nine columns for testing any difference
among three groups that each have triplicates. Similar to the hypoData object, the first 200 genes
are DEGs and the remaining 800 genes are non-DEGs. The basic statistics for the non-DEGs
are as follows.

> library(TCC)
> data(hypoData_mg)
> nonDEG <- 201:1000
> summary (hypoData_mg[nonDEG, 1)
Gl_repl Gl_rep2 Gl_rep3 G2_repl
Min. : 0.00 Min. : 0.0 Min. : 0.0 Min. : 0.0
1st Qu.: 2.00 1st Qu.: 2.0 1st Qu.: 2.0 1st Qu.: 2.0
Median : 14.00 Median : 13.0 Median : 14.5 Median : 13.0
Mean : 135.41 Mean : 150.5 Mean : 190.6 Mean : 199.4
3rd Qu.: 51.25 3rd Qu.: 53.0 3rd Qu.: 55.0 3rd Qu.: 52.0
Max. :27218.00 Max. :27987.0 Max. :166273.0 Max. :75148.0
G2_rep2 G2_rep3 G3_repl G3_rep2
Min. : 0.00 Min. : 0.0 Min. : 0 Min. : 0.0
1st Qu.: 2.00 1st Qu.: 2.0 1st Qu.: 2 1st Qu.: 2.0
Median : 13.00 Median : 14.0 Median : 14 Median : 15.0
Mean : 132.53 Mean . 138.4 Mean . 164 Mean . 166.2
3rd Qu.: 52.25 3rd Qu.: 55.0 3rd Qu.: 52 3rd Qu.: 55.0
Max. :22381.00 Max. :24979.0 Max. 149398 Max. :49709.0
G3_rep3
Min. : 0.0
1st Qu.: 2.0
Median : 15.0
Mean : 162.1
3rd Qu.: 50.0
Max. :39299.0
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From now on, we will display only the median values for simplicity, i.e.,

> apply (hypoData_mg[nonDEG, ], 2, median)

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3 G3_repl G3_rep2 G3_rep3
14.0 13.0 14.5 13.0 13.0 14.0 14.0 15.0 15.0

The iDEGES/edgeR-normalized data can be retrieved as follows.

library (TCC)

data(hypoData_mg)

nonDEG <- 201:1000

group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

tcc <- new("TCC", hypoData_mg, group)

design <- model.matrix(~ as.factor(group))

coef <- 2:length(unique(group))

tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
iteration = 3)

normalized.count <- getNormalizedData(tcc)

apply(normalized.count [nonDEG, ], 2, median)

V V + V V V V V V V VvV

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3 G3_repl G3_rep2
13.88374 13.22872 14.08230 13.01186 13.24126 13.75022 14.22157 14.76685
G3_rep3
15.30593

> range (apply(normalized.count [nonDEG, ], 2, median))

[1] 13.01186 15.30593

For comparison, the summary statistics for TMM-normalized data produced using the original
normalization method (i.e., TMM) in edgeR are obtained as follows.

library(TCC)

data(hypoData_mg)

nonDEG <- 201:1000

group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

tcc <- new("TCC", hypoData_mg, group)

tcc <- calcNormFactors(tcc, norm.method = "tmm", iteration = 0)
normalized.count <- getNormalizedData(tcc)
apply(normalized.count [nonDEG, ], 2, median)

V V V V V V V V

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3 G3_repl G3_rep2
13.46685 12.55871 13.42509 13.14068 13.52699 13.84316 14.20297 15.38684
G3_rep3
16.25185
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> range (apply(normalized.count [nonDEG, ], 2, median))

[1] 12.55871 16.25185
It is obvious that the summary statistics (ranging from 13.01186 to 15.30593) from iDEGES/edgeR-

normalized data are closer to the truth (i.e., ranging from 13.0 to 15.0) than those (ranging from
12.55871 to 16.25185) from TMM-normalized data.
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4 Differential expression (DE)

The particular feature of TCC is that it calculates robust normalization factors. Moreover, end
users would like to have some accessory functions for subsequent analyses. Here, we provide
the estimateDE function for identifying DEGs. Specifically, the function internally uses the
corresponding functions implemented in three packages: exactTest in edgeR, nbinomTest in
DESeq, and getLikelihoods.NB in baySeq. Similar to the usage in the calcNormFators function
with the test.method argument in TCC, those DE methods in edgeR, DESeq, and baySeq can
be performed by using the estimateDE function with test.method = "edger", "deseq", and
"bayseq", respectively. Here, we show some examples of DE analysis for two-group data with
replicates (4.1), two-group data without replicates (4.2), and multi-group data with replicates
(4.3).

4.1 DE analysis for two-group data with replicates
4.1.1 edgeR coupled with iDEGES/edgeR normalization

We give a procedure for DE analysis using the exact test implemented in edgeR together with
iDEGES/edgeR normalization factors (i.e., the iDEGES/edgeR-edgeR combination) for the hy-
pothetical two-group count data with replicates (i.e., the hypoData object). If the user wants to
determine the genes having an FDR threshold of < 10% as DEGs, one can do as follows.

library (TCC)

data(hypoData)

group <- c(1, 1, 1, 2, 2, 2)

tcc <- new("TCC", hypoData, group)

tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
iteration = 3, FDR = 0.1, floorPDEG = 0.05)

tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

V + V V V VvV V

The results of the DE analysis are stored in the TCC class object. The summary statistics for
top-ranked genes can be retrieved by using the getResult function.

> result <- getResult(tcc, sort = TRUE)
> head(result)

gene_id a.value m.value p.value gq.value rank estimatedDEG
1561 gene_151 9.736785 -2.753816 4.641083e-11 4.641083e-08 1 1
39 gene_39 7.110842 -2.460691 9.115042e-10 3.270783e-07 2 1
599 gene_599 5.927173 -3.282264 9.812348e-10 3.270783e-07 3 1
68 gene_68 6.209395 -2.867694 4.776945e-09 1.194236e-06 4 1
175 gene_175 7.984265 -2.373657 1.082493e-08 1.899827e-06 5 1
144 gene_144 7.588164 -2.130092 1.139896e-08 1.899827e-06 6 1

The DE results can be broken down as follows.

> table(tcc$estimatedDEG)

0 1
854 146
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This means 854 non-DEGs and 146 DEGs satisfy FDR < 0.1. The plot function generates an
M-A plot, where "M” indicates the log-ratio (i.e., M = logaG2—10g2G1) and ”A” indicates average
read count (i.e., A = (logoG2+10g2G1)/2), from the normalized count data. The magenta points
indicate the identified DEGs at FDR < 0.1.

> plot(tcc)
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4.1.2 baySeq coupled with iDEGES/edgeR normalization

If the user wants to employ the empirical Bayesian method in baySeq together with iDEGES/edgeR
normalization factors (i.e., the iDEGES/edgeR-baySeq combination), one can do as follows.

> set.seed(1000)

> library(TCC)

> data(hypoData)

> samplesize <- 100

> group <- c(1, 1, 1, 2, 2, 2)

> tcc <- new("TCC", hypoData, group)

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)

> tcc <- estimateDE(tcc, test.method = "bayseq",
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+

FDR = 0.1, samplesize =
> result <- getResult(tcc, sort = TRUE)
> head(result)

samplesize)

gene_id a.value m.value p.value q.value rank estimatedDEG
168 gene_168 8.903341 -1.968787 9.116024e-08 9.116024e-08 1 1
115 gene_115 8.903382 -1.947266 2.149005e-07 1.530304e-07 2 1
171 gene_171 8.795243 -2.267941 1.231974e-05 4.208600e-06 3 1
176 gene_176 9.013616 -1.999303 7.236391e-05 2.124743e-05 4 1
144 gene_144 7.588164 -2.130092 1.221492e-04 4.142779e-05 5 1
3 gene_3 9.251797 -1.446596 1.424981e-04 5.827284e-05 6 1

> table(tcc$estimatedDEG)

0 1
868 132

Note that a smaller sampling size (i.e., samplesize = 100) is used here to reduce the com-
putation time, but a larger sampling size of around 10,000 (i.e., samplesize = 10000) is rec-
ommended (Hardcastle and Kelly, 2010 [6]). Note also that baySeq outputs posterior likeli-
hoods instead of the p-values obtained from edgeR and DESeq. The p-value column stores the
(1 — likelihood) values when the estimateDE function is executed with the empirical Bayes in
baySeq. Now let us describe an alternative procedure for baySeq users that corresponds to
the estimateDE function. The likelihood values and p-values (calculated as 1 — likelihood) are
retrieved as follows.

set.seed(1000)
library(TCC)
data(hypoData)
samplesize <- 100
group <- c(1, 1, 1, 2, 2, 2)
tcc <- new("TCC", hypoData, group)
tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
iteration = 3, FDR = 0.1, floorPDEG = 0.05)
effective.libsizes <- colSums(tcc$count) * tcc$norm.factors
groups <- 1list(NDE = rep(l, length(group)), DE = group)
cD <- new("countData", data = tcc$count, replicates = group,
libsizes = effective.libsizes, groups = groups)
cD <- getPriors.NB(cD, samplesize = samplesize,
estimation = "QL", cl = NULL)
cD <- getLikelihoods.NB(cD, pET = "BIC", cl = NULL)

vV + V +V VYV +V VVVVVYV

> tmp <- topCounts(cD, group = "DE", number = nrow(tcc$count))
tmp <- tmp[rownames(tcc$count), ]
p.value <- 1 - tmp$Likelihood

vV Vv
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> q.value <- tmp$FDR
> result <- cbind(p.value, q.value)
> rownames (result) <- rownames (tmp)
> head(result)

p-value q.value
gene_1 0.5941146713 1.703518e-01
gene_2 0.7239975957 2.524021e-01
gene_3 0.0001424981 5.827284e-05
gene_4 0.9840748608 7.820015e-01
gene_5 0.3871351939 1.041083e-01
gene_6 0.0023301597 8.574920e-04

4.2 DE analysis for two-group data without replicates

As described previously, the functions for the DEG identification method implemented in edgeR
(i.e., the exact test; ver. 3.0.4) do not allow analysis without replicates. Currently, the esti-
mateDE function only allows the "deseq" or "bayseq" options for the test.method argument.
Here, we show a procedure for DE analysis using the NB test implemented in DESeq together
with iDEGES /DESeq normalization factors (i.e., the iDEGES/DESeq-DESeq combination) for the
hypothetical two-group count data without replicates (i.e., the hypoDatal, c(1, 4)] object).
If the user wants to determine the genes having an FDR threshold of < 10% as DEGs, one can
do as follows.

> library(TCC)
> data(hypoData)
> group <- c(1, 2)
> tcc <- new("TCC", hypoDatal, c(1, 4)], group)
> head(tcc$count)

Gl_repl G2_repl
gene_1 34 16
gene_2 358 36
gene_3 1144 374
gene_4 0 18
gene_5 98 1
gene_6 296 86
> tcc$group

group

Gl_repl 1
G2_repl 2
> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)

> tcc$norm.factors

32



G1l_repl G2_repl
0.9211464 1.0788536

> tcc <- estimateDE(tcc, test.method = "deseq",
+ FDR = 0.1)
> result <- getResult(tcc, sort = TRUE)
> head(result)

gene_id a.value m.value p.-value gq.value rank estimatedDEG
36 gene_36 -0.9988563 -8.525340 0.0002119999 0.2011879 1 0
17 gene_17 5.9635499 -5.470058 0.0064590145 1.0000000 2 0
5 gene_5 3.3084986 -6.499805 0.0184836363 1.0000000 3 0
989 gene_989 -0.9988563 -5.839291 0.0252092271 1.0000000 4 0
187 gene_187 3.6973024 5.507222 0.0321082546 1.0000000 5 0
822 gene_822 -0.9988563 5.436833 0.0522752310 1.0000000 6 0

> table(tcc$estimatedDEG)

0
1000

It can be seen that there is no DEG having FDR < 0.1.

4.3 DE analysis for multi-group data with replicates

Here, we give three examples of DE analysis coupled with DEGES/edgeR normalization for the
hypothetical three-group data with replicates, i.e., the hypoData_mg object. The use of the
DEGES/edgeR normalization factors is simply for reducing the computation time.

4.3.1 baySeq coupled with DEGES/edgeR normalization

The empirical Bayesian method implemented in baySeq after executing the DEGES/edgeR nor-
malization (i.e., the DEGES/edgeR-baySeq combination) can be performed as follows.

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> ### Normalization ###

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1)

> ### DE analysis ###

> set.seed(1000)

> samplesize <- 100

> tcc <- estimateDE(tcc, test.method = "bayseq",

+ FDR = 0.1, samplesize = samplesize)
> result <- getResult(tcc, sort = TRUE)

> head(result)
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gene_id a.value m.value p.value q.value rank estimatedDEG
27  gene_27 NA NA 1.089807e-07 1.089807e-07 1 1
179 gene_179 NA NA 1.377257e-07 1.233532e-07 2 1
134 gene_134 NA NA 1.999990e-07 1.489018e-07 3 1
194 gene_194 NA NA 3.274252e-07 1.935327e-07 4 1
169 gene_169 NA NA 2.120088e-06 5.788437e-07 5 1
74 gene_74 NA NA 4.835544e-06 1.288294e-06 6 1

> table(tcc$estimatedDEG)

0 1
896 104

It can be seen that the baySeq method identified 104 DEGs having FDR < 0.1. One can
obtain the number of DEGs with another threshold (e.g., FDR < 0.2) from the result object as
follows.

> sum(result$q.value < 0.2)

[1] 131

For baySeq users, we provide commands, consisting of functions in baySeq, to perform the
DEG identification without the function in TCC. The estimateDE function with test.method =
"bayseq" can be regarded as a wrapper function for the following commands after the DEGES/edgeR
normalization.

set.seed(1000)
samplesize <- 100
effective.libsizes <- colSums(tcc$count) * tcc$norm.factors
groups <- list(NDE = rep(l, length(group)), DE = group)
cD <- new("countData", data = tcc$count, replicates = group,
libsizes = effective.libsizes, groups = groups)
cD <- getPriors.NB(cD, samplesize = samplesize,
estimation = "QL", cl = NULL)
cD <- getLikelihoods.NB(cD, pET = "BIC", cl = NULL)

VvV + V + V V V Vv V

tmp <- topCounts(cD, group = "DE", number = nrow(tcc$count))
tmp <- tmp[rownames(tcc$count), ]

p-value <- 1 - tmp$Likelihood

q.value <- tmp$FDR

result <- cbind(p.value, q.value)

rownames (result) <- rownames (tmp)

head (result)

V V V V V V VvV
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p.value q.value
gene_1 0.22275288 0.04643278
gene_2 0.97564402 0.62790167
gene_3 0.07028071 0.01413496
gene_4 0.94708066 0.50800029
gene_5 0.99236244 0.77185161
gene_6 0.11824642 0.02784658

> sum(q.value < 0.1)

[1] 104

> sum(q.value < 0.2)

[1] 131

4.3.2 edgeR coupled with DEGES /edgeR normalization

The exact test implemented in edgeR after executing the DEGES/edgeR normalization (i.e., the
DEGES/edgeR-edgeR combination) can be performed as follows.

> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)
> ### Normalization #i##
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1)
> ### DE analysis ###
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)
> result <- getResult(tcc, sort = TRUE)
> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG
56  gene_56 NA NA 2.088289e-13 6.378767e-11 1 1
64 gene_64 NA NA 2.368722e-13 6.378767e-11 2 1
27  gene_ 27 NA NA 2.494570e-13 6.378767e-11 3 1
121 gene_121 NA NA 2.551507e-13 6.378767e-11 4 1
126 gene_126 NA NA 6.579178e-13 1.315836e-10 5 1
83 gene_83 NA NA 7.416750e-12 1.236125e-09 6 1

> table(tcc$estimatedDEG)

0 1
829 171
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Note that these DEGs having FDR < 0.1 display DE between any of the groups because
the two arguments indicated here (design and coef) correspond to an AVOVA-like test for any
differences provided in edgeR, i.e.,

library (TCC)

data(hypoData_mg)

group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

design <- model.matrix(~ as.factor(group))

coef <- 2:length(unique(group))

tcc <- new("TCC", hypoData_mg, group)

### Normalization ###

tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
iteration = 1)

### DE analysis ###

d <- DGEList(tcc$count, group = group)

d$samples$norm.factors <- tcc$norm.factors

d <- estimateGLMCommonDisp(d, design)

d <- estimateGLMTrendedDisp(d, design)

d <- estimateGLMTagwiseDisp(d, design)

fit <- glmFit(d, design)

1rt <- glmLRT(fit, coef = coef)

tmp <- topTags(lrt, n = nrow(tcc$count))

p-value <- tmp$table$PValue

q.value <- tmp$table$FDR

result <- cbind(p.value, q.value)

rownames (result) <- rownames (tmp)

VVVVVVVVVVVVVYV +VVVVVVVYV

head(result)

p.value q.value
gene_56 2.088289e-13 6.378767e-11
gene_64 2.368722e-13 6.378767e-11
gene_27 2.494570e-13 6.378767e-11
gene_121 2.551507e-13 6.378767e-11
gene_126 6.579178e-13 1.315836e-10
gene_83 7.416750e-12 1.236125e-09

> sum(q.value < 0.1)

[1] 171

> sum(q.value < 0.2)

[1] 208

As described in the edgeR manual, the second and third columns in the design object are
relative to the baseline (i.e., Group 1 or G1): coef = 2 means G2 vs. G1 and coef = 3 means G3
vs. G1. The above procedure with the coef object (i.e., 2:1length(unique (group))) indicates
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the both comparisons (i.e., G2 vs. G1 and G3 vs. G1) and identifies DEGs between any of the
three groups. In other words, one can do any two-group comparison of interest from multi-group
data with replicates. For example, the DE analysis for G3 vs. G1 together with DEGES/edgeR
normalization can be performed as follows.

> library(TCC)
> data(hypoData_mg)
> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)
> tcc <- new("TCC", hypoData_mg, group)
> ### Normalization ###
> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1)
> ### DE analysis ###
> coef <- 3
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1, coef = coef)
> result <- getResult(tcc, sort = TRUE)
> head(result)

gene_id a.value m.value p.value q.value rank estimatedDEG
126 gene_126 NA NA 1.869121e-10 1.869121e-07 1 1
56 gene_56 NA NA 5.600857e-10 2.800428e-07 2 1
121 gene_121 NA NA 1.099748e-09 3.126964e-07 3 1
27 gene_27 NA NA 1.250786e-09 3.126964e-07 4 1
64 gene_64 NA NA 2.867280e-09 5.734559e-07 5 1
112 gene_112 NA NA 8.166684e-09 1.361114e-06 6 1

> table(tcc$estimatedDEG)

0 1
884 116

4.3.3 DESeq coupled with DEGES/edgeR normalization

The NB test implemented in DESeq after executing the DEGES/edgeR normalization (i.e., the
DEGES/edgeR-DESeq combination) can be performed as follows.

> library(TCC)

> data(hypoData_mg)

> group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

> tcc <- new("TCC", hypoData_mg, group)

> ### Normalization ###

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1)

> ### DE analysis ###

> fitl <- count ~ condition

> fit0 <- count 7 1

> tcc <- estimateDE(tcc, test.method = "deseq",

+ FDR = 0.1, fit0 = fit0, fitl = fit1)
> result <- getResult(tcc, sort = TRUE)

> head(result)
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gene_id a.value m.value p.value q.value rank estimatedDEG

126 gene_126 NA NA 3.100853e-13 3.100853e-10 1 1
63 gene_63 NA NA 1.775390e-10 8.876949e-08 2 1
27  gene_27 NA NA 2.703793e-08 9.012645e-06 3 1
176 gene_176 NA NA 5.679543e-08 1.419886e-05 4 1
121 gene_121 NA NA 8.783653e-08 1.756731e-05 5 1
83 gene_83 NA NA 1.255741e-07 1.840819e-05 6 1

> table(tcc$estimatedDEG)

0 1
872 128

For DESeq users, we provide commands, consisting of functions in DESeq, to perform the DEG
identification without the function in TCC. The estimateDE function with test.method = "de-
seq" can be regarded as a wrapper function for the following commands after the DEGES/edgeR
normalization.

library(TCC)

data(hypoData_mg)

group <- c(1, 1, 1, 2, 2, 2, 3, 3, 3)

tcc <- new("TCC", hypoData_mg, group)

### Normalization ###

tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
iteration = 1)

### DE analysis ###

fitl <- count ~ condition

fit0 <- count " 1

cds <- newCountDataSet(tcc$count, group)

sizeFactors(cds) <- tcc$norm.factors * colSums(tcc$count)

cds <- estimateDispersions(cds)

reduced.model <- fitNbinomGLMs(cds, fitO)

V V V V V VYV + V VVVVYV

> full.model <- fitNbinomGLMs(cds, fit1l)

p-value <- nbinomGLMTest (full.model, reduced.model)
p-valuelis.na(p.value)] <- 1

q.value <- p.adjust(p.value, method = "BH")

tmp <- cbind(p.value, q.value)

rownames (tmp) <- tcc$gene_id

result <- tmplorder(p.value), ]

head(result)

V V V V V V V
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p.value q.value

gene_126 3.100853e-13 3.100853e-10
gene_63 1.775390e-10 8.876949e-08
gene_27 2.703793e-08 9.012645e-06
gene_176 5.679543e-08 1.419886e-05
gene_121 8.783653e-08 1.756731e-05
gene_83 1.255741e-07 1.840819e-05

> sum(q.value < 0.1)
[1] 128
> sum(q.value < 0.2)

[1] 143

5 Generation of simulation data

5.1 Introduction and basic usage

As demonstrated in our previous study (Kadota et al., 2012 [3]), the DEGES-based normalization
methods implemented in TCC theoretically outperform the other normalization methods when
the numbers of DEGs (G1 vs. G2) in the tag count data are biased. However, it is difficult to
determine whether the up- and down-regulated DEGs in one of the groups are actually biased
in their number when analyzing real data (Dillies et al., 2012 [2]). This means we have to
evaluate the potential performance of our DEGES-based methods using mainly simulation data.
The simulateReadCounts function generates simulation data under various conditions. This
function can generate simulation data analyzed in the TbT paper (Kadota et al., 2012 [3]), and
that means it enables other researchers to compare the methods they develop with our DEGES-
based methods. For example, the hypoData object, a hypothetical count dataset provided in
TCC, was generated by using this function. The output of the simulateReadCounts function is
stored as a TCC class object and is therefore ready-to-analyze.

Note that different trials of simulation analysis generally yield different count data even under
the same simulation conditions. As mentioned in section 3.1.1, we can call the set.seed func-
tion in order to obtain reproducible results (i.e., the tcc$count) with the simulateReadCounts
function.

> set.seed(1000)

> library(TCC)

> tcc <- simulateReadCounts(Ngene = 1000, PDEG = 0.2,

+ DEG.assign = ¢(0.9, 0.1),
+ DEG.foldchange = c(4, 4),
+ replicates = c(3, 3))

> dim(tcc$count)

[1] 1000 6
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> head(tcc$count)

Gl_repl Gl_rep2 Gl_rep3 G2_repl G2_rep2 G2_rep3

gene_1 168 104 62 38 24 35
gene_2 10 8 27 4 5 4
gene_3 64 94 81 15 57 12
gene_4 350 443 472 116 135 108
gene_5 92 263 60 7 15 22
gene_6 561 682 591 19 65 179

> tcc$group

group
Gl_repl
G1l_rep2
G1l_rep3
G2_repl
G2_rep2
G2_rep3

N NN -

The simulation conditions for comparing two groups (G1 vs. G2) with biological replicates
are as follows: (i) the number of genes is 1,000 (i.e., Ngene = 1000), (ii) the first 20% of genes are
DEGs (PDEG = 0.2), (iii) the first 90% of the DEGs are up-regulated in G1, and the remaining
10% are up-regulated in G2 (DEG.assign = c(0.9, 0.1)), (iv) the levels of DE are four-fold
in both groups (DEG.foldchange = c(4, 4)), and (v) there are a total of six samples (three
biological replicates for G1 and three biological replicates for G2) (replicates = c(3, 3)). The
variance of the NB distribution can be modeled as V = p+¢u?. The empirical distribution of the
read counts for producing the mean (u) and dispersion (¢) parameters of the model was obtained
from Arabidopsis data (three biological replicates for each of the treated and non-treated groups)
in NBPSeq (Di et al., 2011 [15]).

The tcc$count object is essentially the same as the hypoData object of TCC. The information
about the simulation conditions can be viewed as follows.

> str(tcc$simulation)

List of 4

$ trueDEG :num [1:1000] 1111111111

$ DEG.foldchange: num [1:1000, 1:6] 4 4 4 4 4 4 4 4 4 4 ...

$ PDEG : num [1:2] 0.18 0.02

$ params :'data.frame': 1000 obs. of 2 variables:
..$ mean: num [1:1000] 32.99 4.13 16.73 103.14 15.57 ...
..$ disp: num [1:1000] 0.3868 0.0915 0.1835 0.0503 0.6416 ...

Specifically, the entries for 0,1, and 2 in the tcc$simulation$trueDEG object are for non-
DEG, DEGs up-regulated in G1, and DEGs up-regulated in G2, respectively. The breakdowns
for individual entries are the same as stated above: 800 entries are non-DEGs, 180 DEGs are
up-regulated in G1, and 20 DEGs are up-regulated in G2.
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> table(tcc$simulation$trueDEG)

0 1 2
800 180 20

This information can be used to evaluate the performance of the DEGES-based normalization
methods in terms of the sensitivity and specificity of the results of their DE analysis. A good
normalization method coupled with a DE method such as the exact test (Robinson and Smyth,
2008 [13]) and the empirical Bayes (Hardcastle and Kelly, 2010) should produce well-ranked gene
lists in which the true DEGs are top-ranked and non-DEGs are bottom-ranked when all genes are
ranked according to the degree of DE. The ranked gene list after performing the DEGES/edgeR-

edgeR combination can be obtained as follows.

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
iteration = 1, FDR = 0.1, floorPDEG = 0.05)

+

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)
> result <- getResult(tcc, sort = TRUE)

> head(result

gene_id
74 gene_74
185 gene_185
181 gene_181
11 gene_11
113 gene_113
138 gene_138

We can now calculate the area under the ROC curve (i.e., AUC; 0 <AUC< 1) between the
ranked gene list and the truth (i.e., DEGs or non-DEGs) and thereby evaluate the sensitivity
and specificity simultaneously. A well-ranked gene list should have a high AUC value (i.e., high
sensitivity and specificity). The calcAUCValue function calculates the AUC value based on the

)

~N N~

12.

9

a.value
.095342
177367
.861230
.145969
197408
.397467

m.value
.542249
.407113
.425154
.471502
.233912
.232690

p.value

1.632080e-10
4.534722e-10
5.
5
6
1

023661e-10

.786026e-10
.433622e-10
.118317e-09

information stored in the TCC class object.

> calcAUCValue(tcc)

[1] 0.8924219

This is essentially the same as

> AUC(rocdemo.sca(truth = as.numeric(tcc$simulation$trueDEG '= 0),

+

[1] 0.8924219

The following classic edgeR procedure (i.e., the TMM-edgeR combination) make it clear that
the DEGES-based normalization method (i.e., the DEGES/edgeR pipeline) outperforms the

data

-tcc$stat$rank))

e

q.value rank estimatedDEG

.286724e-07
.286724e-07
.286724e-07
.286724e-07
.286724e-07
.863861e-07

default normalization method (i.e., TMM) implemented in edgeR.
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> tcc <- calcNormFactors(tcc, norm.method = "tmm", iteration = 0)
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)
> calcAUCValue(tcc)

[1] 0.8776219
The following is an alternative procedure for edgeR users.

d <- DGEList(counts = tcc$count, group = tcc$group$group)
d <- calcNormFactors(d)
d$samples$norm.factors <- d$samples$norm.factors /
mean (d$samples$norm.factors)
d <- estimateCommonDisp(d)
d <- estimateTagwiseDisp(d)
result <- exactTest(d)
result$table$PValue[is.na(result$table$PValue)] <- 1
AUC(rocdemo.sca(truth = as.numeric(tcc$simulation$trueDEG != 0),
data = -rank(result$table$PValue)))

+ V V V V V + V V V

[1] 0.8776219

As can be expected from the similarity of the normalization factors of DEGES/TbT (3.1.1)
and DEGES/edgeR (3.1.2), the AUC value (0.8924219) of DEGES/edgeR is quite similar to the
AUC value (0.8929594) of the original TbT method (i.e., DEGES/TbT):

> set.seed(1000)

> samplesize <- 100

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "bayseq",
+ iteration = 1, samplesize = samplesize)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> calcAUCValue (tcc)

[1] 0.8929594

5.2 Two-group data without replicates

Let us generate tag count data without replicates, such as those used in section 3.2 For simplicity,
we first generate simulation data whose conditions are essentially the same as those in the previous
section (i.e., 5.1), except for the number of replicates in each group: (i) the number of genes is
1,000 (i.e., Ngene = 1000), (ii) the first 20% of genes are DEGs (PDEG = 0.2), (iii) the first 90%
of the DEGs are up-regulated in G1, and the remaining 10% are up-regulated in G2 (DEG.assign
= c(0.9, 0.1)), (iv) the levels of DE are four-fold in both groups (DEG.foldchange = c(4,
4)), and (v) there are a total of two samples (one from G1 and the other from G2) (replicates
=c(1, ).

A\

set.seed (1000)
library (TCC)
tcc <- simulateReadCounts(Ngene = 1000, PDEG = 0.2,

vV Vv
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+ DEG.assign = c(0.9, 0.1),
+ DEG.foldchange = c(4, 4),
+ replicates = c(1, 1))

> dim(tcc$count)

[1] 1000 2

> head(tcc$count)

Gl_repl G2_repl

gene_1 168 29
gene_2 10 2
gene_3 64 2
gene_4 350 90
gene_5 92 5
gene_6 561 74

> tcc$group

group
Gl_repl 1
G2_repl 2

Now let us see how the DEGES/DESeq-DESeq combination with the original DESeq-DESeq
combination performs. First, we calculate the AUC value for the ranked gene list obtained from
the DEGES/DESeq-DESeq combination.

> tcc <- calcNormFactors(tcc, norm.method = "deseq", test.method = "deseq",
+ iteration = 1, FDR = 0.1, floorPDEG = 0.05)

> tcc <- estimateDE(tcc, test.method = "deseq")

> calcAUCValue(tcc)

[1] 0.7845375

Next, we calculate the corresponding value using the original DESeq procedure (i.e., the
DESeq-DESeq combination).

> tcc <- calcNormFactors(tcc, norm.method = "deseq", iteration = 0)
> tcc <- estimateDE(tcc, test.method = "deseq")
> calcAUCValue(tcc)

[1] 0.78265

It can be seen that the DEGES /DESeq-DESeq combination outperforms the original procedure
under the given simulation conditions. The following is an alternative approach for DESeq users.
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cds <- newCountDataSet(tcc$count, tcc$group$group)
cds <- estimateSizeFactors(cds)
norm.factors <- sizeFactors(cds) / colSums(tcc$count)
norm.factors <- norm.factors / mean(norm.factors)
sizeFactors(cds) <- colSums(tcc$count) * norm.factors
cds <- estimateDispersions(cds, method="blind", sharingMode="fit-only")
result <- nbinomTest(cds, 1, 2)
result$pval[is.na(result$pval)] <- 1
AUC(rocdemo.sca(truth = as.numeric(tcc$simulation$trueDEG !'= 0),
data = -rank(result$pval)))

+ V V V V V V V V VvV

[1] 0.78265

This procedure is completely the same as the one in TCC that gives normalization factors
corresponding to those in edgeR for different packages. However, the following commands from
the DESeq manual are of practical value because they give approximately the same AUC value
as above.

> cds <- newCountDataSet(tcc$count, tcc$group$group)

> cds <- estimateSizeFactors(cds)

> cds <- estimateDispersions(cds, method="blind", sharingMode="fit-only")
> result <- nbinomTest(cds, 1, 2)

> result$pval [is.na(result$pval)] <- 1

> AUC(rocdemo.sca(truth = as.numeric(tcc$simulation$trueDEG != 0),

+ data = -rank(result$pval)))

[1] 0.78265

5.3 Multi-group data with and without replicates

The simulateReadCounts function can generate simulation data with a more complex design.
First, we generate a dataset consisting of three groups. The simulation conditions for this dataset
are as follows: (i) the number of genes is 1,000 (i.e., Ngene = 1000), (ii) the first 30% of genes
are DEGs (PDEG = 0.3), (iii) the breakdowns of the up-regulated DEGs are respectively 70%,
20%, and 10% in Groups 1-3 (DEG.assign = c(0.7, 0.2, 0.1)), (iv) the levels of DE are 3-,
10-, and 6-fold in individual groups (DEG.foldchange = c(3, 10, 6)), and (v) there are a total
of nine libraries (2, 4, and 3 replicates for Groups 1-3) (replicates = c(2, 4, 3)).

> set.seed(1000)

> library(TCC)

> tcc <- simulateReadCounts(Ngene = 1000, PDEG = 0.3,

+ DEG.assign = ¢(0.7, 0.2, 0.1),
+ DEG.foldchange = c(3, 10, 6),
+ replicates = c(2, 4, 3))

> dim(tcc$count)

[1] 1000 9
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> tcc$group

group
Gl_repl
G1l_rep2
G2_repl
G2_rep2
G2_rep3
G2_rep4
G3_repl
G3_rep2
G3_rep3

W WWNNNDND - -

> head(tcc$count)

Gl_repl Gl_rep2 G2_repl G2_rep2 G2_rep3 G2_rep4 G3_repl G3_rep2 G3_rep3

gene_1 126 86 17 38 24 35 4 19 71
gene_2 7 3 5 4 5 4 1 7 3
gene_3 48 17 3 15 57 12 4 9 10
gene_4 264 331 122 116 135 108 97 83 84
gene_5 69 51 32 7 15 22 4 33 11
gene_6 426 211 58 19 65 179 20 115 88

The pseudo-color image for the generated simulation data regarding the DEGs can be obtained
from the plotFCPseudocolor function. The right bar (from white to magenta) indicates the
degree of fold-change (FC). As expected, it can be seen that the first 210, 60, and 30 genes are
up-regulated in G1, G2, and G3, respectively.

> plotFCPseudocolor(tcc)
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Now let us see how the DEGES/edgeR-edgeR combination with the original edgeR-edgeR
combination performs. First we calculate the AUC value for the ranked gene list obtained from
the DEGES/edgeR-edgeR combination.

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 1)

> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)

> calcAUCValue(tcc)

[1] 0.8748548

Next, we calculate the corresponding value using the original edgeR procedure for single factor
experimental design (i.e., the edgeR-edgeR combination).

tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
iteration = 0)

>
+
> tcc <- estimateDE(tcc, test.method = "edger", FDR = 0.1)
> calcAUCValue (tcc)

[1] 0.8692167
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It can be seen that the DEGES/edgeR-edgeR combination outperforms the original edgeR
procedure under the given simulation conditions. Note that the test.method argument will be
ignored when iteration = 0 is specified.

Next, let us generate another dataset consisting of a total of eight groups. The simulation
conditions for this dataset are as follows: (i) the number of genes is 10,000 (i.e., Ngene = 10000),
(ii) the first 34% of genes are DEGs (PDEG = 0.34), (iii) the breakdowns of the up-regulated
DEGs are respectively 10%, 30%, 5%, 10%, 5%, 21%, 9%, and 10% in Groups 1-8 (DEG.assign
= ¢(0.1, 0.3, 0.05, 0.1, 0.05, 0.21, 0.09, 0.1)), (iv) the levels of DE are 3.1-, 13-, 2-,
1.5-, 9-, 5.6-, 4-, and 2-fold in individual groups (DEG.foldchange = c(3.1, 13, 2, 1.5, 9,
5.6, 4, 2)), and (v) there are a total of nine libraries (except for G3, none of the groups have
replicates) (replicates = ¢(1, 1, 2, 1, 1, 1, 1, 1)).

> set.seed(1000)

> library(TCC)

> tcc <- simulateReadCounts(Ngene = 10000, PDEG = 0.34,

+ DEG.assign = ¢(0.1, 0.3, 0.05, 0.1, 0.05, 0.21, 0.09, 0.1),
+ DEG.foldchange = c(3.1, 13, 2, 1.5, 9, 5.6, 4, 2),

+ replicates = ¢c(1, 1, 2, 1, 1, 1, 1, 1))

> dim(tcc$count)

[1] 10000 9

> tcc$group

group
Gl_repl
G2_repl
G3_repl
G3_rep2
G4_repl
G5_repl
G6_repl
G7_repl
G8_repl

O ~NO O W WwN =

> head(tcc$count)

Gl_repl G2_repl G3_repl G3_rep2 G4_repl G5_repl G6_repl G7_repl G8_repl

gene_1 253 32 16 14 27 93 25 17 26
gene_2 17 3 4 4 6 7 9 2 2
gene_3 51 17 10 9 9 4 15 10 9
gene_4 289 83 105 84 121 78 76 126 99
gene_5 43 4 4 11 0 19 34 42 15
gene_6 491 99 137 101 55 104 224 105 86

> plotFCPseudocolor(tcc)
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This kind of simulation data may be useful for evaluating methods aimed at identifying
tissue-specific (or tissue-selective) genes.

5.4 Multi-factor data

The simulateReadCounts function can also generate simulation data in multi-factor experimen-
tal design. Different from above single-factor experimental design, the group argument should be
used instead of replicates for specifying sample conditions (or factors) when generating sim-
ulation data in multi-factor design. In relation to the group specification, the DEG.foldchange
argument should also be specified as a data frame object.

We generate a dataset consisting of two factors for comparing (i) two Groups (i.e., "WT” vs.
"KO”) as the first factor, at (ii) two time points (i.e., 71d” vs. 72d”) as the second factor, with
all samples obtained from independent subjects. There are a total of four conditions ("WT_1d”,
"WT_2d”, "KO_1d”, and "KO_2d”) each of which has two biological replicates, comprising a total
of eight samples. The group argument for this experimental design can be described as follows:

> group <- data.frame(

+ GROUP = c ( llell s llell s IIWTII s llell s IIKOII s HKOII s IIKOII s "KOII) s
+ TIME = c(llldll, llldll’ Il2dll, ||2dl|’ Illdll, llldll’ ||2d", ll2d|l)
+)
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Next, we design the number of types of DEGs and the levels of fold-change by the DEG.foldchange

argument. We here introduce three types of DEGs: (a) 2-fold up-regulation in the first four sam-
ples (i.e., "WT”), (b) 3-fold up-regulation in the last four samples (i.e., "KO”), and (c) 2-fold
down-regulation at "2d” in "WT” and 4-fold up-regulation at "2d” in "KO”. This implies that the
first two types of DEGs are related to the first factor (i.e., "WT” vs. "KO”) and the third type
of DEG is related to the second factor (i.e., ”1d” vs. "2d”).

> DEG.foldchange <- data.frame(

+

+
+
+

FACTOR1.1 = ¢c(2, 2, 2, 2, 1, 1, 1, 1),
FACTOR1.2 c(1, 1, 1, 1, 3, 3, 3, 3),
FACTOR2 = c(1, 1, 0.5, 0.5, 1, 1, 4, 4)

The other simulation conditions for this dataset are as follows: (1) the number of gene is

1,000 (i.e., Ngene = 1000), (2) the first 20% of genes are DEGs (i.e., PDEG = 0.2), and (3) the
breakdowns of the three types of DEGs are 50%, 20%, and 30% (i.e., DEG.assign = c(0.5,
0.2, 0.3)).

> set.seed(1000)
> tcc <- simulateReadCounts(Ngene = 10000, PDEG = 0.2,

+
+
+

DEG.assign = c(0.5, 0.2, 0.3),
DEG.foldchange = DEG.foldchange,
group = group)

Since the first six rows in the dataset corresponds to the first type of DEGs, we can see the

2-fold up-regulation in the first four columns (i.e., WT-related samples) compared to the last
four columns (i.e., KO-related samples).

> head(tcc$count)

WT1d_repl WT1d_rep2 WT2d_repl WT2d_rep2 KO1d_repl KO1d_rep2 KO02d_repl

gene_1 162 70 32 31 27 93 25

gene_2 12 5 7 7 6 7 11

gene_3 40 34 20 20 9 4 18

gene_4 210 141 286 163 121 78 52

gene_5 37 8 9 22 0 19 0

gene_6 205 204 43 216 55 104 123
K02d_rep2

gene_1 49

gene_2 3

gene_3 10

gene_4 113

gene_5 3

gene_6 39

> tcc$group
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GROUP TIME
WT1ld_repl WL 1d
WT1ld_rep2 WT 1d
WT2d_repl WT  2d
WT2d_rep2 WT  2d
KO1d_repl KO 1d
KO01d_rep2 KO 1d
K02d_repl KO 2d
K02d_rep2 KO 2d

> plotFCPseudocolor(tcc)
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5.5 Other utilities

Recall that the simulation framework can handle different levels of DE for DEGs in individual
groups, and the shape of the distribution for these DEGs is the same as that of non-DEGs. Let us
confirm those distributions by introducing more drastic simulation conditions for comparing two
groups (G1 vs. G2) with biological replicates; i.e., (i) the number of genes is 20,000 (i.e., Ngene
= 20000), (ii) the first 30% of genes are DEGs (PDEG = 0.30), (iii) the first 85% of the DEGs
are up-regulated in G1 and the remaining 15% are up-regulated in G2 (DEG.assign = ¢(0.85,
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0.15)), (iv) the levels of DE are eight-fold in G1 and sixteen-fold in G2 (DEG.foldchange =
c(8, 16)), and (v) there are a total of four samples (two biological replicates for G1 and two
biological replicates for G2) (replicates = c(2, 2)).

> set.seed(1000)

> library(TCC)

> tcc <- simulateReadCounts(Ngene = 20000, PDEG = 0.30,

+ DEG.assign = ¢(0.85, 0.15),
+ DEG.foldchange = c(8, 16),
+ replicates = c(2, 2))

> head(tcc$count)

Gl_repl Gl_rep2 G2_repl G2_rep2

gene_1 368 243 67 39
gene_2 56 23 9 3
gene_3 140 147 11 18
gene_4 720 932 167 83
gene_5 56 165 50 11
gene_6 504 487 80 133

An M-A plot for the simulation data can be viewed as follows; the points for up-regulated
DEGs in G1 and G2 are colored blue and red, respectively. The non-DEGs are in black:

> plot(tcc)
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This plot is generated from simulation data that has been scaled in such a way that the
library sizes of each sample are the same as the mean library size of the original data. That is,

> normalized.count <- getNormalizedData(tcc)
> colSums (normalized.count)

Gl_repl Gl_rep2 G2_repl G2_rep2
4474229 4474229 4474229 4474229

> colSums (tcc$count)

Gl_repl Gl_rep2 G2_repl G2_rep2
5704644 5813812 3108335 3270126

> mean(colSums (tcc$count))

[1] 4474229
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The summary statistics for non-DEGs and up-regulated DEGs in G1 and G2 are upshifted
compared with the original intentions of the user (i.e., respective M values of 0, —3, and 4 for
non-DEGs and up-regulated DEGs in G1 and G2). Indeed, the median values, indicated as
horizontal lines, are respectively 0.865, —2.125, and 4.797 for non-DEGs and up-regulated DEGs
in G1 and G2.

> plot(tcc, median.lines = TRUE)
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These upshifted M values for non-DEGs can be modified after performing the iDEGES/edgeR

normalization, e.g., the median M value (= 0.033) for non-DEGs based on the iDEGES/edgeR-
normalized data is nearly zero.

> tcc <- calcNormFactors(tcc, norm.method = "tmm", test.method = "edger",
+ iteration = 3, FDR = 0.1, floorPDEG = 0.05)
> plot(tcc, median.line = TRUE)
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MA plot
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The comparison of those values obtained from different normalization methods might be
another evaluation metric.
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6 Session info

> sessionInfo()

R version 3.0.2 (2013-09-25)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] splines parallel stats graphics grDevices utils datasets

[8] methods base

other attached packages:

[1] TCC_1.2.0 ROC_1.38.0 baySeq_1.16.0
[4] GenomicRanges_1.14.0 XVector_0.2.0 IRanges_1.20.0
[7] edgeR_3.4.0 limma_3.18.0 DESeq_1.14.0

[10] lattice_0.20-24 locfit_1.5-9.1 Biobase_2.22.0

[13] BiocGenerics_0.8.0

loaded via a namespace (and not attached):

[1] AnnotationDbi_1.24.0 DBI_0.2-7 EBSeq_1.2.0
[4] RColorBrewer_1.0-5 RSQLite_0.11.4 XML_3.98-1.1
[7] annotate_1.40.0 genefilter_1.44.0 geneplotter_1.40.0
[10] grid_3.0.2 samr_2.0 stats4_3.0.2
[13] survival_2.37-4 tools_3.0.2 xtable_1.7-1
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