
Package ‘Rsamtools’
April 5, 2014

Type Package

Title Binary alignment (BAM), variant call (BCF), or tabix file import

Version 1.14.3

Author Martin Morgan, Herv\{}'e Pag\{}`es, Valerie Obenchain

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

Description This package provides an interface to the 'samtools','bcftools', and 'tabix' utilities (see 'LI-
CENCE') for manipulating SAM (Sequence Alignment / Map), binary variant call (BCF) and
compressed indexed tab-delimited (tabix) files.

URL http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

License Artistic-2.0 | file LICENSE

LazyLoad yes

Depends
methods, IRanges (>= 1.19.11), GenomicRanges (>= 1.13.35),XVector, Biostrings (>= 2.29.7)

Imports utils, BiocGenerics (>= 0.1.3), zlibbioc, bitops

Suggests ShortRead (>= 1.19.10), GenomicFea-
tures,TxDb.Dmelanogaster.UCSC.dm3.ensGene, KEGG.db,TxDb.Hsapiens.UCSC.hg18.knownGene, RNAse-
qData.HNRNPC.bam.chr14,BSgenome.Hsapiens.UCSC.hg19, pasillaBamSubset, RUnit, Bioc-
Style

LinkingTo IRanges, XVector, Biostrings

biocViews DataImport, Sequencing, HighThroughputSequencing

1

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

2 Rsamtools-package

R topics documented:
Rsamtools-package . 2
applyPileups . 3
BamFile . 5
BamInput . 11
BamSampler . 16
BamViews . 17
BcfFile . 22
BcfInput . 25
Compression . 27
deprecated . 28
FaFile . 28
FaInput . 31
findMateAlignment . 32
headerTabix . 36
indexTabix . 37
PileupFiles . 38
PileupParam . 40
quickCountBam . 43
readGAlignmentsFromBam . 44
readPileup . 49
RsamtoolsFile . 51
RsamtoolsFileList . 52
ScanBamParam . 53
ScanBcfParam-class . 57
seqnamesTabix . 60
sequenceLayer . 60
stackStringsFromBam . 66
TabixFile . 69
TabixInput . 72

Index 74

Rsamtools-package ’samtools’ aligned sequence utilities interface

Description

This package provides facilities for parsing samtools BAM (binary) files representing aligned se-
quences.

Details

See packageDescription(Rsamtools) for package details. A useful starting point is the scanBam
manual page.

applyPileups 3

Note

This package documents the following classes for purely internal reasons, see help pages in other
packages: bzfile, fifo, gzfile, pipe, unz, url.

Author(s)

Author: Martin Morgan

Maintainer: Biocore Team c/o BioC user list <bioconductor@stat.math.ethz.ch>

References

The current source code for samtools and bcftools is from https://github.com/samtools/samtools.
Additional material is at http://samtools.sourceforge.net/.

Examples

packageDescription(Rsamtools)

applyPileups Create summary pile-up statistics across multiple BAM files.

Description

applyPileups scans one or more BAM files, returning position-specific sequence and quality sum-
maries.

Usage

applyPileups(files, FUN, ..., param)

Arguments

files A PileupFiles instances.

FUN A function of 1 argument, x, to be evaluated for each yield (see yieldSize,
yieldBy, yieldAll). The argument x is a list, with elements describing the
current pile-up. The elements of the list are determined by the argument what,
and include:

seqnames: (Always returned) A named integer() representing the seqnames
corresponding to each position reported in the pile-up. This is a run-length
encoding, where the names of the elements represent the seqnames, and the
values the number of successive positions corresponding to that seqname.

pos: Always returned) A integer() representing the genomic coordinate of
each pile-up position.

https://github.com/samtools/samtools
http://samtools.sourceforge.net/

4 applyPileups

seq: An array of dimensions nucleotide x file x position.
The ‘nucleotide’ dimension is length 5, corresponding to ‘A’, ‘C’, ‘G’, ‘T’,
and ‘N’ respectively.
Entries in the array represent the number of times the nucleotide occurred
in reads in the file overlapping the position.

qual: Like seq, but summarizing quality; the first dimension is the Phred-
encoded quality score, ranging from ‘!’ (0) to ‘~’ (93).

... Additional arguments, passed to methods.

param An instance of the object returned by PileupParam.

Details

Regardless of param values, the algorithm follows samtools by excluding reads flagged as un-
mapped, secondary, duplicate, or failing quality control.

Value

applyPileups returns a list equal in length to the number of times FUN has been called, with each
element containing the result of FUN.

PileupParam returns an object describing the parameters.

Author(s)

Martin Morgan

References

http://samtools.sourceforge.net/

See Also

PileupParam.

Examples

fl <- system.file("extdata", "ex1.bam", package="Rsamtools",
mustWork=TRUE)

fls <- PileupFiles(c(fl, fl))

calcInfo <-
function(x)

{
information at each pile-up position
info <- apply(x[["seq"]], 2, function(y) {

y <- y[c("A", "C", "G", "T"),,drop=FALSE]
y <- y + 1L # continuity
cvg <- colSums(y)
p <- y / cvg[col(y)]

http://samtools.sourceforge.net/

BamFile 5

h <- -colSums(p * log(p))
ifelse(cvg == 4L, NA, h)

})
list(seqnames=x[["seqnames"]], pos=x[["pos"]], info=info)

}
which <- GRanges(c("seq1", "seq2"), IRanges(c(1000, 1000), 2000))
param <- PileupParam(which=which, what="seq")
res <- applyPileups(fls, calcInfo, param=param)
str(res)
head(res[[1]][["pos"]]) # positions matching param
head(res[[1]][["info"]]) # inforamtion in each file

param as part of files
fls1 <- PileupFiles(c(fl, fl), param=param)
res1 <- applyPileups(fls1, calcInfo)
identical(res, res1)

yield by position, across ranges
param <- PileupParam(which=which, yieldSize=500L, yieldBy="position",

what="seq")
res <- applyPileups(fls, calcInfo, param=param)
sapply(res, "[[", "seqnames")

BamFile Maintain and use BAM files

Description

Use BamFile() to create a reference to a BAM file (and optionally its index). The reference remains
open across calls to methods, avoiding costly index re-loading.

BamFileList() provides a convenient way of managing a list of BamFile instances.

Usage

Constructors

BamFile(file, index=file, ..., yieldSize=NA_integer_, obeyQname=FALSE,
asMates=FALSE)

BamFileList(..., yieldSize=NA_integer_, obeyQname=FALSE, asMates=FALSE)

Opening / closing

S3 method for class BamFile
open(con, ...)
S3 method for class BamFile
close(con, ...)

6 BamFile

accessors; also path(), index(), yieldSize()

S4 method for signature BamFile
isOpen(con, rw="")
S4 method for signature BamFile
isIncomplete(con)
S4 method for signature BamFile
obeyQname(object, ...)
obeyQname(object, ...) <- value
S4 method for signature BamFile
asMates(object, ...)
asMates(object, ...) <- value

actions

S4 method for signature BamFile
scanBamHeader(files, ...)
S4 method for signature BamFile
seqinfo(x)
S4 method for signature BamFile
filterBam(file, destination, index=file, ...,

filter=FilterRules(), indexDestination=TRUE,
param=ScanBamParam(what=scanBamWhat()))

S4 method for signature BamFile
indexBam(files, ...)
S4 method for signature BamFile
sortBam(file, destination, ..., byQname=FALSE, maxMemory=512)
S4 method for signature BamFileList
mergeBam(files, destination, ...)

reading

S4 method for signature BamFile
scanBam(file, index=file, ..., param=ScanBamParam(what=scanBamWhat()))
S4 method for signature BamFile
readGAlignmentsFromBam(file, index=file, ..., use.names=FALSE, param=NULL,

with.which_label=FALSE)
S4 method for signature BamFile
readGappedReadsFromBam(file, index=file, use.names=FALSE, param=NULL,

with.which_label=FALSE)
S4 method for signature BamFile
readGAlignmentPairsFromBam(file, index=file, use.names=FALSE, param=NULL,

with.which_label=FALSE)
S4 method for signature BamFile
readGAlignmentsListFromBam(file, index=file, ...,

use.names=FALSE, param=ScanBamParam(), with.which_label=FALSE)

BamFile 7

counting

S4 method for signature BamFile
countBam(file, index=file, ..., param=ScanBamParam())
S4 method for signature BamFileList
countBam(file, index=file, ..., param=ScanBamParam())
S4 method for signature BamFile
quickCountBam(file, ..., param=ScanBamParam(), mainGroupsOnly=FALSE)
S4 method for signature BamFile
coverage(x, shift=0L, width=NULL, weight=1L, ..., param = ScanBamParam())
S4 method for signature GRanges,BamFile
summarizeOverlaps(features, reads, mode, ignore.strand=FALSE, ...,

inter.feature=TRUE, singleEnd=TRUE, fragments=FALSE, param=ScanBamParam())
S4 method for signature BamFile,ANY
findSpliceOverlaps(query, subject, ignore.strand=FALSE, ...,

param=ScanBamParam(), singleEnd=TRUE)

Arguments

... Additional arguments.
For BamFileList, this can either be a single character vector of paths to BAM
files, or several instances of BamFile objects. When a character vector of paths,
a second named argument ‘index’ can be a character() vector of length equal
to the first argument specifying the paths to the index files, or character() to
indicate that no index file is available. See BamFile.
For coverage, the arguments are passed to the coverage method for GAlignments
objects.
For summarizeOverlaps, providing count.mapped.reads=TRUE include addi-
tional passes through the BAM file to collect statistics like those from countBam.

con An instance of BamFile.
x, object, file, files

A character vector of BAM file paths (for BamFile) or a BamFile instance (for
other methods).

index character(1); the BAM index file path (for BamFile); ignored for all other meth-
ods on this page.

yieldSize Number of records to yield each time the file is read from with scanBam. See
‘Fields’ section for details.

asMates Logical indicating if records should be paired as mates. See ‘Fields’ section for
details.

obeyQname Logical indicating if the BAM file is sorted by qname. In Bioconductor > 2.12
paired-end files do not need to be sorted by qname. Instead use asMates=TRUE
for reading paired-end data. See ‘Fields’ section for details.

value Logical value for setting asMates and obeyQname in a BamFile instance.

filter A FilterRules instance. Functions in the FilterRules instance should expect
a single DataFrame argument representing all information specified by param.

8 BamFile

Each function must return a logical vector, usually of length equal to the num-
ber of rows of the DataFrame. Return values are used to include (when TRUE)
corresponding records in the filtered BAM file.

destination character(1) file path to write filtered reads to.
indexDestination

logical(1) indicating whether the destination file should also be indexed.
byQname, maxMemory

See sortBam.

param An optional ScanBamParam instance to further influence scanning, counting, or
filtering.

use.names Construct the names of the returned object from the query template names (QNAME
field)? If not (the default), then the returned object has no names.

with.which_label

See ?readGAlignmentsFromBam.

rw Mode of file; ignored.

ignore.strand A logical value indicating if strand should be considered when matching.
shift, width, weight

See coverage.

mainGroupsOnly See quickCountBam.
features, reads, mode, inter.feature, fragments, singleEnd

See summarizeOverlaps

query, subject See findSpliceOverlaps

Objects from the Class

Objects are created by calls of the form BamFile().

Fields

The BamFile class inherits fields from the RsamtoolsFile class and has fields:

yieldSize: Number of records to yield each time the file is read from using scanBam. Only valid
when length(bamWhich(param)) == 0. Setting yieldSize on a BamFileList does not alter
existing yield sizes set on the individual BamFile instances.

asMates: A logical indicating if the records should be returned as mated pairs. When TRUE scan-
Bam attempts to mate (pair) the records and returns two additional fields of groupid and
mates. groupid is an integer vector of unique group ids; mates is a logical that is TRUE for
records successfully paired by the algorithm.
Mate criteria:

• Bit 0x1 (multiple segments) is 1.
• Bit 0x4 (segment unmapped) is 0.
• Bit 0x8 (next segment unmapped) is 0.
• Bit 0x40 and 0x80 (first/last segment): Segments are a pair of first/last
• Bit 0x100 (secondary alignment): Both segments are secondary OR both not secondary

BamFile 9

• Bit 0x2 (properly aligned): Both segments are properly aligned
• qname match.
• tid match.
• segment1 mpos matches segment2 pos AND segment2 mpos matches segment1 pos

Records not passing these criteria are returned with mate status FALSE. Flags, tags and ranges
may be specified in the ScanBamParam for fine tuning of results.

obeyQname: A logical(0) indicating if the file was sorted by qname. In Bioconductor > 2.12
paired-end files do not need to be sorted by qname. Instead set asMates=TRUE in the BamFile
when using readGAlignmentsListFromBam.
When counting paired-end data with summarizeOverlaps, setting singleEnd=FALSE will
trigger paired-end reading and counting. It is fine to also set asMates=TRUE in the BamFile
but is not necessary if singleEnd=FALSE.

Functions and methods

BamFileList inherits methods from RsamtoolsFileList and SimpleList.

Opening / closing:

open.BamFile Opens the (local or remote) path and index (if bamIndex is not character(0)),
files. Returns a BamFile instance.

close.BamFile Closes the BamFile con; returning (invisibly) the updated BamFile. The instance
may be re-opened with open.BamFile.

isOpen Tests whether the BamFile con has been opened for reading.

isIncomplete Tests whether the BamFile con is niether closed nor at the end of the file.

Accessors:

path Returns a character(1) vector of BAM path names.

index Returns a character(1) vector of BAM index path names.

yieldSize, yieldSize<- Return or set an integer(1) vector indicating yield size.

obeyQname, obeyQname<- Return or set a logical(0) indicating if the file was sorted by qname.

asMates, asMates<- Return or set a logical(0) indicating if the records should be returned as mated
pairs.

Methods:

scanBamHeader Visit the path in path(file), returning the information contained in the file
header; see scanBamHeader.

seqinfo Visit the path in path(file), returning a Seqinfo instance containing information on the
lengths of each sequence.

scanBam Visit the path in path(file), returning the result of scanBam applied to the specified
path.

countBam Visit the path(s) in path(file), returning the result of countBam applied to the speci-
fied path.

filterBam Visit the path in path(file), returning the result of filterBam applied to the specified
path.

10 BamFile

indexBam Visit the path in path(file), returning the result of indexBam applied to the specified
path.

sortBam Visit the path in path(file), returning the result of sortBam applied to the specified
path.

mergeBam Merge several BAM files into a single BAM file. See mergeBam for details; additional
arguments supported by mergeBam,character-method are also available for BamFileList.

readGAlignmentsFromBam, readGappedReadsFromBam, readGAlignmentPairsFromBam
Visit the path in path(file), returning the result of readGAlignmentsFromBam, readGappedReadsFromBam,
or readGAlignmentPairsFromBam applied to the specified path. See readGAlignmentsFromBam.

readGAlignmentsListFromBam Visit the Bam file in path(file), returning the result of readGAlignmentsListFromBam
applied to the specified path. See readGAlignmentsListFromBam.

show Compactly display the object.

Author(s)

Martin Morgan and Marc Carlson

See Also

• readGAlignmentsFromBam

• readGAlignmentPairsFromBam

• readGAlignmentsListFromBam

• summarizeOverlaps

• findSpliceOverlaps

Examples

##
BamFile options.
##

fl <- system.file("extdata", "ex1.bam", package="Rsamtools")
bf <- BamFile(fl)
bf

When asMates=TRUE scanBam() reads the data in as
pairs. See asMates above for details of the pairing
algorithm.
asMates(bf) <- TRUE

When yieldSize is set, scanBam() will iterate
through the file in chunks.
yieldSize(bf) <- 500

##
Reading Bam files.

BamInput 11

##

fl <- system.file("extdata", "ex1.bam", package="Rsamtools",
mustWork=TRUE)

length(scanBam(fl)[[1]][[1]]) # all records

bf <- open(BamFile(fl)) # implicit index
bf
identical(scanBam(bf), scanBam(fl))
close(bf)

Use yieldSize to iterate through a file in chunks.
bf <- open(BamFile(fl, yieldSize=1000))
while (nrec <- length(scanBam(bf)[[1]][[1]]))

cat("records:", nrec, "\n")
close(bf)

Repeatedly visit multiple ranges in the BamFile.
rng <- GRanges(c("seq1", "seq2"), IRanges(1, c(1575, 1584)))
bf <- open(BamFile(fl))
sapply(seq_len(length(rng)), function(i, bamFile, rng) {

param <- ScanBamParam(which=rng[i], what="seq")
bam <- scanBam(bamFile, param=param)[[1]]
alphabetFrequency(bam[["seq"]], baseOnly=TRUE, collapse=TRUE)

}, bf, rng)
close(bf)

See ?summarizeOverlaps and ?findSpliceOverlaps in the
GenomicRanges package for examples with these functions.

BamInput Import, count, index, filter, sort, and merge ‘BAM’ (binary alignment)
files.

Description

Import binary ‘BAM’ files into a list structure, with facilities for selecting what fields and which
records are imported, and other operations to manipulate BAM files.

Usage

scanBam(file, index=file, ..., param=ScanBamParam(what=scanBamWhat()))

countBam(file, index=file, ..., param=ScanBamParam())

scanBamHeader(files, ...)
S4 method for signature character
scanBamHeader(files, ...)

12 BamInput

asBam(file, destination, ...)
S4 method for signature character
asBam(file, destination, ...,

overwrite=FALSE, indexDestination=TRUE)

filterBam(file, destination, index=file, ...)
S4 method for signature character
filterBam(file, destination, index=file, ...,

filter=FilterRules(), indexDestination=TRUE,
param=ScanBamParam(what=scanBamWhat()))

sortBam(file, destination, ...)
S4 method for signature character
sortBam(file, destination, ..., byQname=FALSE, maxMemory=512)

indexBam(files, ...)
S4 method for signature character
indexBam(files, ...)

mergeBam(files, destination, ...)
S4 method for signature character
mergeBam(files, destination, ..., region = RangedData(),

overwrite = FALSE, header = character(), byQname = FALSE,
addRG = FALSE, compressLevel1 = FALSE, indexDestination = FALSE)

Arguments

file The character(1) file name of the ‘BAM’ (’SAM’ for asBam) file to be processed.

files The character() file names of the ‘BAM’ file to be processed. For mergeBam,
must satisfy length(files) >= 2.

index The character(1) name of the index file of the ’BAM’ file being processed; this
is given without the ’.bai’ extension.

destination The character(1) file name of the location where the sorted, filtered, or merged
output file will be created. For asBam and sortBam this is without the “.bam”
file suffix.

region A RangedData() instance with >= 1 rows, specifying the region of the BAM
files to merged.

... Additional arguments, passed to methods.

overwrite A logical(1) indicating whether the destination can be over-written if it already
exists.

filter A FilterRules instance allowing users to filter BAM files based on arbitrary
criteria, as described below.

indexDestination

A logical(1) indicating whether the created destination file should also be in-
dexed.

BamInput 13

byQname A logical(1) indicating whether the sorted destination file should be sorted by
Query-name (TRUE) or by mapping position (FALSE).

header A character(1) file path for the header information to be used in the merged
BAM file.

addRG A logical(1) indicating whether the file name should be used as RG (read group)
tag in the merged BAM file.

compressLevel1 A logical(1) indicating whether the merged BAM file should be compressed to
zip level 1.

maxMemory A numerical(1) indicating the maximal amount of memory (in MB) that the
function is allowed to use.

param An instance of ScanBamParam. This influences what fields and which records
are imported.

Details

The scanBam function parses binary BAM files; text SAM files can be parsed using R’s scan func-
tion, especially with arguments what to control the fields that are parsed.

countBam returns a count of records consistent with param.

scanBamHeader visits the header information in a BAM file, returning for each file a list containing
elements targets and text, as described below. The SAM / BAM specification does not require
that the content of the header be consistent with the content of the file, e.g., more targets may be
present that are represented by reads in the file.

asBam converts ’SAM’ files to ’BAM’ files, equivalent to the samtools view -Sb file > destination.
The ’BAM’ file is sorted and an index created on the destination (with extension ’.bai’) when
indexDestination=TRUE.

filterBam parses records in file. Records satisfying the bamWhich bamFlag and bamSimpleCigar
criteria of param are accumulated to a default of yieldSize = 1000000 records (change this by
specifying yieldSize when creating a BamFile instance; see BamFile-class). These records are
then parsed to a DataFrame and made available for further filtering by user-supplied FilterRules.
Functions in the FilterRules instance should expect a single DataFrame argument representing all
information specified by param. Each function must return a logical vector equal to the number
of rows of the DataFrame. Return values are used to include (when TRUE) corresponding records
in the filtered BAM file. The BAM file is created at destination. An index file is created on
the destination when indexDestination=TRUE. It is more space- and time-efficient to filter use
bamWHich, bamFlag, and bamSimpleCigar, if appropriate, than to supply FilterRules.

sortBam sorts the BAM file given as its first argument, analogous to the “samtools sort” function.

indexBam creates an index for each BAM file specified, analogous to the ‘samtools index’ function.

mergeBam merges 2 or more sorted BAM files. As with samtools, the RG (read group) dictionary in
the header of the BAM files is not reconstructed.

Details of the ScanBamParam class are provide on its help page; several salient points are reiterated
here. ScanBamParam can contain a field what, specifying the components of the BAM records to
be returned. Valid values of what are available with scanBamWhat. ScanBamParam can contain an
argument which that specifies a subset of reads to return. This requires that the BAM file be indexed,
and that the file be named following samtools convention as <bam_filename>.bai. ScanBamParam
can contain an argument tag to specify which tags will be extracted.

14 BamInput

Value

The scanBam,character-method returns a list of lists. The outer list groups results from each
Ranges list of bamWhich(param); the outer list is of length one when bamWhich(param) has
length 0. Each inner list contains elements named after scanBamWhat(); elements omitted from
bamWhat(param) are removed. The content of non-null elements are as follows, taken from the
description in the samtools API documentation:

• qname: This is the QNAME field in SAM Spec v1.4. The query name, i.e., identifier, associ-
ated with the read.

• flag: This is the FLAG field in SAM Spec v1.4. A numeric value summarizing details of the
read. See ScanBamParam and the flag argument, and scanBamFlag().

• rname: This is the RNAME field in SAM Spec v1.4. The name of the reference to which the
read is aligned.

• strand: The strand to which the read is aligned.

• pos: This is the POS field in SAM Spec v1.4. The genomic coordinate at the start of the
alignment. Coordinates are ‘left-most’, i.e., at the 3’ end of a read on the ’-’ strand, and 1-
based. The position excludes clipped nucleotides, even though soft-clipped nucleotides are
included in seq.

• qwidth: The width of the query, as calculated from the cigar encoding; normally equal to the
width of the query returned in seq.

• mapq: This is the MAPQ field in SAM Spec v1.4. The MAPping Quality.

• cigar: This is the CIGAR field in SAM Spec v1.4. The CIGAR string.

• mrnm: This is the RNEXT field in SAM Spec v1.4. The reference to which the mate (of a
paired end or mate pair read) aligns.

• mpos: This is the PNEXT field in SAM Spec v1.4. The position to which the mate aligns.

• isize: This is the TLEN field in SAM Spec v1.4. Inferred insert size for paired end alignments.

• seq: This is the SEQ field in SAM Spec v1.4. The query sequence, in the 5’ to 3’ orientation.
If aligned to the minus strand, it is the reverse complement of the original sequence.

• qual: This is the QUAL field in SAM Spec v1.4. Phred-encoded, phred-scaled base quality
score, oriented as seq.

• groupid: This is an integer vector of unique group ids returned when asMates=TRUE in a
BamFile object. groupid values are used to create the partitioning for a GAlignmentsList
object.

• mates: Returned (always) when asMates=TRUE in a BamFile object. This is a logical vector
indicating mate status of each record.

scanBamHeader returns a list, with one element for each file named in files. The list contains two
element. The targets element contains target (reference) sequence lengths. The text element is
itself a list with each element a list corresponding to tags (e.g., ‘@SQ’) found in the header, and the
associated tag values.

asBam returns the file name of the BAM file.

sortBam returns the file name of the sorted file.

indexBam returns the file name of the index file created.

filterBam returns the file name of the destination file created.

BamInput 15

Author(s)

Martin Morgan <mtmorgan@fhcrc.org>. Thomas Unterhiner <thomas.unterthiner@students.jku.at>
(sortBam).

References

http://samtools.sourceforge.net/

See Also

ScanBamParam, scanBamWhat, scanBamFlag

Examples

fl <- system.file("extdata", "ex1.bam", package="Rsamtools",
mustWork=TRUE)

##
scanBam
##

res0 <- scanBam(fl)[[1]] # always list-of-lists
names(res0)
length(res0[["qname"]])
lapply(res0, head, 3)
table(width(res0[["seq"]])) # query widths
table(res0[["qwidth"]], useNA="always") # query widths derived from cigar
table(res0[["cigar"]], useNA="always")
table(res0[["strand"]], useNA="always")
table(res0[["flag"]], useNA="always")

which <- RangesList(seq1=IRanges(1000, 2000),
seq2=IRanges(c(100, 1000), c(1000, 2000)))

p1 <- ScanBamParam(which=which, what=scanBamWhat())
res1 <- scanBam(fl, param=p1)
names(res1)
names(res1[[2]])

p2 <- ScanBamParam(what=c("rname", "strand", "pos", "qwidth"))
res2 <- scanBam(fl, param=p2)

p3 <- ScanBamParam(flag=scanBamFlag(isMinusStrand=FALSE))
length(scanBam(fl, param=p3)[[1]])

##
filterBam
##

param <- ScanBamParam(
flag=scanBamFlag(isUnmappedQuery=FALSE),
what="seq")

http://samtools.sourceforge.net/

16 BamSampler

dest <- filterBam(fl, tempfile(), param=param)
countBam(dest) ## 3271 records
filt <- list(MinWidth = function(x) width(x$seq) > 35)
dest <- filterBam(fl, tempfile(), param=param, filter=FilterRules(filt))
countBam(dest) ## 398 records
res3 <- scanBam(dest, param=ScanBamParam(what="seq"))[[1]]
table(width(res3$seq))

##
sortBam
##

sorted <- sortBam(fl, tempfile())

map mcols(gwhich) to output, e.g., of countBam
gwhich <- as(which, "GRanges")[c(2, 1, 3)]
mcols(gwhich)[["OriginalOrder"]] <- 1:3
cnt <- countBam(fl, param=ScanBamParam(which=gwhich))
cntVals <- unlist(split(mcols(gwhich), seqnames(gwhich)))
cbind(cnt, as.data.frame(cntVals))

BamSampler Sample from a BAM files

Description

Use BamSampler() to create a reference to a BAM file (and optionally its index). Calls to scanBam
(and many functions that use scanBam) draw a random sample from the BAM file.

Usage

Constructors

BamSampler(file, index = file, ..., yieldSize, obeyQname = FALSE, asMates = FALSE)

S4 method for signature BamSampler
scanBam(file, index=file, ..., param=ScanBamParam(what=scanBamWhat()))

Arguments

file character(1); BAM file path for BamSampler, or BamSampler index for scanBam
and other functions.

index character(1); the BAM index file path (for BamFile); ignored for other methods.

... Additional arguments; see BamFile-class.

yieldSize integer(1); number of records to yield each time the file is read from using
scanBam.

BamViews 17

obeyQname logical(1); indicating whether the file is sorted by qname and if so, that qnames
are not split between yields.

asMates logical(1); indicating whether the records should be returned as mated pairs.

param An optional ScanBamParam instance to further influence scanning, counting, or
filtering.

Objects from the Class

Objects are created by calls of the form BamSampler().

Fields

The BamSampler class inherits fields from the BamFile class.

Functions and methods

BamSampler inherits methods from BamFile and can be used in place of BamFile in many functions.

Author(s)

Martin Morgan

Examples

fl <- system.file("extdata", "ex1.bam", package="Rsamtools")
samp <- BamSampler(fl, yieldSize=1000)
two independent samples
head(readGAlignmentsFromBam(samp))
head(readGAlignmentsFromBam(samp))

BamViews Views into a set of BAM files

Description

Use BamViews() to reference a set of disk-based BAM files to be processed (e.g., queried using
scanBam) as a single ‘experiment’.

Usage

Constructor
BamViews(bamPaths=character(0),

bamIndicies=bamPaths,
bamSamples=DataFrame(row.names=make.unique(basename(bamPaths))),
bamRanges, bamExperiment = list(), ...)

18 BamViews

S4 method for signature missing
BamViews(bamPaths=character(0),

bamIndicies=bamPaths,
bamSamples=DataFrame(row.names=make.unique(basename(bamPaths))),
bamRanges, bamExperiment = list(), ..., auto.range=FALSE)

Accessors
bamPaths(x)
bamSamples(x)
bamSamples(x) <- value
bamRanges(x)
bamRanges(x) <- value
bamExperiment(x)

S4 method for signature BamViews
names(x)
S4 replacement method for signature BamViews
names(x) <- value
S4 method for signature BamViews
dimnames(x)
S4 replacement method for signature BamViews,ANY
dimnames(x) <- value

bamDirname(x, ...) <- value

Subset
S4 method for signature BamViews,ANY,ANY
x[i, j, ..., drop=TRUE]
S4 method for signature BamViews,ANY,missing
x[i, j, ..., drop=TRUE]
S4 method for signature BamViews,missing,ANY
x[i, j, ..., drop=TRUE]

Input
S4 method for signature BamViews
scanBam(file, index = file, ..., param = ScanBamParam(what=scanBamWhat()))
S4 method for signature BamViews
countBam(file, index = file, ..., param = ScanBamParam())
S4 method for signature BamViews
readGAlignmentsFromBam(file, index=file, ..., use.names=FALSE, param=NULL,

with.which_label=FALSE)

Show
S4 method for signature BamViews
show(object)

Counting
S4 method for signature BamViews,missing
summarizeOverlaps(

BamViews 19

features, reads, mode, ignore.strand=FALSE, ..., inter.feature=TRUE,
singleEnd=TRUE, fragments=FALSE, param=ScanBamParam())

Arguments

bamPaths A character() vector of BAM path names.

bamIndicies A character() vector of BAM index file path names, without the ‘.bai’ extension.

bamSamples A DataFrame instance with as many rows as length(bamPaths), containing
sample information associated with each path.

bamRanges A GRanges, RangedData or missing instance with ranges defined on the spaces
of the BAM files. Ranges are not validated against the BAM files.

bamExperiment A list() containing additional information about the experiment.

auto.range If TRUE and all bamPaths exist, populate the ranges with the union of ranges
returned in the target element of scanBamHeader.

... Additional arguments.

x An instance of BamViews.

object An instance of BamViews.

value An object of appropriate type to replace content.

i During subsetting, a logical or numeric index into bamRanges.

j During subsetting, a logical or numeric index into bamSamples and bamPaths.

drop A logical(1), ignored by all BamViews subsetting methods.

file An instance of BamViews.

index A character vector of indices, corresponding to the bamPaths(file).

param An optional ScanBamParam instance to further influence scanning or counting.

use.names Construct the names of the returned object from the query template names (QNAME
field)? If not (the default), then the returned object has no names.

with.which_label

See ?readGAlignmentsFromBam.

reads Missing when a BamViews is the only argument supplied to summarizeOverlaps.
reads are the files specified in bamPaths of the BamViews object.

features A BamFileList. features are extracted from the bamRanges of the BamViews
object.
Metadata from bamPaths and bamSamples are stored in the colData slot of the
SummarizedExperiment object. bamExperiment metadata are in the exptData
slot.

mode A function that defines the method to be used when a read overlaps more than
one feature. Pre-defined options are "Union", "IntersectionStrict", or "Inter-
sectionNotEmpty" and are designed after the counting modes available in the
HTSeq package by Simon Anders (see references).

• "Union" : (Default) Reads that overlap any portion of exactly one feature
are counted. Reads that overlap multiple features are discarded.

20 BamViews

• "IntersectionStrict" : A read must fall completely "within" the feature to be
counted. If a read overlaps multiple features but falls "within" only one, the
read is counted for that feature. If the read is "within" multiple features, the
read is discarded.

• "IntersectionNotEmpty" : A read must fall in a unique disjoint region of a
feature to be counted. When a read overlaps multiple features, the features
are partitioned into disjoint intervals. Regions that are shared between the
features are discarded leaving only the unique disjoint regions. If the read
overlaps one of these remaining regions, it is assigned to the feature the
unique disjoint region came from.

ignore.strand A logical value indicating if strand should be considered when matching.

singleEnd A logical value indicating if the bam files contain single or paired-end reads.

inter.feature A logical indicating if the counting mode should be aware of overlapping fea-
tures. When TRUE (default), reads mapping to multiple features are dropped
(i.e., not counted). When FALSE, these reads are retained and a count is as-
signed to each feature they map to.
There are 6 possible combinations of the mode and inter.feature arguments.
When inter.feature=FALSE the behavior of modes ‘Union’ and ‘Intersection-
NotEmpty’ are the same resulting in 5 distinct ways to count.

fragments A logical value indicating if singletons, reads with unmapped pairs and other
fragments should be included in the counting. When fragments=FALSE only
reads paired with the algorithm described at ?findMateAlignment are counted.
When fragments=TRUE (default) all singletons, reads with unmapped pairs and
other fragments are counted in addition to the reads paired with the ?findMateAlign-
ment algorithm. This argument applies to paired-end reads only so singleEnd
must be TRUE.

Objects from the Class

Objects are created by calls of the form BamViews().

Slots

bamPaths A character() vector of BAM path names.

bamIndicies A character() vector of BAM index path names.

bamSamples A DataFrame instance with as many rows as length(bamPaths), containing sample
information associated with each path.

bamRanges A GRanges instance with ranges defined on the spaces of the BAM files. Ranges are
not validated against the BAM files.

bamExperiment A list() containing additional information about the experiment.

Functions and methods

See ’Usage’ for details on invocation.

Constructor:

BamViews: Returns a BamViews object.

BamViews 21

Accessors:

bamPaths Returns a character() vector of BAM path names.

bamIndicies Returns a character() vector of BAM index path names.

bamSamples Returns a DataFrame instance with as many rows as length(bamPaths), containing
sample information associated with each path.

bamSamples<- Assign a DataFrame instance with as many rows as length(bamPaths), contain-
ing sample information associated with each path.

bamRanges Returns a GRanges instance with ranges defined on the spaces of the BAM files.
Ranges are not validated against the BAM files.

bamRanges<- Assign a GRanges instance with ranges defined on the spaces of the BAM files.
Ranges are not validated against the BAM files.

bamExperiment Returns a list() containing additional information about the experiment.

names Return the column names of the BamViews instance; same as names(bamSamples(x)).

names<- Assign the column names of the BamViews instance.

dimnames Return the row and column names of the BamViews instance.

dimnames<- Assign the row and column names of the BamViews instance.

Methods:

"[" Subset the object by bamRanges or bamSamples.

scanBam Visit each path in bamPaths(file), returning the result of scanBam applied to the spec-
ified path. bamRanges(file) takes precedence over bamWhich(param).

countBam Visit each path in bamPaths(file), returning the result of countBam applied to the
specified path. bamRanges(file) takes precedence over bamWhich(param).

readGAlignmentsFromBam Visit each path in bamPaths(file), returning the result of readGAlignmentsFromBam
applied to the specified path. When index is missing, it is set equal to bamIndicies(file).
Only reads in bamRanges(file) are returned (if param is supplied, bamRanges(file) takes
precedence over bamWhich(param)). The return value is a SimpleList, with elements of
the list corresponding to each path. bamSamples(file) is available as metadata columns
(accessed with mcols) of the returned SimpleList.

show Compactly display the object.

Author(s)

Martin Morgan

See Also

readGAlignmentsFromBam. The GenomicRanges package is where the summarizeOverlaps method
originates.

22 BcfFile

Examples

fls <- system.file("extdata", "ex1.bam", package="Rsamtools",
mustWork=TRUE)

rngs <- GRanges(seqnames = Rle(c("chr1", "chr2"), c(9, 9)),
ranges = c(IRanges(seq(10000, 90000, 10000), width=500),

IRanges(seq(100000, 900000, 100000), width=5000)),
Count = seq_len(18L))

v <- BamViews(fls, bamRanges=rngs)
v
v[1:5,]
bamRanges(v[c(1:5, 11:15),])
bamDirname(v) <- getwd()
v

bv <- BamViews(fls,
bamSamples=DataFrame(info="test", row.names="ex1"),
auto.range=TRUE)

aln <- readGAlignmentsFromBam(bv)
aln
aln[[1]]
aln[colnames(bv)]
mcols(aln)

##---
summarizeOverlaps() with BamViews
##

bamSamples and bamPaths metadata are included in the colData.
bamExperiment metadata is put into the exptData slot.
fl <- system.file("extdata", "ex1.bam", package="Rsamtools", mustWork=TRUE)
rngs <- GRanges(c("seq1", "seq2"), IRanges(1, c(1575, 1584)))
samp <- DataFrame(info="test", row.names="ex1")
view <- BamViews(fl, bamSamples=samp, bamRanges=rngs)
se <- summarizeOverlaps(view, mode=Union, ignore.strand=TRUE)
colData(se)
exptData(se)

BcfFile Manipulate BCF files.

Description

Use BcfFile() to create a reference to a BCF (and optionally its index). The reference remains
open across calls to methods, avoiding costly index re-loading.

BcfFileList() provides a convenient way of managing a list of BcfFile instances.

BcfFile 23

Usage

Constructors

BcfFile(file, index = file,
mode=ifelse(grepl("\\.bcf$", file), "rb", "r"))

BcfFileList(...)

Opening / closing

S3 method for class BcfFile
open(con, ...)
S3 method for class BcfFile
close(con, ...)

accessors; also path(), index()

S4 method for signature BcfFile
isOpen(con, rw="")
bcfMode(object)

actions

S4 method for signature BcfFile
scanBcfHeader(file, ...)
S4 method for signature BcfFile
scanBcf(file, ..., param=ScanBcfParam())
S4 method for signature BcfFile
indexBcf(file, ...)

Arguments

con, object An instance of BcfFile.

file A character(1) vector of the BCF file path or, (for indexBcf) an instance of
BcfFile point to a BCF file.

index A character(1) vector of the BCF index.

mode A character(1) vector; mode="rb" indicates a binary (BCF) file, mode="r" a text
(VCF) file.

param An optional ScanBcfParam instance to further influence scanning.

... Additional arguments. For BcfFileList, this can either be a single character
vector of paths to BCF files, or several instances of BcfFile objects.

rw Mode of file; ignored.

Objects from the Class

Objects are created by calls of the form BcfFile().

24 BcfFile

Fields

The BcfFile class inherits fields from the RsamtoolsFile class.

Functions and methods

BcfFileList inherits methods from RsamtoolsFileList and SimpleList.

Opening / closing:

open.BcfFile Opens the (local or remote) path and index (if bamIndex is not character(0)),
files. Returns a BcfFile instance.

close.BcfFile Closes the BcfFile con; returning (invisibly) the updated BcfFile. The instance
may be re-opened with open.BcfFile.

Accessors:

path Returns a character(1) vector of the BCF path name.

index Returns a character(1) vector of BCF index name.

bcfMode Returns a character(1) vector BCF mode.

Methods:

scanBcf Visit the path in path(file), returning the result of scanBcf applied to the specified path.

show Compactly display the object.

Author(s)

Martin Morgan

Examples

fl <- system.file("extdata", "ex1.bcf", package="Rsamtools",
mustWork=TRUE)

bf <- BcfFile(fl) # implicit index
bf
identical(scanBcf(bf), scanBcf(fl))

rng <- GRanges(c("seq1", "seq2"), IRanges(1, c(1575, 1584)))
param <- ScanBcfParam(which=rng)
bcf <- scanBcf(bf, param=param) ## all ranges

ranges one at a time bf
open(bf)
sapply(seq_len(length(rng)), function(i, bcfFile, rng) {

param <- ScanBcfParam(which=rng)
bcf <- scanBcf(bcfFile, param=param)[[1]]
do extensive work with bcf
isOpen(bf) ## file remains open

}, bf, rng)

BcfInput 25

BcfInput Operations on ‘BCF’ files.

Description

Import, coerce, or index variant call files in text or binary format.

Usage

scanBcfHeader(file, ...)
S4 method for signature character
scanBcfHeader(file, ...)

scanBcf(file, ...)
S4 method for signature character
scanBcf(file, index = file, ..., param=ScanBcfParam())

asBcf(file, dictionary, destination, ...,
overwrite=FALSE, indexDestination=TRUE)

S4 method for signature character
asBcf(file, dictionary, destination, ...,

overwrite=FALSE, indexDestination=TRUE)

indexBcf(file, ...)
S4 method for signature character
indexBcf(file, ...)

Arguments

file For scanBcf and scanBcfHeader, the character() file name of the ‘BCF’ file to
be processed, or an instance of class BcfFile.

index The character() file name(s) of the ‘BCF’ index to be processed.

dictionary a character vector of the unique “CHROM” names in the VCF file.

destination The character(1) file name of the location where the BCF output file will be
created. For asBcf this is without the “.bcf” file suffix.

param A instance of ScanBcfParam influencing which records are parsed and the ‘INFO’
and ‘GENO’ information returned.

... Additional arguments, e.g., for scanBcfHeader,character-method, mode of
BcfFile.

overwrite A logical(1) indicating whether the destination can be over-written if it already
exists.

indexDestination

A logical(1) indicating whether the created destination file should also be in-
dexed.

26 BcfInput

Details

bcf* functions are restricted to the GENO fields supported by ‘bcftools’ (see documentation at the
url below). The argument param allows portions of the file to be input, but requires that the file
be BCF or bgzip’d and indexed as a TabixFile. For similar functions operating on VCF files see
?scanVcf in the VariantAnnotation package.

Value

scanBcfHeader returns a list, with one element for each file named in file. Each element of the
list is itself a list containing three elements. The reference element is a character() vector with
names of reference sequences. The sample element is a character() vector of names of samples.
The header element is a character() vector of the header lines (preceeded by “##”) present in the
VCF file.

scanBcf returns a list, with one element per file. Each list has 9 elements, corresponding to the
columns of the VCF specification: CHROM, POS, ID, REF, ALTQUAL, FILTER, INFO, FORMAT, GENO.

The GENO element is itself a list, with elements corresponding to fields supported by ‘bcftools’ (see
documentation at the url below).

asBcf creates a binary BCF file from a text VCF file.

indexBcf creates an index into the BCF file.

Author(s)

Martin Morgan <mtmorgan@fhcrc.org>.

References

http://vcftools.sourceforge.net/specs.html outlines the VCF specification.

http://samtools.sourceforge.net/mpileup.shtml contains information on the portion of the
specification implemented by bcftools.

http://samtools.sourceforge.net/ provides information on samtools.

See Also

BcfFile, TabixFile

Examples

fl <- system.file("extdata", "ex1.bcf", package="Rsamtools",
mustWork=TRUE)

scanBcfHeader(fl)
bcf <- scanBcf(fl)
value: list-of-lists
str(bcf[1:8])
names(bcf[["GENO"]])
str(head(bcf[["GENO"]][["PL"]]))
example(BcfFile)

http://vcftools.sourceforge.net/specs.html
http://samtools.sourceforge.net/mpileup.shtml
http://samtools.sourceforge.net/

Compression 27

Compression File compression for tabix (bgzip) and fasta (razip) files.

Description

These functions compress files for use in other parts of Rsamtools: bgzip for tabix files, razip for
random-access fasta files.

Usage

bgzip(file, dest=sprintf("%s.gz", file), overwrite = FALSE)
razip(file, dest=sprintf("%s.rz", file), overwrite = FALSE)

Arguments

file A character(1) path to an existing file. This file will be compressed.

dest A character(1) path to a file. This will be the compressed file. If dest exists,
then it is only over-written when overwrite=TRUE.

overwrite A logical(1) indicating whether dest should be over-written, if it already exists.

Value

The full path to dest.

Author(s)

Martin Morgan <mtmorgan@fhcrc.org>

References

http://samtools.sourceforge.net/

See Also

TabixFile, FaFile.

Examples

from <- system.file("extdata", "ex1.sam", package="Rsamtools",
mustWork=TRUE)

to <- tempfile()
zipped <- bgzip(from, to)

http://samtools.sourceforge.net/

28 FaFile

deprecated Deprecated functions

Description

Functions listed on this page are no longer supported.

Details

For yieldTabix, use the yieldSize argument of TabixFiles.

Author(s)

Martin Morgan <mtmorgan@fhcrc.org>.

FaFile Manipulate indexed fasta files.

Description

Use FaFile() to create a reference to an indexed fasta file. The reference remains open across calls
to methods, avoiding costly index re-loading.

FaFileList() provides a convenient way of managing a list of FaFile instances.

Usage

Constructors

FaFile(file, ...)
FaFileList(...)

Opening / closing

S3 method for class FaFile
open(con, ...)
S3 method for class FaFile
close(con, ...)

accessors; also path(), index()

S4 method for signature FaFile
isOpen(con, rw="")

actions

FaFile 29

S4 method for signature FaFile
indexFa(file, ...)

S4 method for signature FaFile
scanFaIndex(file, ...)
S4 method for signature FaFileList
scanFaIndex(file, ..., as=c("GRangesList", "GRanges"))

S4 method for signature FaFile
seqinfo(x)

S4 method for signature FaFile
countFa(file, ...)

S4 method for signature FaFile,GRanges
scanFa(file, param, ...)
S4 method for signature FaFile,RangesList
scanFa(file, param, ...)
S4 method for signature FaFile,RangedData
scanFa(file, param, ...)
S4 method for signature FaFile,missing
scanFa(file, param, ...)

S4 method for signature FaFile
getSeq(x, param, ...)
S4 method for signature FaFileList
getSeq(x, param, ...)

Arguments

con, x An instance of FaFile or (for getSeq) FaFileList.

file A character(1) vector of the fasta file path (for FaFile), or an instance of class
FaFile or FaFileList (for scanFaIndex, getSeq).

param An optional GRanges, RangesList, or RangedData instance to select reads (and
sub-sequences) for input. See Methods, below.

... Additional arguments. For FaFileList, this can either be a single character
vector of paths to BAM files, or several instances of FaFile objects.

rw Mode of file; ignored.

as character(1) specifying the return type, selected from specified options. When
GRangesList, index information from each file is returned as an element of the
list. When GRangesList, index information is collapsed across files into the
unique index elements.

Objects from the Class

Objects are created by calls of the form FaFile().

30 FaFile

Fields

The FaFile class inherits fields from the RsamtoolsFile class.

Functions and methods

FaFileList inherits methods from RsamtoolsFileList and SimpleList.

Opening / closing:

open.FaFile Opens the (local or remote) path and index files. Returns a FaFile instance.

close.FaFile Closes the FaFile con; returning (invisibly) the updated FaFile. The instance may
be re-opened with open.FaFile.

Accessors:

path Returns a character(1) vector of the fasta path name.

index Returns a character(1) vector of fasta index name (minus the ’.fai’ extension).

Methods:

indexFa Visit the path in path(file) and create an index file (with the extension ‘.fai’).

scanFaIndex Read the sequence names and and widths of recorded in an indexed fasta file, return-
ing the information as a GRanges object.

seqinfo Consult the index file for defined sequences (seqlevels()) and lengths (seqlengths()).

countFa Return the number of records in the fasta file.

scanFa Return the sequences indicated by param as a DNAStringSet instance. seqnames(param)
selects the sequences to return; start(param) and end{param} define the (1-based) region
of the sequence to return. Values of end(param) greater than the width of the sequence are
set to the width of the sequence. When param is missing, all records are selected. When
length(param)==0 no records are selected.

getSeq Returns the sequences indicated by param from the indexed fasta file(s) of file.
For the FaFile method, the return type is a DNAStringSet. The getSeq,FaFile and scanFa,FaFile,GRanges
methods differ in that getSeq will reverse complement sequences selected from the minus
strand.
For the FaFileList method, the param argument must be a GRangesList of the same length
as file, creating a one-to-one mapping between the ith element of file and the ith element
of param; the return type is a SimpleList of DNAStringSet instances, with elements of the
list in the same order as the input elements.

show Compactly display the object.

Author(s)

Martin Morgan

FaInput 31

Examples

fl <- system.file("extdata", "ce2dict1.fa", package="Rsamtools",
mustWork=TRUE)

fa <- open(FaFile(fl)) # open
countFa(fa)
(idx <- scanFaIndex(fa))
(dna <- scanFa(fa, param=idx[1:2]))
ranges(idx) <- narrow(ranges(idx), -10) # last 10 nucleotides
(dna <- scanFa(fa, param=idx[1:2]))

FaInput Operations on indexed ’fasta’ files.

Description

Scan indexed fasta (or compressed fasta) files and their indicies.

Usage

indexFa(file, ...)
S4 method for signature character
indexFa(file, ...)

scanFaIndex(file, ...)
S4 method for signature character
scanFaIndex(file, ...)

countFa(file, ...)
S4 method for signature character
countFa(file, ...)

scanFa(file, param, ...)
S4 method for signature character,GRanges
scanFa(file, param, ...)
S4 method for signature character,RangesList
scanFa(file, param, ...)
S4 method for signature character,RangedData
scanFa(file, param, ...)
S4 method for signature character,missing
scanFa(file, param, ...)

32 findMateAlignment

Arguments

file A character(1) vector containing the fasta file path.

param An optional GRanges, RangesList, or RangedData instance to select reads (and
sub-sequences) for input.

... Additional arguments, currently unused.

Value

indexFa visits the path in file and create an index file at the same location but with extension
‘.fai’).

scanFaIndex reads the sequence names and and widths of recorded in an indexed fasta file, return-
ing the information as a GRanges object.

countFa returns the number of records in the fasta file.

scanFa return the sequences indicated by param as a DNAStringSet instance. seqnames(param)
selects the sequences to return; start(param) and end{param} define the (1-based) region of the
sequence to return. Values of end(param) greater than the width of the sequence are set to the width
of the sequence. When param is missing, all records are selected. When param is GRanges(), no
records are selected.

Author(s)

Martin Morgan <mtmorgan@fhcrc.org>.

References

http://samtools.sourceforge.net/ provides information on samtools.

Examples

fa <- system.file("extdata", "ce2dict1.fa", package="Rsamtools",
mustWork=TRUE)

countFa(fa)
(idx <- scanFaIndex(fa))
(dna <- scanFa(fa, idx[1:2]))
ranges(idx) <- narrow(ranges(idx), -10) # last 10 nucleotides
(dna <- scanFa(fa, idx[1:2]))

findMateAlignment Pairing the elements of a GAlignments object

Description

Utilities for pairing the elements of a GAlignments object.

http://samtools.sourceforge.net/

findMateAlignment 33

Usage

findMateAlignment(x)
makeGAlignmentPairs(x, use.names=FALSE, use.mcols=FALSE)

Related low-level utilities:
getDumpedAlignments()
countDumpedAlignments()
flushDumpedAlignments()

Arguments

x A named GAlignments object with metadata columns flag, mrnm, and mpos.
Typically obtained by loading aligned paired-end reads from a BAM file with:

param <- ScanBamParam(what=c("flag", "mrnm", "mpos"))
x <- readGAlignmentsFromBam(..., use.names=TRUE, param=param)

use.names Whether the names on the input object should be propagated to the returned
object or not.

use.mcols Names of the metadata columns to propagate to the returned GAlignmentPairs
object.

Details

Pairing algorithm used by findMateAlignment: findMateAlignment is the power horse used
by higher-level functions like makeGAlignmentPairs and readGAlignmentPairsFromBam for
pairing the records loaded from a BAM file containing aligned paired-end reads.
It implements the following pairing algorithm:

• First only records with flag bit 0x1 set to 1, flag bit 0x4 set to 0, and flag bit 0x8 set to
0 are candidates for pairing (see the SAM Spec for a description of flag bits and fields).
findMateAlignment will ignore any other record. That is, records that correspond to single-
end reads, and records that correspond to paired-end reads where one or both ends are un-
mapped, are discarded.

• Then the algorithm looks at the following fields and flag bits:
– (A) QNAME
– (B) RNAME, RNEXT
– (C) POS, PNEXT
– (D) Flag bits Ox10 and 0x20
– (E) Flag bits 0x40 and 0x80
– (F) Flag bit 0x2
– (G) Flag bit 0x100

2 records rec(i) and rec(j) are considered mates iff all the following conditions are satisfied:
– (A) They have the same QNAME
– (B) RNEXT(i) == RNAME(j) and RNEXT(j) == RNAME(i)
– (C) PNEXT(i) == POS(j) and PNEXT(j) == POS(i)

34 findMateAlignment

– (D) Flag bit 0x20 of rec(i) == Flag bit 0x10 of rec(j) and Flag bit 0x20 of rec(j) == Flag
bit 0x10 of rec(i)

– (E) rec(i) corresponds to the first segment in the template and rec(j) corresponds to the
last segment in the template, OR, rec(j) corresponds to the first segment in the template
and rec(i) corresponds to the last segment in the template

– (F) rec(i) and rec(j) have same flag bit 0x2
– (G) rec(i) and rec(j) have same flag bit 0x100

Timing and memory requirement of the pairing algorithm: The estimated timings and mem-
ory requirements on a modern Linux system are (those numbers may vary depending on your
hardware and OS):

nb of alignments | time | required memory
-----------------+--------------+----------------

8 millions | 28 sec | 1.4 GB
16 millions | 58 sec | 2.8 GB
32 millions | 2 min | 5.6 GB
64 millions | 4 min 30 sec | 11.2 GB

This is for a GAlignments object coming from a file with an "average nb of records per unique
QNAME" of 2.04. A value of 2 (which means the file contains only primary reads) is opti-
mal for the pairing algorithm. A greater value, say > 3, will significantly degrade its perfor-
mance. An easy way to avoid this degradation is to load only primary alignments by setting the
isNotPrimaryRead flag to FALSE in ScanBamParam(). See examples in ?readGAlignmentPairsFromBam
for how to do this.

Ambiguous pairing: The above algorithm will find almost all pairs unambiguously, even when
the same pair of reads maps to several places in the genome. Note that, when a given pair maps
to a single place in the genome, looking at (A) is enough to pair the 2 corresponding records. The
additional conditions (B), (C), (D), (E), (F), and (G), are only here to help in the situation where
more than 2 records share the same QNAME. And that works most of the times. Unfortunately
there are still situations where this is not enough to solve the pairing problem unambiguously.
For example, here are 4 records (loaded in a GAlignments object) that cannot be paired with the
above algorithm:
Showing the 4 records as a GAlignments object of length 4:

GAlignments with 4 alignments and 2 metadata columns:
seqnames strand cigar qwidth start end

<Rle> <Rle> <character> <integer> <integer> <integer>
SRR031714.2658602 chr2R + 21M384N16M 37 6983850 6984270
SRR031714.2658602 chr2R + 21M384N16M 37 6983850 6984270
SRR031714.2658602 chr2R - 13M372N24M 37 6983858 6984266
SRR031714.2658602 chr2R - 13M378N24M 37 6983858 6984272

width ngap | mrnm mpos
<integer> <integer> | <factor> <integer>

SRR031714.2658602 421 1 | chr2R 6983858
SRR031714.2658602 421 1 | chr2R 6983858
SRR031714.2658602 409 1 | chr2R 6983850
SRR031714.2658602 415 1 | chr2R 6983850

Note that the BAM fields show up in the following columns:

findMateAlignment 35

• QNAME: the names of the GAlignments object (unnamed col)
• RNAME: the seqnames col
• POS: the start col
• RNEXT: the mrnm col
• PNEXT: the mpos col

As you can see, the aligner has aligned the same pair to the same location twice! The only
difference between the 2 aligned pairs is in the CIGAR i.e. one end of the pair is aligned twice to
the same location with exactly the same CIGAR while the other end of the pair is aligned twice
to the same location but with slightly different CIGARs.
Now showing the corresponding flag bits:

isPaired isProperPair isUnmappedQuery hasUnmappedMate isMinusStrand
[1,] 1 1 0 0 0
[2,] 1 1 0 0 0
[3,] 1 1 0 0 1
[4,] 1 1 0 0 1

isMateMinusStrand isFirstMateRead isSecondMateRead isNotPrimaryRead
[1,] 1 0 1 0
[2,] 1 0 1 0
[3,] 0 1 0 0
[4,] 0 1 0 0

isNotPassingQualityControls isDuplicate
[1,] 0 0
[2,] 0 0
[3,] 0 0
[4,] 0 0

As you can see, rec(1) and rec(2) are second mates, rec(3) and rec(4) are both first mates. But
looking at (A), (B), (C), (D), (E), (F), and (G), the pairs could be rec(1) <-> rec(3) and rec(2) <->
rec(4), or they could be rec(1) <-> rec(4) and rec(2) <-> rec(3). There is no way to disambiguate!
So findMateAlignment is just ignoring (with a warning) those alignments with ambiguous pair-
ing, and dumping them in a place from which they can be retrieved later (i.e. after findMateAlignment
has returned) for further examination (see "Dumped alignments" subsection below for the details).
In other words, alignments that cannot be paired unambiguously are not paired at all. Concretely,
this means that readGAlignmentPairs is guaranteed to return a GAlignmentPairs object where
every pair was formed in an non-ambiguous way. Note that, in practice, this approach doesn’t
seem to leave aside a lot of records because ambiguous pairing events seem pretty rare.

Dumped alignments: Alignments with ambiguous pairing are dumped in a place ("the dump en-
vironment") from which they can be retrieved with getDumpedAlignments() after findMateAlignment
has returned.
Two additional utilities are provided for manipulation of the dumped alignments: countDumpedAlignments
for counting them (a fast equivalent to length(getDumpedAlignments())), and flushDumpedAlignments
to flush "the dump environment". Note that "the dump environment" is automatically flushed at
the beginning of a call to findMateAlignment.

Value

For findMateAlignment: An integer vector of the same length as x, containing only positive or
NA values, where the i-th element is interpreted as follow:

36 headerTabix

• An NA value means that no mate or more than 1 mate was found for x[i].
• A non-NA value j gives the index in x of x[i]’s mate.

For makeGAlignmentPairs: A GAlignmentPairs object where the pairs are formed internally by
calling findMateAlignment on x.

For getDumpedAlignments: NULL or a GAlignments object containing the dumped alignments. See
"Dumped alignments" subsection in the "Details" section above for the details.

For countDumpedAlignments: The number of dumped alignments.

Nothing for flushDumpedAlignments.

Author(s)

H. Pages

See Also

GAlignments-class, GAlignmentPairs-class, readGAlignmentsFromBam, readGAlignmentPairsFromBam

Examples

bamfile <- system.file("extdata", "ex1.bam", package="Rsamtools",
mustWork=TRUE)

param <- ScanBamParam(what=c("flag", "mrnm", "mpos"))
x <- readGAlignmentsFromBam(bamfile, use.names=TRUE, param=param)
mate <- findMateAlignment(x)
head(mate)
table(is.na(mate))
galp0 <- makeGAlignmentPairs(x)
galp <- makeGAlignmentPairs(x, use.name=TRUE, use.mcols="flag")
galp
colnames(mcols(galp))
colnames(mcols(first(galp)))
colnames(mcols(last(galp)))

headerTabix Retrieve sequence names defined in a tabix file.

Description

This function queries a tabix file, returning the names of the ‘sequences’ used as a key when creating
the file.

Usage

headerTabix(file, ...)
S4 method for signature character
headerTabix(file, ...)

indexTabix 37

Arguments

file A character(1) file path or TabixFile instance pointing to a ‘tabix’ file.

... Additional arguments, currently ignored.

Value

A list(4) of the sequence names, column indicies used to sort the file, the number of lines skipped
while indexing, and the comment character used while indexing.

Author(s)

Martin Morgan <mtmorgan@fhcrc.org>.

Examples

fl <- system.file("extdata", "example.gtf.gz", package="Rsamtools",
mustWork=TRUE)

headerTabix(fl)

indexTabix Compress and index tabix-compatible files.

Description

Index (with indexTabix) files that have been sorted into ascending sequence, start and end position
ordering.

Usage

indexTabix(file,
format=c("gff", "bed", "sam", "vcf", "vcf4", "psltbl"),
seq=integer(), start=integer(), end=integer(),
skip=0L, comment="#", zeroBased=FALSE, ...)

Arguments

file A characater(1) path to a sorted, bgzip-compressed file.

format The format of the data in the compressed file. A characater(1) matching one of
the types named in the function signature.

seq If format is missing, then seq indicates the column in which the ‘sequence’
identifier (e.g., chrq) is to be found.

start If format is missing, start indicates the column containing the start coordinate
of the feature to be indexed.

38 PileupFiles

end If format is missing, end indicates the column containing the ending coordinate
of the feature to be indexed.

skip The number of lines to be skipped at the beginning of the file.

comment A single character which, when present as the first character in a line, indicates
that the line is to be omitted. from indexing.

zeroBased A logical(1) indicating whether coordinats in the file are zero-based.

... Additional arguments.

Value

The return value of indexTabix is an updated instance of file reflecting the newly-created index
file.

Author(s)

Martin Morgan <mtmorgan@fhcrc.org>.

References

http://samtools.sourceforge.net/tabix.shtml

Examples

from <- system.file("extdata", "ex1.sam", package="Rsamtools",
mustWork=TRUE)

to <- tempfile()
zipped <- bgzip(from, to)
idx <- indexTabix(zipped, "sam")

tab <- TabixFile(zipped, idx)

PileupFiles Represent BAM files for pileup summaries.

Description

Use PileupFiles() to create a reference to a BAM files (and their indicies), to be used for calcu-
lating pile-up summaries.

Usage

Constructors
PileupFiles(files, ..., param=PileupParam())
S4 method for signature character
PileupFiles(files, ..., param=PileupParam())
S4 method for signature list

http://samtools.sourceforge.net/tabix.shtml

PileupFiles 39

PileupFiles(files, ..., param=PileupParam())

opening / closing
S3 method for class PileupFiles
open(con, ...)
S3 method for class PileupFiles
close(con, ...)

accessors; also path()
S4 method for signature PileupFiles
isOpen(con, rw="")
plpFiles(object)
plpParam(object)

actions
S4 method for signature PileupFiles,missing
applyPileups(files, FUN, ..., param)
S4 method for signature PileupFiles,PileupParam
applyPileups(files, FUN, ..., param)

display
S4 method for signature PileupFiles
show(object)

Arguments

files For PileupFiles, a character() or list of BamFile instances representing
files to be included in the pileup. Using a list of BamFile allows indicies to be
specified when these are in non-standard format. All elements of ... must be
the same type.
For applyPileups,PileupFiles-method, a PileupFiles instance.

... Additional arguments, currently ignored.

con, object An instance of PileupFiles.

FUN A function of one argument; see applyPileups.

param An instance of PileupParam, to select which records to include in the pileup,
and which summary information to return.

rw character() indicating mode of file; not used for TabixFile.

Objects from the Class

Objects are created by calls of the form PileupFiles().

Fields

The PileupFiles class is implemented as an S4 reference class. It has the following fields:

files A list of BamFile instances.

40 PileupParam

param An instance of PileupParam.

Functions and methods

Opening / closing:

open.PileupFiles Opens the (local or remote) path and index of each file in the PileupFiles
instance. Returns a PileupFiles instance.

close.PileupFiles Closes each file in the PileupFiles instance; returning (invisibly) the updated
PileupFiles. The instance may be re-opened with open.PileupFiles.

Accessors:

plpFiles Returns the list of the files in the PileupFiles instance.

plpParam Returns the PileupParam content of the PileupFiles instance.

Methods:

applyPileups Calculate the pileup across all files in files according to criteria in param (or
plpParam(files) if param is missing), invoking FUN on each range or collection of posi-
tions. See applyPileups.

show Compactly display the object.

Author(s)

Martin Morgan

Examples

example(applyPileups)

PileupParam Parameters for creating pileups from BAM files

Description

Use PileupParam() to create a parameter object influencing what fields and which records are used
to calculate pile-ups, and to influence the values returned.

Usage

Constructor
PileupParam(flag = scanBamFlag(),

minBaseQuality = 13L, minMapQuality = 0L,
minDepth = 0L, maxDepth = 250L,
yieldSize = 1L, yieldBy = c("range", "position"), yieldAll = FALSE,
which = GRanges(), what = c("seq", "qual"))

PileupParam 41

Accessors
plpFlag(object)
plpFlag(object) <- value
plpMaxDepth(object)
plpMaxDepth(object) <- value
plpMinBaseQuality(object)
plpMinBaseQuality(object) <- value
plpMinDepth(object)
plpMinDepth(object) <- value
plpMinMapQuality(object)
plpMinMapQuality(object) <- value
plpWhat(object)
plpWhat(object) <- value
plpWhich(object)
plpWhich(object) <- value
plpYieldAll(object)
plpYieldAll(object) <- value
plpYieldBy(object)
plpYieldBy(object) <- value
plpYieldSize(object)
plpYieldSize(object) <- value

S4 method for signature PileupParam
show(object)

Arguments

flag An instance of the object returned by scanBamFlag, restricting various aspects
of reads to be included or excluded.

minBaseQuality The minimum read base quality below which the base is ignored when summa-
rizing pileup information.

minMapQuality The minimum mapping quality below which the entire read is ignored.

minDepth The minimum depth of the pile-up below which the position is ignored.

maxDepth The maximum depth of reads considered at any position; this can be used to
limit memory consumption.

yieldSize The number of records to include in each call to FUN.

yieldBy How records are to be counted. By range (in which case yieldSize must equal
1) means that FUN is invoked once for each range in which. By position means
that FUN is invoked whenever pile-ups have been accumulated for yieldSize
positions, regardless of ranges in which.

yieldAll Whether to report all positions (yieldAll=TRUE), or just those passing the fil-
tering criteria of flag, minBaseQuality, etc. When yieldAll=TRUE, positions
not passing filter criteria have ‘0’ entries in seq or qual.

which A GRanges or RangesList instance restricting pileup calculations to the corre-
sponding genomic locations.

42 PileupParam

what A character() instance indicating what values are to be returned. One or more
of c("seq", "qual").

object An instace of class PileupParam.

value An instance to be assigned to the corresponding slot of the PileupParam in-
stance.

Objects from the Class

Objects are created by calls of the form PileupParam().

Slots

Slot interpretation is as described in the ‘Arguments’ section.

flag Object of class integer encoding flags to be kept when they have their ’0’ (keep0) or ’1’
(keep1) bit set.

minBaseQuality An integer(1).

minMapQuality An integer(1).

minDepth An integer(1).

maxDepth An integer(1).

yieldSize An integer(1).

yieldBy An character(1).

yieldAll A logical(1).

which A GRanges or RangesList instance.

what A character().

Functions and methods

See ’Usage’ for details on invocation.

Constructor:

PileupParam: Returns a PileupParam object.

Accessors: get or set corresponding slot values; for setters, value is coerced to the type of the
corresponding slot.

plpFlag, plpFlag<- Returns or sets the named integer vector of flags; see scanBamFlag.

plpMinBaseQuality, plpMinBaseQuality<- Returns or sets an integer(1) vector of miminum
base qualities.

plpMinMapQuality, plpMinMapQuality<- Returns or sets an integer(1) vector of miminum
map qualities.

plpMinDepth, plpMinDepth<- Returns or sets an integer(1) vector of miminum pileup depth.

plpMaxDepth, plpMaxDepth<- Returns or sets an integer(1) vector of the maximum depth to
which pileups are calculated.

plpYieldSize, plpYieldSize<- Returns or sets an integer(1) vector of yield size.

quickCountBam 43

plpYieldBy, plpYieldBy<- Returns or sets an character(1) vector determining how pileups will
be returned.

plpYieldAll, plpYieldAll<- Returns or sets an logical(1) vector indicating whether all positions,
or just those satisfying pileup positions, are to be returned.

plpWhich, plpWhich<- Returns or sets the object influencing which locations pileups are calcu-
lated over.

plpWhat, plpWhat<- Returns or sets the character vector describing what summaries are re-
turned by pileup.

Methods:

show Compactly display the object.

Author(s)

Martin Morgan

See Also

applyPileups.

Examples

example(applyPileups)

quickCountBam Group the records of a BAM file based on their flag bits and count the
number of records in each group

Description

quickCountBam groups the records of a BAM file based on their flag bits and counts the number of
records in each group.

Usage

quickCountBam(file, ..., param=ScanBamParam(), mainGroupsOnly=FALSE)

S4 method for signature character
quickCountBam(file, index=file, ..., param=ScanBamParam(),

mainGroupsOnly=FALSE)

S4 method for signature list
quickCountBam(file, ..., param=ScanBamParam(), mainGroupsOnly=FALSE)

44 readGAlignmentsFromBam

Arguments

file, index For the character method, the path to the BAM file to read, and to the index file
of the BAM file to read, respectively.
For the list() method, file is a named list with elements “qname” and “flag”
with content as from scanBam.

... Additional arguments, perhaps used by methods.

param An instance of ScanBamParam. This determines which records are considered in
the counting.

mainGroupsOnly If TRUE, then the counting is performed for the main groups only.

Value

Nothing is returned. A summary of the counts is printed to the console unless redirected by sink.

Author(s)

H. Pages

References

http://samtools.sourceforge.net/

See Also

scanBam, ScanBamParam.

BamFile for a method for that class.

Examples

bamfile <- system.file("extdata", "ex1.bam", package="Rsamtools",
mustWork=TRUE)

quickCountBam(bamfile)

readGAlignmentsFromBam

Reading a GAlignments, GappedReads, GAlignmentPairs, or GAlign-
mentsList object from a BAM file

Description

Read a GAlignments, GappedReads, GAlignmentPairs, or GAlignmentsList object from a BAM
file.

http://samtools.sourceforge.net/

readGAlignmentsFromBam 45

Usage

readGAlignmentsFromBam(file, index=file, ..., use.names=FALSE, param=NULL,
with.which_label=FALSE)

readGappedReadsFromBam(file, index=file, use.names=FALSE, param=NULL,
with.which_label=FALSE)

readGAlignmentPairsFromBam(file, index=file, use.names=FALSE, param=NULL,
with.which_label=FALSE)

readGAlignmentsListFromBam(file, index=file, ..., use.names=FALSE,
param=ScanBamParam(), with.which_label=FALSE)

Arguments

file, index The path to the BAM file to read, and to the index file of the BAM file to read,
respectively. The latter is given without the ’.bai’ extension. See scanBam for
more information.

... Arguments passed to other methods.

use.names Use the query template names (QNAME field) as the names of the returned
object? If not (the default), then the returned object has no names.

param NULL or an instance of ScanBamParam. Like for scanBam, this influences what
fields and which records are imported. However, note that the fields specified
thru this ScanBamParam object will be loaded in addition to any field required for
generating the returned object (GAlignments, GappedReads, or GAlignment-
Pairs object), but only the fields requested by the user will actually be kept as
metadata columns of the object.
By default (i.e. param=NULL or param=ScanBamParam()), no additional field is
loaded. The flag used is scanBamFlag(isUnmappedQuery=FALSE) for readGAlignmentsFromBam,
readGappedReadsFromBam and readGAlignmentsListFromBam (i.e. only records
corresponding to mapped reads are loaded), and scanBamFlag(isUnmappedQuery=FALSE, isPaired=TRUE, hasUnmappedMate=FALSE)
for readGAlignmentPairsFromBam (i.e. only records corresponding to paired-
end reads with both ends mapped are loaded).

with.which_label

TRUE or FALSE (the default). If TRUE and if param has a which component,
a "which_label" metadata column is added to the returned GAlignments or
GappedReads object, or to the first and last components of the returned
GAlignmentPairs object. In the case of readGAlignmentsListFromBam, it’s
added as an inner metadata column, that is, the metadata column is placed on
the GAlignments object obtained by unlisting the returned GAlignmentsList ob-
ject.
The purpose of this metadata column is to unambiguously identify the range in
which where each element in the returned object originates from. The labels
used to identify the ranges are normally of the form "seq1:12250-246500",
that is, they’re the same as the names found on the outer list that scanBam would
return if called with the same param argument. If some ranges are duplicated,

46 readGAlignmentsFromBam

then the labels are made unique by appending a unique suffix to all of them. The
"which_label" metadata column is represented as a factor-Rle.

Details

See ?GAlignments-class for a description of GAlignments objects.

See ?GappedReads-class for a description of GappedReads objects.

readGAlignmentPairsFromBam proceeds in 2 steps:

1. Load the BAM file into a GAlignments object with readGAlignmentsFromBam;
2. Turn this GAlignments object into a GAlignmentPairs object by pairing its elements.

See ?GAlignmentPairs-class for a description of GAlignmentPairs objects, and ?findMateAlignment
for a description of the pairing algorithm (including timing and memory requirement).

readGAlignmentsListFromBam pairs records into ‘mates’ acording to the criteria below. A GAlignmentsList
is returned with a ‘mates’ metadata column which indicates mate status. The mates are returned first
followed by non-mates. When the ‘file’ argument is a BamFile, ‘asMates=TRUE’ must be set, oth-
erwise the data are treated as single-end reads. See the ‘asMates’ section of ?BamFile for details.

Mate criteria:

• Bit 0x1 (multiple segments) is 1.
• Bit 0x4 (segment unmapped) is 0.
• Bit 0x8 (next segment unmapped) is 0.
• Bit 0x40 and 0x80 (first/last segment): Segments are a pair of first/last OR neither segment is

marked first/last.
• Bit 0x100 (secondary alignment): Both segments are secondary OR both not secondary
• Bit 0x2 (properly aligned): Both segments are properly aligned
• ‘qname’ match.
• ‘tid’ match.
• segment1 ‘mpos’ matches segment2 ‘pos’ AND segment2 ‘mpos’ matches segment1 ‘pos’

Records not passing these criteria are returned with mate status FALSE. Flags, tags and ranges may
be specified in the ScanBamParam for fine tuning of results.

See ?GAlignmentsList-class for a description of GAlignmentsList objects.

Value

A GAlignments object for readGAlignmentsFromBam.

A GappedReads object for readGappedReadsFromBam.

A GAlignmentPairs object for readGAlignmentPairsFromBam. Note that a BAM (or SAM) file
can in theory contain a mix of single-end and paired-end reads, but in practise it seems that single-
end and paired-end are not mixed. In other words, the value of flag bit 0x1 (isPaired) is the same
for all the records in a file. So if readGAlignmentPairsFromBam returns a GAlignmentPairs object
of length zero, this almost certainly means that the BAM (or SAM) file contains alignments for
single-end reads (although it could also mean that the user-supplied ScanBamParam is filtering out
everything, or that the file is empty, or that all the records in the file correspond to unmapped reads).

A GAlignmentsList object for readGAlignmentsListFromBam.

readGAlignmentsFromBam 47

Note

BAM records corresponding to unmapped reads are always ignored.

Starting with Rsamtools 1.7.1 (BioC 2.10), PCR or optical duplicates are loaded by default (use
scanBamFlag(isDuplicate=FALSE) to drop them).

Author(s)

H. Pages <hpages@fhcrc.org> and Valerie Obenchain <vobencha@fhcrc.org>

See Also

GAlignments-class, GAlignmentsList-class, GappedReads-class, GAlignmentPairs-class, findMateAlignment,
scanBam, ScanBamParam

Examples

A. readGAlignmentsFromBam()

Simple use:
bamfile <- system.file("extdata", "ex1.bam", package="Rsamtools",

mustWork=TRUE)
gal1 <- readGAlignmentsFromBam(bamfile)
gal1
names(gal1)

Using the use.names arg:
gal2 <- readGAlignmentsFromBam(bamfile, use.names=TRUE)
gal2
head(names(gal2))

Using the param arg to drop PCR or optical duplicates as well as
secondary alignments, and to load additional BAM fields:
param <- ScanBamParam(flag=scanBamFlag(isDuplicate=FALSE,

isNotPrimaryRead=FALSE),
what=c("qual", "flag"))

gal3 <- readGAlignmentsFromBam(bamfile, param=param)
gal3
mcols(gal3)

Using the param arg to load reads from particular regions.
Note that if we werent providing a what argument here, all the
BAM fields would be loaded:
which <- RangesList(seq1=IRanges(1000, 2000),

seq2=IRanges(c(100, 1000), c(1000, 2000)))
param <- ScanBamParam(which=which)
gal4 <- readGAlignmentsFromBam(bamfile, param=param)
gal4

Note that a given record is loaded one time for each region it

48 readGAlignmentsFromBam

belongs to (this is a scanBam() feature, readGAlignmentsFromBam()
is based on scanBam()):
which <- IRangesList(seq2=IRanges(c(1563, 1567), width=1))
param <- ScanBamParam(which=which)
gal5 <- readGAlignmentsFromBam(bamfile, param=param)
gal5

Use with.which_label=TRUE to identify the range in which
where each element in gal5 originates from.
gal5 <- readGAlignmentsFromBam(bamfile, param=param,

with.which_label=TRUE)
gal5

Using the param arg to load tags. Except for MF and Aq, the tags
specified below are predefined tags (see the SAM Spec for the list
of predefined tags and their meaning).
param <- ScanBamParam(tag=c("MF", "Aq", "NM", "UQ", "H0", "H1"),

what="isize")
gal6 <- readGAlignmentsFromBam(bamfile, param=param)
mcols(gal6) # "tag" cols always after "what" cols

B. readGappedReadsFromBam()

greads1 <- readGappedReadsFromBam(bamfile)
greads1
names(greads1)
qseq(greads1)
greads2 <- readGappedReadsFromBam(bamfile, use.names=TRUE)
head(greads2)
head(names(greads2))

C. readGAlignmentPairsFromBam()

galp1 <- readGAlignmentPairsFromBam(bamfile)
head(galp1)
names(galp1)
Using the param arg to drop PCR or optical duplicates as well as
secondary alignments (dropping secondary alignments can help make the
pairing algorithm run significantly faster, see ?findMateAlignment):
param <- ScanBamParam(flag=scanBamFlag(isDuplicate=FALSE,

isNotPrimaryRead=FALSE))
galp2 <- readGAlignmentPairsFromBam(bamfile, use.names=TRUE, param=param)
galp2
head(galp2)
head(names(galp2))

D. readGAlignmentsListFromBam()

library(pasillaBamSubset)

readPileup 49

file as character.
fl <- untreated3_chr4()
galist1 <- readGAlignmentsListFromBam(fl)
galist1[1:3]
length(galist1)
table(elementLengths(galist1))

When file is a BamFile, asMates must be TRUE. If FALSE,
the data are treated as single-end and each list element of the
GAlignmentsList will be of length 1. For single-end data
use readGAlignments().
bf <- BamFile(fl, yieldSize=3, asMates=TRUE)
readGAlignmentsList(bf)

Use a param to fine tune the results.
param <- ScanBamParam(flag=scanBamFlag(isProperPair=TRUE))
galist2 <- readGAlignmentsListFromBam(fl, param=param)
length(galist2)

readPileup Import samtools ’pileup’ files.

Description

Import files created by evaluation of samtools’ pileup -cv command.

Usage

readPileup(file, ...)
S4 method for signature connection
readPileup(file, ..., variant=c("SNP", "indel", "all"))

Arguments

file The file name, or connection, of the pileup output file to be parsed.

... Additional arguments, passed to methods. For instance, specify variant for the
readPileup,character-method.

variant Type of variant to parse; select one.

Value

readPileup returns a GRanges object.

The value returned by variant="SNP" or variant="all" contains:

space: The chromosome names (fastq ids) of the reference sequence

position: The nucleotide position (base 1) of the variant.

referenceBase: The nucleotide in the reference sequence.

50 readPileup

consensusBase; The consensus nucleotide, as determined by samtools pileup.

consensusQuality: The phred-scaled consensus quality.

snpQuality: The phred-scaled SNP quality (probability of the consensus being identical to the
reference).

maxMappingQuality: The root mean square mapping quality of reads overlapping the site.

coverage: The number of reads covering the site.

The value returned by variant="indel" contains space, position, reference, consensus, consen-
susQuality, snpQuality, maxMappingQuality, and coverage fields, and:

alleleOne, alleleTwo The first (typically, in the reference sequence) and second allelic variants.

alleleOneSupport, alleleTwoSupport The number of reads supporting each allele.

additionalIndels The number of additional indels present.

Author(s)

Sean Davis

References

http://samtools.sourceforge.net/

Examples

fl <- system.file("extdata", "pileup.txt", package="Rsamtools",
mustWork=TRUE)

(res <- readPileup(fl))
xtabs(~referenceBase + consensusBase, mcols(res))[DNA_BASES,]

Not run: ## uses a pipe, and arguments passed to read.table
three successive piles of 100 records each
cmd <- "samtools pileup -cvf human_b36_female.fa.gz na19240_3M.bam"
p <- pipe(cmd, "r")
snp <- readPileup(p, nrow=100) # variant="SNP"
indel <- readPileup(p, nrow=100, variant="indel")
all <- readPileup(p, nrow=100, variant="all")

End(Not run)

http://samtools.sourceforge.net/

RsamtoolsFile 51

RsamtoolsFile A base class for managing file references in Rsamtools

Description

RsamtoolsFile is a base class for managing file references in Rsamtools; it is not intended for
direct use by users – see, e.g., BamFile.

Usage

accessors
index(object)
S4 method for signature RsamtoolsFile
path(object, ...)
S4 method for signature RsamtoolsFile
isOpen(con, rw="")
S4 method for signature RsamtoolsFile
yieldSize(object, ...)
yieldSize(object, ...) <- value
S4 method for signature RsamtoolsFile
show(object)

Arguments

con, object An instance of a class derived from RsamtoolsFile.

rw Mode of file; ignored.

... Additional arguments, unused.

value Replacement value.

Objects from the Class

Users do not directly create instances of this class; see, e.g., BamFile-class.

Fields

The RsamtoolsFile class is implemented as an S4 reference class. It has the following fields:

.extptr An externalptr initialized to an internal structure with opened bam file and bam index
pointers.

path A character(1) vector of the file name.

index A character(1) vector of the index file name.

yieldSize An integer(1) vector of the number of records to yield.

52 RsamtoolsFileList

Functions and methods

Accessors:

path Returns a character(1) vector of path names.

index Returns a character(1) vector of index path names.

yieldSize, yieldSize<- Return or set an integer(1) vector indicating yield size.

Methods:

isOpen Report whether the file is currently open.

show Compactly display the object.

Author(s)

Martin Morgan

RsamtoolsFileList A base class for managing lists of Rsamtools file references

Description

RsamtoolsFileList is a base class for managing lists of file references in Rsamtools; it is not
intended for direct use – see, e.g., BamFileList.

Usage

S4 method for signature RsamtoolsFileList
path(object, ...)
S4 method for signature RsamtoolsFileList
isOpen(con, rw="")
S3 method for class RsamtoolsFileList
open(con, ...)
S3 method for class RsamtoolsFileList
close(con, ...)
S4 method for signature RsamtoolsFileList
names(x)
S4 method for signature RsamtoolsFileList
yieldSize(object, ...)

Arguments

con, object, x An instance of a class derived from RsamtoolsFileList.

rw Mode of file; ignored.

... Additional arguments.

ScanBamParam 53

Objects from the Class

Users do not directly create instances of this class; see, e.g., BamFileList-class.

Functions and methods

This class inherits functions and methods for subseting, updating, and display from the SimpleList
class.

Methods:

isOpen: Report whether each file in the list is currently open.

open: Attempt to open each file in the list.

close: Attempt to close each file in the list.

names: Names of each element of the list or, if names are NULL, the basename of the path of each
element.

Author(s)

Martin Morgan

ScanBamParam Parameters for scanning BAM files

Description

Use ScanBamParam() to create a parameter object influencing what fields and which records are
imported from a (binary) BAM file. Use of which requires that a BAM index file (<filename>.bai)
exists.

Usage

Constructor
ScanBamParam(flag = scanBamFlag(), simpleCigar = FALSE,

reverseComplement = FALSE, tag = character(0),
what = character(0), which)

Constructor helpers
scanBamFlag(isPaired = NA, isProperPair = NA, isUnmappedQuery = NA,

hasUnmappedMate = NA, isMinusStrand = NA, isMateMinusStrand = NA,
isFirstMateRead = NA, isSecondMateRead = NA, isNotPrimaryRead = NA,
isNotPassingQualityControls = NA, isDuplicate = NA,
isValidVendorRead = NA)

scanBamWhat()

Accessors

54 ScanBamParam

bamFlag(object, asInteger=FALSE)
bamFlag(object) <- value
bamReverseComplement(object)
bamReverseComplement(object) <- value
bamSimpleCigar(object)
bamSimpleCigar(object) <- value
bamTag(object)
bamTag(object) <- value
bamWhat(object)
bamWhat(object) <- value
bamWhich(object)
bamWhich(object) <- value

S4 method for signature ScanBamParam
show(object)

Flag utils
bamFlagAsBitMatrix(flag, bitnames=FLAG_BITNAMES)
bamFlagAND(flag1, flag2)
bamFlagTest(flag, value)

Arguments

flag For ScanBamParam, an integer(2) vector used to filter reads based on their ’flag’
entry. This is most easily created with the scanBamFlag() helper function.
For bamFlagAsBitMatrix, bamFlagTest an integer vector where each element
represents a ’flag’ entry.

simpleCigar A logical(1) vector which, when TRUE, returns only those reads for which the
cigar (run-length encoded representation of the alignment) is missing or contains
only matches / mismatches (M).

reverseComplement

A logical(1) vectors. BAM files store reads mapping to the minus strand as
though they are on the plus strand. Rsamtools obeys this convention by de-
fault (reverseComplement=FALSE), but when this value is set to TRUE returns
the sequence and quality scores of reads mapped to the minus strand in the re-
verse complement (sequence) and reverse (quality) of the read as stored in the
BAM file. This might be useful if wishing to recover read and quality scores
as represented in fastq files, but is NOT appropriate for variant calling or other
alignment-based operations.

tag A character vector naming tags to be extracted. A tag is an optional field, with
arbitrary information, stored with each record. Tags are identified by two-letter
codes, so all elements of tag must have exactly 2 characters.

what A character vector naming the fields to return scanBamWhat() returns a vector
of available fields. Fields are described on the scanBam help page.

which A GRanges, RangesList, RangedData, or missing object, from which a IRangesList
instance will be constructed. Names of the IRangesList correspond to refer-
ence sequences, and ranges to the regions on that reference sequence for which

ScanBamParam 55

matches are desired. Because data types are coerced to IRangesList, which
does not include strand information (use the flag argument instead). Only
records with a read overlapping the specified ranges are returned. All ranges
must have ends less than or equal to 536870912.

isPaired A logical(1) indicating whether unpaired (FALSE), paired (TRUE), or any (NA)
read should be returned.

isProperPair A logical(1) indicating whether improperly paired (FALSE), properly paired
(TRUE), or any (NA) read should be returned. A properly paired read is de-
fined by the alignment algorithm and might, e.g., represent reads aligning to
identical reference sequences and with a specified distance.

isUnmappedQuery

A logical(1) indicating whether unmapped (TRUE), mapped (FALSE), or any
(NA) read should be returned.

hasUnmappedMate

A logical(1) indicating whether reads with mapped (FALSE), unmapped (TRUE),
or any (NA) mate should be returned.

isMinusStrand A logical(1) indicating whether reads aligned to the plus (FALSE), minus (TRUE),
or any (NA) strand should be returned.

isMateMinusStrand

A logical(1) indicating whether mate reads aligned to the plus (FALSE), minus
(TRUE), or any (NA) strand should be returned.

isFirstMateRead

A logical(1) indicating whether the first mate read should be returned (TRUE)
or not (FALSE), or whether mate read number should be ignored (NA).

isSecondMateRead

A logical(1) indicating whether the second mate read should be returned (TRUE)
or not (FALSE), or whether mate read number should be ignored (NA).

isNotPrimaryRead

A logical(1) indicating whether alignments that are primary (FALSE), are not
primary (TRUE) or whose primary status does not matter (NA) should be re-
turned. A non-primary alignment (“secondary alignment” in the SAM specifi-
cation) might result when a read aligns to multiple locations. One alignment is
designated as primary and has this flag set to FALSE; the remainder, for which
this flag is TRUE, are designated by the aligner as secondary.

isNotPassingQualityControls

A logical(1) indicating whether reads passing quality controls (FALSE), reads
not passing quality controls (TRUE), or any (NA) read should be returned.

isValidVendorRead

Deprecated; use isNotPassingQualityControls.

isDuplicate A logical(1) indicating that un-duplicated (FALSE), duplicated (TRUE), or any
(NA) reads should be returned. ’Duplicated’ reads may represent PCR or optical
duplicates.

object An instance of class ScanBamParam.

value An instance of the corresponding slot, to be assigned to object or, for bamFlagTest,
a character(1) name of the flag to test, e.g., “isUnmappedQuery”, from the ar-
guments to scanBamFlag.

56 ScanBamParam

asInteger logical(1) indicating whether ‘flag’ should be returned as an encoded integer
vector (TRUE) or human-readable form (FALSE).

bitnames Names of the flag bits to extract. Will be the colnames of the returned matrix.

flag1, flag2 Integer vectors containing ‘flag’ entries.

Objects from the Class

Objects are created by calls of the form ScanBamParam().

Slots

flag Object of class integer encoding flags to be kept when they have their ’0’ (keep0) or ’1’
(keep1) bit set.

simpleCigar Object of class logical indicating, when TRUE, that only ’simple’ cigars (empty or
’M’) are returned.

reverseComplement Object of class logical indicating, when TRUE, that reads on the minus
strand are to be reverse complemented (sequence) and reversed (quality).

tag Object of class character indicating what tags are to be returned.

what Object of class character indicating what fields are to be returned.

which Object of class RangesList indicating which reference sequence and coordinate reads must
overlap.

Functions and methods

See ’Usage’ for details on invocation.

Constructor:

ScanBamParam: Returns a ScanBamParam object. The which argument to the constructor can be
one of several different types, as documented above.

Accessors:

bamTag, bamTag<- Returns or sets a character vector of tags to be extracted.

bamWhat, bamWhat<- Returns or sets a character vector of fields to be extracted.

bamWhich, bamWhich<- Returns or sets a RangesList of bounds on reads to be extracted. A
length 0 RangesList represents all reads.

bamFlag, bamFlag<- Returns or sets an integer(2) representation of reads flagged to be kept or
excluded.

bamSimpleCigar, bamSimpleCigar<- Returns or sets a logical(1) vector indicating whether
reads without indels or clipping be kept.

bamReverseComplement, bamReverseComplement<- Returns or sets a logical(1) vector in-
dicating whether reads on the minus strand will be returned with sequence reverse comple-
mented and quality reversed.

Methods:

show Compactly display the object.

ScanBcfParam-class 57

Author(s)

Martin Morgan

See Also

scanBam

Examples

defaults
p0 <- ScanBamParam()

subset of reads based on genomic coordinates
which <- RangesList(seq1=IRanges(1000, 2000),

seq2=IRanges(c(100, 1000), c(1000, 2000)))
p1 <- ScanBamParam(which=which)

subset of reads based on flag value
p2 <- ScanBamParam(flag=scanBamFlag(isMinusStrand=FALSE))

subset of fields
p3 <- ScanBamParam(what=c("rname", "strand", "pos", "qwidth"))

use
fl <- system.file("extdata", "ex1.bam", package="Rsamtools",

mustWork=TRUE)
res <- scanBam(fl, param=p2)[[1]]
lapply(res, head)

tags; NM: edit distance; H1: 1-difference hits
p4 <- ScanBamParam(tag=c("NM", "H1"), what="flag")
bam4 <- scanBam(fl, param=p4)
str(bam4[[1]][["tag"]])

flag utils
flag <- scanBamFlag(isUnmappedQuery=FALSE, isMinusStrand=TRUE)
flag
bamFlagAsBitMatrix(flag)
flag4 <- bam4[[1]][["flag"]]
bamFlagAsBitMatrix(flag4[1:9], bitnames=c("isUnmappedQuery", "isMinusStrand"))

ScanBcfParam-class Parameters for scanning BCF files

Description

Use ScanBcfParam() to create a parameter object influencing the ‘INFO’ and ‘GENO’ fields
parsed, and which sample records are imported from a BCF file. Use of which requires that a
BCF index file (<filename>.bci) exists.

58 ScanBcfParam-class

Usage

ScanBcfParam(fixed=character(), info=character(), geno=character(),
samples=character(), trimEmpty=TRUE, which, ...)

S4 method for signature missing
ScanBcfParam(fixed=character(), info=character(), geno=character(),

samples=character(), trimEmpty=TRUE, which, ...)
S4 method for signature RangesList
ScanBcfParam(fixed=character(), info=character(), geno=character(),

samples=character(), trimEmpty=TRUE, which, ...)
S4 method for signature RangedData
ScanBcfParam(fixed=character(), info=character(), geno=character(),

samples=character(), trimEmpty=TRUE, which, ...)
S4 method for signature GRanges
ScanBcfParam(fixed=character(), info=character(), geno=character(),

samples=character(), trimEmpty=TRUE, which, ...)
S4 method for signature GRangesList
ScanBcfParam(fixed=character(), info=character(), geno=character(),

samples=character(), trimEmpty=TRUE, which, ...)

Accessors
bcfFixed(object)
bcfInfo(object)
bcfGeno(object)
bcfSamples(object)
bcfTrimEmpty(object)
bcfWhich(object)

Arguments

fixed A logical(1) for use with ScanVcfParam only.

info A character() vector of ‘INFO’ fields (see scanVcfHeader) to be returned.

geno A character() vector of ‘GENO’ fields (see scanVcfHeader) to be returned. character(0)
returns all fields, NA_character_ returns none.

samples A character() vector of sample names (see scanVcfHeader) to be returned. character(0)
returns all fields, NA_character_ returns none.

trimEmpty A logical(1) indicating whether ‘GENO’ fields with no values should be re-
turned.

which An object, for which a method is defined (see usage, above), describing the
sequences and ranges to be queried. Variants whose POS lies in the interval(s)
[start, end) are returned.

object An instance of class ScanBcfParam.

... Arguments used internally.

ScanBcfParam-class 59

Objects from the Class

Objects can be created by calls of the form ScanBcfParam().

Slots

which: Object of class "RangesList" indicating which reference sequence and coordinate variants
must overlap.

info: Object of class "character" indicating portions of ‘INFO’ to be returned.

geno: Object of class "character" indicating portions of ‘GENO’ to be returned.

samples: Object of class "character" indicating the samples to be returned.

trimEmpty: Object of class "logical" indicating whether empty ‘GENO’ fields are to be returned.

fixed: Object of class "character". For use with ScanVcfParam only.

Functions and methods

See ’Usage’ for details on invocation.

Constructor:

ScanBcfParam: Returns a ScanBcfParam object. The which argument to the constructor can be
one of several types, as documented above.

Accessors:

bcfInfo, bcfGeno, bcfTrimEmpty, bcfWhich: Return the corresponding field from object.

Methods:

show Compactly display the object.

Author(s)

Martin Morgan mtmorgan@fhcrc.org

See Also

scanVcf ScanVcfParam

Examples

see ?ScanVcfParam examples

mtmorgan@fhcrc.org

60 sequenceLayer

seqnamesTabix Retrieve sequence names defined in a tabix file.

Description

This function queries a tabix file, returning the names of the ‘sequences’ used as a key when creating
the file.

Usage

seqnamesTabix(file, ...)
S4 method for signature character
seqnamesTabix(file, ...)

Arguments

file A character(1) file path or TabixFile instance pointing to a ‘tabix’ file.
... Additional arguments, currently ignored.

Value

A character() vector of sequence names present in the file.

Author(s)

Martin Morgan <mtmorgan@fhcrc.org>.

Examples

fl <- system.file("extdata", "example.gtf.gz", package="Rsamtools",
mustWork=TRUE)

seqnamesTabix(fl)

sequenceLayer Lay read sequences alongside the reference space, using their CIGARs

Description

sequenceLayer can lay strings that belong to a given space (e.g. the "query" space) alongside
another space (e.g. the "reference" space) by removing/injecting substrings from/into them, using
the supplied CIGARs.
Its primary use case is to lay the read sequences stored in a BAM file (which are considered to
belong to the "query" space) alongside the "reference" space. It can also be used to remove the
parts of the read sequences that correspond to soft-clipping. More generally it can lay strings that
belong to any supported space alongside any other supported space. See the Details section below
for the list of supported spaces.

sequenceLayer 61

Usage

sequenceLayer(x, cigar, from="query", to="reference",
D.letter="-", N.letter="-",
I.letter="-", S.letter="+", H.letter="+")

Arguments

x An XStringSet object containing strings that belong to a given space.

cigar A character vector or factor of the same length as x containing the extended
CIGAR strings (one per element in x).

from, to A single string specifying one of the 8 supported spaces listed in the Details
section below. from must be the current space (i.e. the space the strings in x
belong to) and to is the space alonside which to lay the strings in x.

D.letter, N.letter, I.letter, S.letter, H.letter

A single letter used as a filler for injections. More on this in the Details section
below.

Details

The 8 supported spaces are: "reference", "reference-N-regions-removed", "query", "query-before-hard-clipping",
"query-after-soft-clipping", "pairwise", "pairwise-N-regions-removed", and "pairwise-dense".

Each space can be characterized by the extended CIGAR operations that are visible in it. A CIGAR
operation is said to be visible in a given space if it "runs along it", that is, if it’s associated with a
block of contiguous positions in that space (the size of the block being the length of the operation).
For example, the M/=/X operations are visible in all spaces, the D/N operations are visible in the
"reference" space but not in the "query" space, the S operation is visible in the "query" space
but not in the "reference" or in the "query-after-soft-clipping" space, etc...

Here are the extended CIGAR operations that are visible in each space:

1. reference: M, D, N, =, X

2. reference-N-regions-removed: M, D, =, X

3. query: M, I, S, =, X

4. query-before-hard-clipping: M, I, S, H, =, X

5. query-after-soft-clipping: M, I, =, X

6. pairwise: M, I, D, N, =, X

7. pairwise-N-regions-removed: M, I, D, =, X

8. pairwise-dense: M, =, X

sequenceLayer lays a string that belongs to one space alongside another by (1) removing the
substrings associated with operations that are not visible anymore in the new space, and (2) injecting
substrings associated with operations that become visible in the new space. Each injected substring
has the length of the operation associated with it, and its content is controlled via the corresponding
*.letter argument.

For example, when going from the "query" space to the "reference" space (the default), the I-
and S-substrings (i.e. the substrings associated with I/S operations) are removed, and substrings

62 sequenceLayer

associated with D/N operations are injected. More precisely, the D-substrings are filled with the
letter specified in D.letter, and the N-substrings with the letter specified in N.letter. The other
*.letter arguments are ignored in that case.

Value

An XStringSet object of the same class and length as x.

Author(s)

H. Pages

See Also

• The stackStringsFromBam function for stacking the read sequences (or their quality strings)
stored in a BAM file on a region of interest.

• The readGAlignmentsFromBam function for loading read sequences from a BAM file (via a
GAlignments object).

• The extractAt and replaceAt functions in the Biostrings package for extracting/replacing
arbitrary substrings from/in a string or set of strings.

• cigar-utils in the GenomicRanges package for the CIGAR utility functions used internally by
sequenceLayer.

Examples

A. FROM "query" TO "reference" SPACE

Load read sequences from a BAM file (they will be returned in a
GAlignments object):
bamfile <- system.file("extdata", "ex1.bam", package="Rsamtools")
param <- ScanBamParam(what="seq")
gal <- readGAlignmentsFromBam(bamfile, param=param)
qseq <- mcols(gal)$seq # the read sequences (aka query sequences)

Lay the query sequences alongside the reference space. This will
remove the substrings associated with insertions to the reference
(I operations) and soft clipping (S operations), and will inject new
substrings (filled with "-") where deletions from the reference (D
operations) and skipped regions from the reference (N operations)
occurred during the alignment process:
qseq_on_ref <- sequenceLayer(qseq, cigar(gal))

A typical use case for doing the above is to compute 1 consensus
sequence per chromosome. The code below shows how this can be done
in 2 extra steps.

Step 1: Compute one consensus matrix per chromosome.
qseq_on_ref_by_chrom <- splitAsList(qseq_on_ref, seqnames(gal))
pos_by_chrom <- splitAsList(start(gal), seqnames(gal))

sequenceLayer 63

cm_by_chrom <- lapply(names(pos_by_chrom),
function(seqname)

consensusMatrix(qseq_on_ref_by_chrom[[seqname]],
as.prob=TRUE,
shift=pos_by_chrom[[seqname]]-1,
width=seqlengths(gal)[[seqname]]))

names(cm_by_chrom) <- names(pos_by_chrom)

cm_by_chrom is a list of consensus matrices. Each matrix has 17
rows (1 per letter in the DNA alphabet) and 1 column per chromosome
position.

Step 2: Compute the consensus string from each consensus matrix.
Well put "+" in the strings wherever there is no coverage for that
position, and "N" where there is coverage but no consensus.
cs_by_chrom <- lapply(cm_by_chrom,

function(cm) {
Because consensusString() doesnt like consensus matrices
with columns that contain only zeroes (and you will have
columns like that for chromosome positions that dont
receive any coverage), we need to "fix" cm first.
idx <- colSums(cm) == 0
cm["+", idx] <- 1
DNAString(consensusString(cm, ambiguityMap="N"))

})

consensusString() provides some flexibility to let you extract
the consensus in different ways. See ?consensusString in the
Biostrings package for the details.

Finally, note that the read quality strings can also be used as
input for sequenceLayer():
param <- ScanBamParam(what="qual")
gal <- readGAlignmentsFromBam(bamfile, param=param)
qual <- mcols(gal)$qual # the read quality strings
qual_on_ref <- sequenceLayer(qual, cigar(gal))
Note that since the "-" letter is a valid quality code, there is
no way to distinguish it from the "-" letters inserted by
sequenceLayer().

B. FROM "query" TO "query-after-soft-clipping" SPACE

Going from "query" to "query-after-soft-clipping" simply removes
the substrings associated with soft clipping (S operations):
qseq <- DNAStringSet(c("AAAGTTCGAA", "TTACGATTAN", "GGATAATTTT"))
cigar <- c("3H10M", "2S7M1S2H", "2M1I1M3D2M4S")
clipped_qseq <- sequenceLayer(qseq, cigar,

from="query", to="query-after-soft-clipping")

sequenceLayer(clipped_qseq, cigar,

64 sequenceLayer

from="query-after-soft-clipping", to="query")

sequenceLayer(clipped_qseq, cigar,
from="query-after-soft-clipping", to="query",
S.letter="-")

C. BRING QUERY AND REFERENCE SEQUENCES TO THE "pairwise" or
"pairwise-dense" SPACE

Load read sequences from a BAM file:
library(RNAseqData.HNRNPC.bam.chr14)
bamfile <- RNAseqData.HNRNPC.bam.chr14_BAMFILES[1]
param <- ScanBamParam(what="seq",

which=GRanges("chr14", IRanges(1, 25000000)))
gal <- readGAlignmentsFromBam(bamfile, param=param)
qseq <- mcols(gal)$seq # the read sequences (aka query sequences)

Load the corresponding reference sequences from the appropriate
BSgenome package (the reads in RNAseqData.HNRNPC.bam.chr14 were
aligned to hg19):
library(BSgenome.Hsapiens.UCSC.hg19)
rseq <- getSeq(Hsapiens, as(gal, "GRanges")) # the reference sequences

Bring qseq and rseq to the "pairwise" space.
For qseq, this will remove the substrings associated with soft
clipping (S operations) and inject substrings (filled with "-")
associated with deletions from the reference (D operations) and
skipped regions from the reference (N operations). For rseq, this
will inject substrings (filled with "-") associated with insertions
to the reference (I operations).
qseq2 <- sequenceLayer(qseq, cigar(gal),

from="query", to="pairwise")
rseq2 <- sequenceLayer(rseq, cigar(gal),

from="reference", to="pairwise")

Sanity check: qseq2 and rseq2 should have the same shape.
stopifnot(identical(elementLengths(qseq2), elementLengths(rseq2)))

A closer look at reads with insertions and deletions:
cigar_op_table <- cigarOpTable(cigar(gal))
head(cigar_op_table)

I_idx <- which(cigar_op_table[, "I"] >= 2) # at least 2 insertions
qseq2[I_idx]
rseq2[I_idx]

D_idx <- which(cigar_op_table[, "D"] >= 2) # at least 2 deletions
qseq2[D_idx]
rseq2[D_idx]

A closer look at reads with skipped regions:

sequenceLayer 65

N_idx <- which(cigar_op_table[, "N"] != 0)
qseq2[N_idx]
rseq2[N_idx]

A variant of the "pairwise" space is the "pairwise-dense" space.
In that space, all indels and skipped regions are removed from qseq
and rseq.
qseq3 <- sequenceLayer(qseq, cigar(gal),

from="query", to="pairwise-dense")
rseq3 <- sequenceLayer(rseq, cigar(gal),

from="reference", to="pairwise-dense")

Sanity check: qseq3 and rseq3 should have the same shape.
stopifnot(identical(elementLengths(qseq3), elementLengths(rseq3)))

Insertions were removed:
qseq3[I_idx]
rseq3[I_idx]

Deletions were removed:
qseq3[D_idx]
rseq3[D_idx]

Skipped regions were removed:
qseq3[N_idx]
rseq3[N_idx]

D. SANITY CHECKS

SPACES <- c("reference",

"reference-N-regions-removed",
"query",
"query-before-hard-clipping",
"query-after-soft-clipping",
"pairwise",
"pairwise-N-regions-removed",
"pairwise-dense")

cigarWidth <- list(
function(cigar) cigarWidthAlongReferenceSpace(cigar),
function(cigar) cigarWidthAlongReferenceSpace(cigar,

N.regions.removed=TRUE),
function(cigar) cigarWidthAlongQuerySpace(cigar),
function(cigar) cigarWidthAlongQuerySpace(cigar,

before.hard.clipping=TRUE),
function(cigar) cigarWidthAlongQuerySpace(cigar,

after.soft.clipping=TRUE),
function(cigar) cigarWidthAlongPairwiseSpace(cigar),
function(cigar) cigarWidthAlongPairwiseSpace(cigar,

N.regions.removed=TRUE),
function(cigar) cigarWidthAlongPairwiseSpace(cigar, dense=TRUE)

)

66 stackStringsFromBam

cigar <- c("3H2S4M1D2M2I1M5N3M6H", "5M1I3M2D4M2S")

seq <- list(
BStringSet(c(A="AAAA-BBC+++++DDD", B="AAAAABBB--CCCC")),
BStringSet(c(A="AAAA-BBCDDD", B="AAAAABBB--CCCC")),
BStringSet(c(A="..AAAABBiiCDDD", B="AAAAAiBBBCCCC..")),
BStringSet(c(A=".....AAAABBiiCDDD......", B="AAAAAiBBBCCCC..")),
BStringSet(c(A="AAAABBiiCDDD", B="AAAAAiBBBCCCC")),
BStringSet(c(A="AAAA-BBiiC+++++DDD", B="AAAAAiBBB--CCCC")),
BStringSet(c(A="AAAA-BBiiCDDD", B="AAAAAiBBB--CCCC")),
BStringSet(c(A="AAAABBCDDD", B="AAAAABBBCCCC"))

)

stopifnot(all(sapply(1:8,
function(i) identical(width(seq[[i]]), cigarWidth[[i]](cigar))

)))

sequenceLayer2 <- function(x, cigar, from, to)
sequenceLayer(x, cigar, from=from, to=to, D.letter="-", N.letter= "+",

I.letter="i", S.letter=".", H.letter=".")

identical_XStringSet <- function(target, current)
{

ok1 <- identical(class(target), class(current))
ok2 <- identical(names(target), names(current))
ok3 <- all(target == current)
ok1 && ok2 && ok3

}

res <- sapply(1:8, function(i) {
sapply(1:8, function(j) {

target <- seq[[j]]
current <- sequenceLayer2(seq[[i]], cigar,

from=SPACES[i], to=SPACES[j])
identical_XStringSet(target, current)

})
})

stopifnot(all(res))

stackStringsFromBam Stack the read sequences stored in a BAM file on a region of interest

Description

stackStringsFromBam lays the read sequences (or their quality strings) stored in a BAM file along-
side the reference space, and stacks them on the specified region.

stackStringsFromBam 67

Usage

stackStringsFromBam(file, index=file, param,
what="seq", use.names=FALSE,
D.letter="-", N.letter="-",
Lpadding.letter="+", Rpadding.letter="+")

Arguments

file, index The path to the BAM file to read, and to the index file of the BAM file to read,
respectively. The latter is given without the ’.bai’ extension. See scanBam for
more information.

param A ScanBamParam object containing exactly 1 genomic region (i.e. unlist(bamWhich(param))
must have length 1). Alternatively, param can be a GRanges or RangesList ob-
ject containing exactly 1 genomic region, or a character string specifying a single
genomic region (in the "chr14:5201-5300" format).

what A single string. Either "seq" or "qual". If "seq" (the default), the read se-
quences will be stacked. If "qual", the read quality strings will be stacked.

use.names Use the query template names (QNAME field) as the names of the returned
object? If not (the default), then the returned object has no names.

D.letter, N.letter

A single letter used as a filler for injections. The 2 arguments are passed down
to the sequenceLayer function. See ?sequenceLayer for more details.

Lpadding.letter, Rpadding.letter

A single letter to use for padding the sequences on the left, and another one to
use for padding on the right. The 2 arguments are passed down to the stackStrings
function defined in the Biostrings package. See ?stackStrings in the Biostrings
package for more details.

Details

stackStringsFromBam performs the 3 following steps:

1. Load the read sequences (or their quality strings) from the BAM file. Only the read sequences
that overlap with the specified region are loaded. This is done with the readGAlignmentsFromBam
function. Note that if the file contains paired-end reads, the pairing is ignored.

2. Lay the sequences alongside the reference space, using their CIGARs. This is done with the
sequenceLayer function.

3. Stack them on the specified region. This is done with the stackStrings function defined in
the Biostrings package.

Value

A rectangular (i.e. constant-width) DNAStringSet object (if what is "seq") or BStringSet object (if
what is "qual").

68 stackStringsFromBam

Note

TWO IMPORTANT CAVEATS:

Specifying a big genomic region, say >= 100000 bp, can require a lot of memory (especially with
high coverage reads) and is not recommended.

Paired-end reads are treated as single-end reads (i.e. they’re not paired).

Author(s)

H. Pages

See Also

• The readGAlignmentsFromBam function for loading read sequences (or their quality strings)
from a BAM file (via a GAlignments object).

• The sequenceLayer function for laying read sequences alongside the reference space, using
their CIGARs.

• The stackStrings function in the Biostrings package for stacking an arbitrary XStringSet
object.

• The SAMtools mpileup command available at http://samtools.sourceforge.net/ as part
of the SAMtools project.

Examples

A. EXAMPLE WITH TOY DATA

bamfile <- BamFile(system.file("extdata", "ex1.bam", package="Rsamtools"))

stackStringsFromBam(bamfile, param=GRanges("seq1", IRanges(1, 60)))

options(showHeadLines=18)
options(showTailLines=6)
stackStringsFromBam(bamfile, param=GRanges("seq1", IRanges(61, 120)))

stacked_qseq <- stackStringsFromBam(bamfile, param="seq2:1509-1519")
stacked_qseq # deletion in read 13

stackStringsFromBam(bamfile, param="seq2:1509-1519", what="qual")
consensusMatrix(stacked_qseq)

B. EXAMPLE WITH REAL DATA

library(RNAseqData.HNRNPC.bam.chr14)
bamfile <- BamFile(RNAseqData.HNRNPC.bam.chr14_BAMFILES[1])

My Region Of Interest:

http://samtools.sourceforge.net/

TabixFile 69

my_ROI <- GRanges("chr14", IRanges(19650095, 19650159))

readGAlignments(bamfile, param=ScanBamParam(which=my_ROI))
stackStringsFromBam(bamfile, param=my_ROI)

TabixFile Manipulate tabix indexed tab-delimited files.

Description

Use TabixFile() to create a reference to a Tabix file (and its index). Once opened, the reference
remains open across calls to methods, avoiding costly index re-loading.

TabixFileList() provides a convenient way of managing a list of TabixFile instances.

Usage

Constructors

TabixFile(file, index = paste(file, "tbi", sep="."), ...,
yieldSize=NA_integer_)

TabixFileList(..., yieldSize=NA_integer_)

Opening / closing

S3 method for class TabixFile
open(con, ...)
S3 method for class TabixFile
close(con, ...)

accessors; also path(), index(), yieldSize()

S4 method for signature TabixFile
isOpen(con, rw="")

actions

S4 method for signature TabixFile
seqnamesTabix(file, ...)
S4 method for signature TabixFile
headerTabix(file, ...)
S4 method for signature TabixFile,GRanges
scanTabix(file, ..., param)
S4 method for signature TabixFile,RangesList
scanTabix(file, ..., param)
S4 method for signature TabixFile,RangedData
scanTabix(file, ..., param)

70 TabixFile

S4 method for signature TabixFile,missing
scanTabix(file, ..., param)
S4 method for signature character,ANY
scanTabix(file, ..., param)
S4 method for signature character,missing
scanTabix(file, ..., param)

countTabix(file, ...)

Arguments

con An instance of TabixFile.

file For TabixFile(), A character(1) vector to the tabix file path; can be remote
(http://, ftp://). For countTabix, a character(1) or TabixFile instance. For
others, a TabixFile instance.

index A character(1) vector of the tabix file index.

yieldSize Number of records to yield each time the file is read from using scanTabix.
Only valid when param is unspecified. yieldSize does not alter existing yield
sizes, include NA, when creating a TabixFileList from TabixFile instances.

param An instance of GRanges, IRangedData, or RangesList, used to select which
records to scan.

... Additional arguments. For TabixFileList, this can either be a single character
vector of paths to tabix files, or several instances of TabixFile objects.

rw character() indicating mode of file; not used for TabixFile.

Objects from the Class

Objects are created by calls of the form TabixFile().

Fields

The TabixFile class inherits fields from the RsamtoolsFile class.

Functions and methods

TabixFileList inherits methods from RsamtoolsFileList and SimpleList.

Opening / closing:

open.TabixFile Opens the (local or remote) path and index. Returns a TabixFile instance.
yieldSize determines the number of records parsed during each call to scanTabix; NA indi-
cates that all records are to be parsed.

close.TabixFile Closes the TabixFile con; returning (invisibly) the updated TabixFile. The in-
stance may be re-opened with open.TabixFile.

Accessors:

path Returns a character(1) vector of the tabix path name.

TabixFile 71

index Returns a character(1) vector of tabix index name.

yieldSize, yieldSize<- Return or set an integer(1) vector indicating yield size.

Methods:

seqnamesTabix Visit the path in path(file), returning the sequence names present in the file.

headerTabix Visit the path in path(file), returning the sequence names, column indicies used
to sort the file, the number of lines skipped while indexing, the comment character used while
indexing, and the header (preceeded by comment character, at start of file) lines.

countTabix Return the number of records in each range of param, or the count of all records in the
file (when param is missing).

scanTabix For signature(file="TabixFile"), Visit the path in path(file), returning the re-
sult of scanTabix applied to the specified path. For signature(file="character"), call
the corresponding method after coercing file to TabixFile.

indexTabix This method operates on file paths, rather than TabixFile objects, to index tab-
separated files. See indexTabix.

show Compactly display the object.

Author(s)

Martin Morgan

Examples

fl <- system.file("extdata", "example.gtf.gz", package="Rsamtools",
mustWork=TRUE)

tbx <- TabixFile(fl)

param <- GRanges(c("chr1", "chr2"), IRanges(c(1, 1), width=100000))
countTabix(tbx)
countTabix(tbx, param=param)
res <- scanTabix(tbx, param=param)
sapply(res, length)
res[["chr1:1-100000"]][1:2]

parse to list of data.frames
dff <- Map(function(elt) {

read.csv(textConnection(elt), sep="\t", header=FALSE)
}, res)
dff[["chr1:1-100000"]][1:5,1:8]

parse 100 records at a time
length(scanTabix(tbx)[[1]]) # total number of records
tbx <- open(TabixFile(fl, yieldSize=100))
while(length(res <- scanTabix(tbx)[[1]]))

cat("records read:", length(res), "\n")
close(tbx)

72 TabixInput

TabixInput Operations on ‘tabix’ (indexed, tab-delimited) files.

Description

Scan compressed, sorted, tabix-indexed, tab-delimited files.

Usage

scanTabix(file, ..., param)
S4 method for signature character,RangesList
scanTabix(file, ..., param)
S4 method for signature character,RangedData
scanTabix(file, ..., param)
S4 method for signature character,GRanges
scanTabix(file, ..., param)

Arguments

file The character() file name(s) of the tabix file be processed, or more flexibly an
instance of class TabixFile.

param A instance of GRanges, RangedData, or RangesList provide the sequence names
and regions to be parsed.

... Additional arguments, currently ignored.

Value

scanTabix returns a list, with one element per region. Each element of the list is a character vector
representing records in the region.

Error

scanTabix signals errors using signalCondition. The following errors are signaled:

scanTabix_param yieldSize(file) must be NA when more than one range is specified.
scanTabix_io A read error occured while inputing the tabix file. This might be because the file is

corrupt, or of incorrect format (e.g., when path points to a plain text file but index is present,
implying that path should be a bgziped file.

Author(s)

Martin Morgan <mtmorgan@fhcrc.org>.

References

http://samtools.sourceforge.net/tabix.shtml

http://samtools.sourceforge.net/tabix.shtml

TabixInput 73

Examples

example(TabixFile)

Index

∗Topic classes
BamFile, 5
BamSampler, 16
BamViews, 17
BcfFile, 22
FaFile, 28
PileupFiles, 38
PileupParam, 40
RsamtoolsFile, 51
RsamtoolsFileList, 52
ScanBamParam, 53
ScanBcfParam-class, 57
TabixFile, 69

∗Topic manip
applyPileups, 3
BamInput, 11
BcfInput, 25
Compression, 27
deprecated, 28
FaInput, 31
findMateAlignment, 32
headerTabix, 36
indexTabix, 37
quickCountBam, 43
readGAlignmentsFromBam, 44
readPileup, 49
seqnamesTabix, 60
sequenceLayer, 60
stackStringsFromBam, 66
TabixInput, 72

∗Topic methods
sequenceLayer, 60
stackStringsFromBam, 66

∗Topic package
Rsamtools-package, 2

[,BamViews,ANY,ANY-method (BamViews), 17
[,BamViews,ANY,missing-method

(BamViews), 17
[,BamViews,missing,ANY-method

(BamViews), 17

applyPileups, 3, 39, 40, 43
applyPileups,PileupFiles,missing-method

(PileupFiles), 38
applyPileups,PileupFiles,PileupParam-method

(PileupFiles), 38
asBam (BamInput), 11
asBam,character-method (BamInput), 11
asBcf (BcfInput), 25
asBcf,character-method (BcfInput), 25
asMates (BamFile), 5
asMates,BamFile-method (BamFile), 5
asMates,BamFileList-method (BamFile), 5
asMates<- (BamFile), 5
asMates<-,BamFile-method (BamFile), 5
asMates<-,BamFileList-method (BamFile),

5

bamDirname<- (BamViews), 17
bamExperiment (BamViews), 17
BamFile, 5, 7, 13, 16, 17, 39, 44, 46, 51
BamFile-class (BamFile), 5
BamFileList, 19, 52, 53
BamFileList (BamFile), 5
BamFileList-class (BamFile), 5
bamFlag (ScanBamParam), 53
bamFlag<- (ScanBamParam), 53
bamFlagAND (ScanBamParam), 53
bamFlagAsBitMatrix (ScanBamParam), 53
bamFlagTest (ScanBamParam), 53
bamIndicies (BamViews), 17
BamInput, 11
bamPaths (BamViews), 17
bamRanges (BamViews), 17
bamRanges<- (BamViews), 17
bamReverseComplement (ScanBamParam), 53
bamReverseComplement<- (ScanBamParam),

53
BamSampler, 16

74

INDEX 75

BamSampler-class (BamSampler), 16
bamSamples (BamViews), 17
bamSamples<- (BamViews), 17
bamSimpleCigar (ScanBamParam), 53
bamSimpleCigar<- (ScanBamParam), 53
bamTag (ScanBamParam), 53
bamTag<- (ScanBamParam), 53
BamViews, 17, 19
BamViews,GRanges-method (BamViews), 17
BamViews,missing-method (BamViews), 17
BamViews,RangedData-method (BamViews),

17
BamViews-class (BamViews), 17
bamWhat (ScanBamParam), 53
bamWhat<- (ScanBamParam), 53
bamWhich (ScanBamParam), 53
bamWhich<- (ScanBamParam), 53
bamWhich<-,ScanBamParam,ANY-method

(ScanBamParam), 53
bamWhich<-,ScanBamParam,GRanges-method

(ScanBamParam), 53
bamWhich<-,ScanBamParam,RangedData-method

(ScanBamParam), 53
bamWhich<-,ScanBamParam,RangesList-method

(ScanBamParam), 53
BcfFile, 22, 25, 26
BcfFile-class (BcfFile), 22
BcfFileList (BcfFile), 22
BcfFileList-class (BcfFile), 22
bcfFixed (ScanBcfParam-class), 57
bcfGeno (ScanBcfParam-class), 57
bcfInfo (ScanBcfParam-class), 57
BcfInput, 25
bcfMode (BcfFile), 22
bcfSamples (ScanBcfParam-class), 57
bcfTrimEmpty (ScanBcfParam-class), 57
bcfWhich (ScanBcfParam-class), 57
bgzip (Compression), 27
BStringSet, 67
bzfile-class (Rsamtools-package), 2

cigar-utils, 62
close.BamFile (BamFile), 5
close.BcfFile (BcfFile), 22
close.FaFile (FaFile), 28
close.PileupFiles (PileupFiles), 38
close.RsamtoolsFileList

(RsamtoolsFileList), 52
close.TabixFile (TabixFile), 69

Compression, 27
connection, 49
countBam, 9
countBam (BamInput), 11
countBam,BamFile-method (BamFile), 5
countBam,BamFileList-method (BamFile), 5
countBam,BamViews-method (BamViews), 17
countBam,character-method (BamInput), 11
countDumpedAlignments

(findMateAlignment), 32
countFa (FaInput), 31
countFa,character-method (FaInput), 31
countFa,FaFile-method (FaFile), 28
countTabix (TabixFile), 69
coverage, 7, 8
coverage,BamFile-method (BamFile), 5

DataFrame, 19–21
deprecated, 28
dim,BamViews-method (BamViews), 17
dimnames,BamViews-method (BamViews), 17
dimnames<-,BamViews,ANY-method

(BamViews), 17
DNAStringSet, 30, 32, 67

extractAt, 62

FaFile, 27, 28
FaFile-class (FaFile), 28
FaFileList (FaFile), 28
FaFileList-class (FaFile), 28
FaInput, 31
fifo-class (Rsamtools-package), 2
filterBam, 9
filterBam (BamInput), 11
filterBam,BamFile-method (BamFile), 5
filterBam,character-method (BamInput),

11
FilterRules, 7, 12
findMateAlignment, 32, 46, 47
findMateAlignment2 (findMateAlignment),

32
findSpliceOverlaps, 8, 10
findSpliceOverlaps,BamFile,ANY-method

(BamFile), 5
findSpliceOverlaps,BamFile-method

(BamFile), 5
findSpliceOverlaps,character,ANY-method

(BamFile), 5

76 INDEX

findSpliceOverlaps,character-method
(BamFile), 5

first, 45
FLAG_BITNAMES (ScanBamParam), 53
flushDumpedAlignments

(findMateAlignment), 32

GAlignmentPairs, 33, 35, 36, 44–46
GAlignmentPairs-class, 36, 47
GAlignments, 32–34, 36, 44–46, 62, 68
GAlignments-class, 36, 47
GAlignmentsList, 44–46
GAlignmentsList-class, 47
GappedReads, 44–46
GappedReads-class, 47
getDumpedAlignments

(findMateAlignment), 32
getSeq,FaFile-method (FaFile), 28
getSeq,FaFileList-method (FaFile), 28
GRanges, 19–21, 29, 30, 32, 49, 54, 67
gzfile-class (Rsamtools-package), 2

headerTabix, 36
headerTabix,character-method

(headerTabix), 36
headerTabix,TabixFile-method

(TabixFile), 69

index (RsamtoolsFile), 51
indexBam, 10
indexBam (BamInput), 11
indexBam,BamFile-method (BamFile), 5
indexBam,character-method (BamInput), 11
indexBcf (BcfInput), 25
indexBcf,BcfFile-method (BcfFile), 22
indexBcf,character-method (BcfInput), 25
indexFa (FaInput), 31
indexFa,character-method (FaInput), 31
indexFa,FaFile-method (FaFile), 28
indexTabix, 37, 71
isIncomplete,BamFile-method (BamFile), 5
isOpen,BamFile-method (BamFile), 5
isOpen,BcfFile-method (BcfFile), 22
isOpen,FaFile-method (FaFile), 28
isOpen,PileupFiles-method

(PileupFiles), 38
isOpen,RsamtoolsFile-method

(RsamtoolsFile), 51

isOpen,RsamtoolsFileList-method
(RsamtoolsFileList), 52

isOpen,TabixFile-method (TabixFile), 69

last, 45

makeGAlignmentPairs
(findMateAlignment), 32

makeGappedAlignmentPairs
(findMateAlignment), 32

mergeBam, 10
mergeBam (BamInput), 11
mergeBam,BamFileList-method (BamFile), 5
mergeBam,character-method (BamInput), 11

names,BamViews-method (BamViews), 17
names,RsamtoolsFileList-method

(RsamtoolsFileList), 52
names<-,BamViews-method (BamViews), 17

obeyQname (BamFile), 5
obeyQname,BamFile-method (BamFile), 5
obeyQname,BamFileList-method (BamFile),

5
obeyQname<- (BamFile), 5
obeyQname<-,BamFile-method (BamFile), 5
obeyQname<-,BamFileList-method

(BamFile), 5
open.BamFile (BamFile), 5
open.BcfFile (BcfFile), 22
open.FaFile (FaFile), 28
open.PileupFiles (PileupFiles), 38
open.RsamtoolsFileList

(RsamtoolsFileList), 52
open.TabixFile (TabixFile), 69

path (RsamtoolsFile), 51
path,RsamtoolsFile-method

(RsamtoolsFile), 51
path,RsamtoolsFileList-method

(RsamtoolsFileList), 52
PileupFiles, 3, 38
PileupFiles,character-method

(PileupFiles), 38
PileupFiles,list-method (PileupFiles),

38
PileupFiles-class (PileupFiles), 38
PileupParam, 4, 39, 40, 40
PileupParam-class (PileupParam), 40

INDEX 77

pipe-class (Rsamtools-package), 2
plpFiles (PileupFiles), 38
plpFlag (PileupParam), 40
plpFlag<- (PileupParam), 40
plpMaxDepth (PileupParam), 40
plpMaxDepth<- (PileupParam), 40
plpMinBaseQuality (PileupParam), 40
plpMinBaseQuality<- (PileupParam), 40
plpMinDepth (PileupParam), 40
plpMinDepth<- (PileupParam), 40
plpMinMapQuality (PileupParam), 40
plpMinMapQuality<- (PileupParam), 40
plpParam (PileupFiles), 38
plpWhat (PileupParam), 40
plpWhat<- (PileupParam), 40
plpWhich (PileupParam), 40
plpWhich<- (PileupParam), 40
plpYieldAll (PileupParam), 40
plpYieldAll<- (PileupParam), 40
plpYieldBy (PileupParam), 40
plpYieldBy<- (PileupParam), 40
plpYieldSize (PileupParam), 40
plpYieldSize<- (PileupParam), 40

quickCountBam, 8, 43
quickCountBam,BamFile-method (BamFile),

5
quickCountBam,character-method

(quickCountBam), 43
quickCountBam,list-method

(quickCountBam), 43

RangedData, 19, 29, 32, 54
RangesList, 29, 32, 54, 67
razip (Compression), 27
readBamGAlignmentsList

(readGAlignmentsFromBam), 44
readBamGappedAlignmentPairs

(readGAlignmentsFromBam), 44
readBamGappedAlignments

(readGAlignmentsFromBam), 44
readBamGappedReads

(readGAlignmentsFromBam), 44
readGAlignmentPairs, 35
readGAlignmentPairsFromBam, 10, 33, 36
readGAlignmentPairsFromBam

(readGAlignmentsFromBam), 44
readGAlignmentPairsFromBam,BamFile-method

(BamFile), 5

readGAlignmentPairsFromBam,character-method
(readGAlignmentsFromBam), 44

readGAlignmentsFromBam, 10, 21, 36, 44, 62,
67, 68

readGAlignmentsFromBam,BamFile-method
(BamFile), 5

readGAlignmentsFromBam,BamViews-method
(BamViews), 17

readGAlignmentsFromBam,character-method
(readGAlignmentsFromBam), 44

readGAlignmentsListFromBam, 10
readGAlignmentsListFromBam

(readGAlignmentsFromBam), 44
readGAlignmentsListFromBam,BamFile-method

(BamFile), 5
readGAlignmentsListFromBam,character-method

(readGAlignmentsFromBam), 44
readGappedReadsFromBam

(readGAlignmentsFromBam), 44
readGappedReadsFromBam,BamFile-method

(BamFile), 5
readGappedReadsFromBam,character-method

(readGAlignmentsFromBam), 44
readPileup, 49
readPileup,character-method

(readPileup), 49
readPileup,connection-method

(readPileup), 49
replaceAt, 62
Rle, 46
Rsamtools (Rsamtools-package), 2
Rsamtools-package, 2
RsamtoolsFile, 8, 24, 30, 51, 70
RsamtoolsFile-class (RsamtoolsFile), 51
RsamtoolsFileList, 9, 24, 30, 52, 70
RsamtoolsFileList-class

(RsamtoolsFileList), 52

scan, 13
scanBam, 2, 9, 17, 44, 45, 47, 54, 57, 67
scanBam (BamInput), 11
scanBam,BamFile-method (BamFile), 5
scanBam,BamSampler-method (BamSampler),

16
scanBam,BamViews-method (BamViews), 17
scanBam,character-method (BamInput), 11
scanBamFlag, 15, 41, 42
scanBamFlag (ScanBamParam), 53
scanBamHeader, 9

78 INDEX

scanBamHeader (BamInput), 11
scanBamHeader,BamFile-method (BamFile),

5
scanBamHeader,character-method

(BamInput), 11
ScanBamParam, 8, 13–15, 17, 19, 44–47, 53,

67
ScanBamParam,GRanges-method

(ScanBamParam), 53
ScanBamParam,missing-method

(ScanBamParam), 53
ScanBamParam,RangedData-method

(ScanBamParam), 53
ScanBamParam,RangesList-method

(ScanBamParam), 53
ScanBamParam-class (ScanBamParam), 53
scanBamWhat, 13, 15
scanBamWhat (ScanBamParam), 53
scanBcf, 24
scanBcf (BcfInput), 25
scanBcf,BcfFile-method (BcfFile), 22
scanBcf,character-method (BcfInput), 25
scanBcfHeader (BcfInput), 25
scanBcfHeader,BcfFile-method (BcfFile),

22
scanBcfHeader,character-method

(BcfInput), 25
ScanBcfParam, 23, 25
ScanBcfParam (ScanBcfParam-class), 57
ScanBcfParam,GRanges-method

(ScanBcfParam-class), 57
ScanBcfParam,GRangesList-method

(ScanBcfParam-class), 57
ScanBcfParam,missing-method

(ScanBcfParam-class), 57
ScanBcfParam,RangedData-method

(ScanBcfParam-class), 57
ScanBcfParam,RangesList-method

(ScanBcfParam-class), 57
ScanBcfParam-class, 57
ScanBVcfParam-class

(ScanBcfParam-class), 57
scanFa (FaInput), 31
scanFa,character,GRanges-method

(FaInput), 31
scanFa,character,missing-method

(FaInput), 31
scanFa,character,RangedData-method

(FaInput), 31
scanFa,character,RangesList-method

(FaInput), 31
scanFa,FaFile,GRanges-method (FaFile),

28
scanFa,FaFile,missing-method (FaFile),

28
scanFa,FaFile,RangedData-method

(FaFile), 28
scanFa,FaFile,RangesList-method

(FaFile), 28
scanFaIndex (FaInput), 31
scanFaIndex,character-method (FaInput),

31
scanFaIndex,FaFile-method (FaFile), 28
scanFaIndex,FaFileList-method (FaFile),

28
scanTabix, 71
scanTabix (TabixInput), 72
scanTabix,character,ANY-method

(TabixFile), 69
scanTabix,character,GRanges-method

(TabixInput), 72
scanTabix,character,missing-method

(TabixFile), 69
scanTabix,character,RangedData-method

(TabixInput), 72
scanTabix,character,RangesList-method

(TabixInput), 72
scanTabix,TabixFile,GRanges-method

(TabixFile), 69
scanTabix,TabixFile,missing-method

(TabixFile), 69
scanTabix,TabixFile,RangedData-method

(TabixFile), 69
scanTabix,TabixFile,RangesList-method

(TabixFile), 69
scanVcf, 59
scanVcfHeader, 58
ScanVcfParam, 59
Seqinfo, 9
seqinfo,BamFile-method (BamFile), 5
seqinfo,FaFile-method (FaFile), 28
seqnamesTabix, 60
seqnamesTabix,character-method

(seqnamesTabix), 60
seqnamesTabix,TabixFile-method

(TabixFile), 69

INDEX 79

sequenceLayer, 60, 67, 68
show,BamFile-method (BamFile), 5
show,BamFileList-method (BamFile), 5
show,BamSampler-method (BamSampler), 16
show,BamViews-method (BamViews), 17
show,PileupFiles-method (PileupFiles),

38
show,PileupParam-method (PileupParam),

40
show,RsamtoolsFile-method

(RsamtoolsFile), 51
show,ScanBamParam-method

(ScanBamParam), 53
show,ScanBVcfParam-method

(ScanBcfParam-class), 57
SimpleList, 9, 21, 24, 30, 53, 70
sink, 44
sortBam, 8, 10
sortBam (BamInput), 11
sortBam,BamFile-method (BamFile), 5
sortBam,character-method (BamInput), 11
stackStrings, 67, 68
stackStringsFromBam, 62, 66
SummarizedExperiment, 19
summarizeOverlaps, 8, 10
summarizeOverlaps,BamViews,missing-method

(BamViews), 17
summarizeOverlaps,GRanges,BamFile-method

(BamFile), 5
summarizeOverlaps,GRanges,BamFileList-method

(BamFile), 5
summarizeOverlaps,GRanges,character-method

(BamFile), 5
summarizeOverlaps,GRangesList,BamFile-method

(BamFile), 5
summarizeOverlaps,GRangesList,BamFileList-method

(BamFile), 5
summarizeOverlaps,GRangesList,character-method

(BamFile), 5

TabixFile, 26, 27, 37, 60, 69, 72
TabixFile-class (TabixFile), 69
TabixFileList (TabixFile), 69
TabixFileList-class (TabixFile), 69
TabixInput, 72

unz-class (Rsamtools-package), 2
url-class (Rsamtools-package), 2

XStringSet, 61, 62, 68

yieldSize (RsamtoolsFile), 51
yieldSize,RsamtoolsFile-method

(RsamtoolsFile), 51
yieldSize,RsamtoolsFileList-method

(RsamtoolsFileList), 52
yieldSize<- (RsamtoolsFile), 51
yieldSize<-,RsamtoolsFile-method

(RsamtoolsFile), 51
yieldSize<-,RsamtoolsFileList-method

(RsamtoolsFileList), 52
yieldTabix (deprecated), 28
yieldTabix,TabixFile-method

(deprecated), 28

	Rsamtools-package
	applyPileups
	BamFile
	BamInput
	BamSampler
	BamViews
	BcfFile
	BcfInput
	Compression
	deprecated
	FaFile
	FaInput
	findMateAlignment
	headerTabix
	indexTabix
	PileupFiles
	PileupParam
	quickCountBam
	readGAlignmentsFromBam
	readPileup
	RsamtoolsFile
	RsamtoolsFileList
	ScanBamParam
	ScanBcfParam-class
	seqnamesTabix
	sequenceLayer
	stackStringsFromBam
	TabixFile
	TabixInput
	Index

