
The SVA package for removing batch effects and other
unwanted variation in high-throughput experiments

Jeffrey Leek1*, W. Evan Johnson2, Andrew Jaffe1, Hilary Parker1, John Storey3

1Johns Hopkins Bloomberg School of Public Health
2Boston University

3Princeton University
email: jleek@jhsph.edu

Modified: October 24, 2011 Compiled: October 1, 2012

Contents

1 Overview 2

2 Setting up the data 3

3 Setting up the data from an ExpressionSet 4

4 Applying the sva function to estimate batch and other artifacts 4

5 Adjusting for surrogate variables using the f.pvalue function 5

6 Adjusting for surrogate variables using the limma package 6

7 Applying the ComBat function to adjust for known batches 7

1

8 Removing known batch effects with a linear model 9

9 Surrogate variables versus direct adjustment 9

10 Variance filtering to speed computations when the number of features is
large (m > 100, 000) 10

11 Applying the fsva function to remove batch effects for prediction 10

1 Overview

The sva package contains functions for removing batch effects and other unwanted variation
in high-throughput experiments. Specifically, the sva package contains functions for iden-
tifying and building surrogate variables for high-dimensional data sets. Surrogate variables
are covariates constructed directly from high-dimensional data (like gene expression/RNA
sequencing/methylation/brain imaging data) that can be used in subsequent analyses to
adjust for unknown, unmodeled, or latent sources of noise.

The sva package can be used to remove artifacts in two ways: (1) identifying and estimating
surrogate variables for unknown sources of variation in high-throughput experiments and (2)
directly removing known batch effects using ComBat [2].

Leek et. al (2010) define batch effects as follows:

Batch effects are sub-groups of measurements that have qualitatively different
behaviour across conditions and are unrelated to the biological or scientific vari-
ables in a study. For example, batch effects may occur if a subset of experiments
was run on Monday and another set on Tuesday, if two technicians were respon-
sible for different subsets of the experiments, or if two different lots of reagents,
chips or instruments were used.

The sva package includes the popular ComBat [2] function for directly modeling batch
effects when they are known. There are also potentially a large number of environmental
and biological variables that are unmeasured and may have a large impact on measurements
from high-throughput biological experiments. For these cases the sva function may be more
appropriate for removing these artifacts. It is also possible to use the sva function with
the ComBat function to remove both known batch effects and other potential latent sources

2

of variation. Removing batch effects and using surrogate variables in differential expression
analysis have been shown to reduce dependence, stabilize error rate estimates, and improve
reproducibility (see [4, 5, 3] for more detailed information).

This document provides a tutorial for using the sva package. The tutorial includes infor-
mation on (1) how to estimate the number of latent sources of variation, (2) how to apply
thesva package to estimate latent variables such as batch effects, (3) how to directly remove
known batch effects using the ComBat function, (4) how to perform differential expression
analysis using surrogate variables either directly or with thelimma package, and (4) how to
apply “frozen” sva to improve prediction and clustering.

As with any R package, detailed information on functions, along with their arguments and
values, can be obtained in the help files. For instance, to view the help file for the function
sva within R, type ?sva. The analyses performed in this experiment are based on gene
expression measurements from a bladder cancer study [1]. The data can be loaded from the
bladderbatch data package. The relevant packages for the Vignette can be loaded with the
code:

> library(sva)

> library(bladderbatch)

> data(bladderdata)

> library(pamr)

> library(limma)

2 Setting up the data

The first step in using the sva package is to properly format the data and create appropriate
model matrices. The data should be a matrix with features (genes, transcripts, voxels) in
the rows and samples in the columns. This is the typical genes by samples matrix found in
gene expression analyses. The sva package assumes there are two types of variables that are
being considered: (1) adjustment variables and (2) variables of interest. For example, in a
gene expression study the variable of interest might an indicator of cancer versus control.
The adjustment variables could be the age of the patients, the sex of the patients, and a
variable like the date the arrays were processed.

Two model matrices must be made: the “full model” and the “null model”. The null model is
a model matrix that includes terms for all of the adjustment variables but not the variables
of interest. The full model includes terms for both the adjustment variables and the variables
of interest. The assumption is that you will be trying to analyze the association between the

3

variables of interest and gene expression, adjusting for the adjustment variables. The model
matrices can be created using the model.matrix.

3 Setting up the data from an ExpressionSet

For the bladder cancer study, the variable of interest is cancer status. To begin we will assume
no adjustment variables. The bladder data are stored in an expression set - a Bioconductor
object used for storing gene expression data. The variables are stored in the phenotype data
slot and can be obtained as follows:

> pheno = pData(bladderEset)

The expression data can be obtained from the expression slot of the expression set.

> edata = exprs(bladderEset)

Next we create the full model matrix - including both the adjustment variables and the
variable of interest (cancer status). In this case we only have the variable of interest. Since
cancer status has multiple levels, we treat it as a factor variable.

> mod = model.matrix(~as.factor(cancer), data=pheno)

The null model contains only the adjustment variables. Since we are not adjusting for any
other variables in this analysis, only an intercept is included in the model.

> mod0 = model.matrix(~1,data=pheno)

Now that the model matrices have been created, we can apply the sva function to estimate
batch and other artifacts.

4 Applying the sva function to estimate batch and

other artifacts

The sva function performs two different steps. First it identifies the number of latent factors
that need to be estimated. If the sva function is called without the n.sv argument specified,

4

the number of factors will be estimated for you. The number of factors can also be estimated
using the num.sv.

> n.sv = num.sv(edata,mod,method="leek")

> n.sv

[1] 2

Next we apply the sva function to estimate the surrogate variables:

> svobj = sva(edata,mod,mod0,n.sv=n.sv)

Number of significant surrogate variables is: 2

Iteration (out of 5):1 2 3 4 5

The sva function returns a list with four components, sv, pprob.gam, pprob.b, n.sv. sv

is a matrix whose columns correspond to the estimated surrogate variables. They can be
used in downstream analyses as described below. pprob.gam is the posterior probability
that each gene is associated with one or more latent variables [?]. pprob.b is the posterior
probability that each gene is associated with the variables of interest [?]. n.sv is the number
of surrogate variables estimated by the sva.

5 Adjusting for surrogate variables using the f.pvalue

function

The f.pvalue function can be used to calculate parametric F-test p-values for each row
of a data matrix. In the case of the bladder study, this would correspond to calculating a
parametric F-test p-value for each of the 22,283 rows of the matrix. The F-test compares
the models mod and mod0. They must be nested models, so all of the variables in mod0 must
appear in mod. First we can calculate the F-test p-values for differential expression with
respect to cancer status, without adjusting for surrogate variables, adjust them for multiple
testing, and calculate the number that are significant with a Q-value less than 0.05.

> pValues = f.pvalue(edata,mod,mod0)

> qValues = p.adjust(pValues,method="BH")

5

Note that nearly 70% of the genes are strongly differentially expressed at an FDR of less than
5% between groups. This number seems artificially high, even for a strong phenotype like
cancer. Now we can perform the same analysis, but adjusting for surrogate variables. The
first step is to include the surrogate variables in both the null and full models. The reason is
that we want to adjust for the surrogate variables, so we treat them as adjustment variables
that must be included in both models. Then P-values and Q-values can be computed as
before.

> modSv = cbind(mod,svobj$sv)

> mod0Sv = cbind(mod0,svobj$sv)

> pValuesSv = f.pvalue(edata,modSv,mod0Sv)

> qValuesSv = p.adjust(pValuesSv,method="BH")

Now these are the adjusted P-values and Q-values accounting for surrogate variables.

6 Adjusting for surrogate variables using the limma pack-

age

The limma package is one of the most commonly used packages for differential expression
analysis. The sva package can easily be used in conjunction with the limma package to
perform adjusted differential expression analysis. The first step in this process is to fit the
linear model with the surrogate variables included.

> fit = lmFit(edata,modSv)

From here, you can use the limma functions to perform the usual analyses. As an example,
suppose we wanted to calculate differential expression with respect to cancer. To do that we
first compute the contrasts between the pairs of cancer/normal terms. We do not include the
surrogate variables in the contrasts, since they are only being used to adjust the analysis.

> contrast.matrix <- cbind("C1"=c(-1,1,0,rep(0,svobj$n.sv)),"C2"=c(0,-1,1,rep(0,svobj$n.sv)),"C3"=c(-1,0,1,rep(0,svobj$n.sv)))

> fitContrasts = contrasts.fit(fit,contrast.matrix)

The next step is to calculate the test statistics using the eBayes function:

6

> eb = eBayes(fitContrasts)

> topTableF(eb, adjust="BH")

ID C1 C2 C3

207783_x_at 207783_x_at -13.45607 0.26592268 -13.19015

201492_s_at 201492_s_at -13.27594 0.15357702 -13.12236

208834_x_at 208834_x_at -12.76411 0.06134018 -12.70277

212869_x_at 212869_x_at -13.77957 0.26008165 -13.51948

212284_x_at 212284_x_at -13.59977 0.29135767 -13.30841

208825_x_at 208825_x_at -12.70979 0.08250821 -12.62728

211445_x_at 211445_x_at -10.15890 -0.06633356 -10.22523

213084_x_at 213084_x_at -12.59345 0.03015520 -12.56329

201429_s_at 201429_s_at -13.33686 0.28358293 -13.05328

214327_x_at 214327_x_at -12.60146 0.20934783 -12.39211

AveExpr F P.Value adj.P.Val

207783_x_at 12.938786 8622.529 1.207531e-69 1.419929e-65

201492_s_at 13.336090 8605.649 1.274450e-69 1.419929e-65

208834_x_at 13.160201 6939.501 4.749368e-67 3.527673e-63

212869_x_at 13.452076 6593.346 1.939773e-66 1.080599e-62

212284_x_at 13.070844 5495.716 2.893287e-64 1.289423e-60

208825_x_at 13.108072 5414.741 4.350100e-64 1.615555e-60

211445_x_at 9.853817 5256.114 9.845076e-64 3.133969e-60

213084_x_at 13.046529 4790.107 1.260201e-62 3.510132e-59

201429_s_at 12.941208 4464.995 8.675221e-62 2.147888e-58

214327_x_at 11.832607 4312.087 2.257025e-61 5.029329e-58

7 Applying the ComBat function to adjust for known

batches

The ComBat function adjusts for known batches using an empirical Bayesian framework [2].
In order to use the function, you must have a known batch variable in your dataset.

> batch = pheno$batch

Just as with sva, we then need to create a model matrix for the adjustment variables and
the variable of interest (cancer status). Note that you do not include batch in creating this
model matrix - it will be included later in ComBat function.

7

> mod = model.matrix(~as.factor(cancer), data=pheno)

By default, all adjustment variables will be treated as factor variables by the ComBat function.
If you would like to include continuous adjustment variables, also create a vector containing
the column numbers of the continuous covariates in the model matrix. This vector must
then be input into ComBat via the numCovs option.

We now apply the ComBat function to the data, using parametric empirical Bayesian adjust-
ments.

> combat_edata = ComBat(dat=edata, batch=batch, mod=mod, numCovs=NULL, par.prior=TRUE, prior.plots=FALSE)

Found 5 batches

Found 2 categorical covariate(s)

Standardizing Data across genes

Fitting L/S model and finding priors

Finding parametric adjustments

Adjusting the Data

This returns an expression matrix, with the same dimensions as your original dataset. This
new expression matrix has been adjusted for batch. Significance analysis can then be per-
formed directly on the adjusted data using the model matrix and null model matrix as
described before:

> pValuesComBat = f.pvalue(combat_edata,mod,mod0)

> qValuesComBat = p.adjust(pValuesComBat,method="BH")

These P-values and Q-values now account for the known batch effects included in the batch
variable.

There are two additional options for the ComBat function. By default, it performs parametric
empirical Bayesian adjustments. If you would like to use nonparametric empirical Bayesian
adjustments, use the par.prior=FALSE option (this will take longer). Additionally, use the
prior.plots=TRUE option to give prior plots with black as a kernel estimate of the empirical
batch effect density and red as the parametric estimate. For example, you might chose to use
the parametric Bayesian adjustments for your data, but then can check the plots to ensure
that the estimates were reasonable.

8

8 Removing known batch effects with a linear model

Direct adjustment for batch effects can also be performed using the f.pvalue function. In
the bladder cancer example, one of the known variables is a batch variable. This variable can
be included as an adjustment variable in both mod and mod0. Then the f.pvalue function
can be used to detect differential expression. This approach is a simplified version of ComBat.

> modBatch = model.matrix(~as.factor(cancer) + as.factor(batch),data=pheno)

> mod0Batch = model.matrix(~as.factor(batch),data=pheno)

> pValuesBatch = f.pvalue(edata,modBatch,mod0Batch)

> qValuesBatch = p.adjust(pValuesBatch,method="BH")

9 Surrogate variables versus direct adjustment

The goal of the sva is to remove all unwanted sources of variation while protecting the
contrasts due to the primary variables included in mod. This leads to the identification
of features that are consistently different between groups, removing all common sources of
latent variation.

In some cases, the latent variables may be important sources of biological variability. If the
goal of the analysis is to identify heterogeneity in one or more subgroups, the sva function
may not be appropriate. For example, suppose that it is expected that cancer samples
represent two distinct, but unknown subgroups. If these subgroups have a large impact
on expression, then one or more of the estimated surrogate variables may be very highly
correlated with subgroup.

In contrast, direct adjustment only removes the effect of known batch variables. All sources
of latent biological variation will remain in the data using this approach. In other words, if
the samples were obtained in different environments, this effect will remain in the data. If
important sources of heterogeneity (from different environments, lab effects, etc.) are not
accounted for, this may lead to increased false positives.

9

10 Variance filtering to speed computations when the

number of features is large (m > 100, 000)

When the number of features is very large (m > 100, 000) both the num.sv and sva functions
may be slow, since multiple singular value decompositions of the entire data matrix must be
computed. Both functions include a variance filtering term, vfilter, which may be used to
speed up the calculation. vfilter must be an integer between 100 and the total number
of features m. The features are ranked from most variable to least variable by standard
deviation. Computations will only be performed on the vfilter most variable features.
This can improve computational time, but caution should be exercised, since the surrogate
variables will only be estimated on a subset of the matrix. Running the functions with fewer
than 1,000 features is not recommended.

> n.sv = num.sv(edata,mod,vfilter=2000,method="leek")

> svobj = sva(edata,mod,mod0,n.sv=n.sv,vfilter=2000)

Number of significant surrogate variables is: 2

Iteration (out of 5):1 2 3 4 5

11 Applying the fsva function to remove batch effects

for prediction

The surrogate variable analysis functions have been developed for population-level analyses
such as differential expression analysis in microarrays. In some cases, the goal of an analysis
is prediction. In this case, data sets are generally composed a training set and a test set. For
each sample in the training set, the outcome/class is known, but latent sources of variability
are unknown. For the samples in the test set, neither the outcome/class or the latent sources
of variability are known.

“Frozen” surrogate variable analysis can be used to remove latent variation in the test data
set. To illustrate these functions, the bladder data can be separated into a training and test
set.

> set.seed(12354)

> trainIndicator = sample(1:57,size=30,replace=F)

> testIndicator = (1:57)[-trainIndicator]

10

> trainData = edata[,trainIndicator]

> testData = edata[,testIndicator]

> trainPheno = pheno[trainIndicator,]

> testPheno = pheno[testIndicator,]

Using these data sets, the pamr package can be used to train a predictive model on the
training data, as well as test that prediction on a test data set.

> mydata = list(x=trainData,y=trainPheno$cancer)

> mytrain = pamr.train(mydata)

123456789101112131415161718192021222324252627282930

> table(pamr.predict(mytrain,testData,threshold=2),testPheno$cancer)

Biopsy Cancer Normal

Biopsy 3 1 4

Cancer 0 16 1

Normal 0 2 0

Next, the sva function can be used to calculate surrogate variables for the training set.

> trainMod = model.matrix(~cancer,data=trainPheno)

> trainMod0 = model.matrix(~1,data=trainPheno)

> trainSv = sva(trainData,trainMod,trainMod0)

Number of significant surrogate variables is: 6

Iteration (out of 5):1 2 3 4 5

The fsva function can be used to adjust both the training data and the test data. The train-
ing data is adjusted using the calculated surrogate variables. The testing data is adjusted
using the “frozen” surrogate variable algorithm (to be submitted). The output of the fsva

function is an adjusted training set and an adjusted test set. These can be used to train and
test a second, more accurate, prediction function.

11

> fsvaobj = fsva(trainData,trainMod,trainSv,testData)

> mydataSv = list(x=fsvaobj$db,y=trainPheno$cancer)

> mytrainSv = pamr.train(mydataSv)

123456789101112131415161718192021222324252627282930

> table(pamr.predict(mytrainSv,fsvaobj$new,threshold=1),testPheno$cancer)

Biopsy Cancer Normal

Biopsy 3 0 1

Cancer 0 19 0

Normal 0 0 4

References

[1] L. Dyrskjot, M. Kruhoffer, T. Thykjaer, N. Marcussen, J. L. Jensen, K. Moller, and
T. F. Orntoft. Gene expression in the urinary bladder: a common carcinoma in situ gene
expression signature exists disregarding histopathological classification. Cancer Res.,
64:4040–4048, Jun 2004.

[2] W.E. Johnson, C. Li, and A. Rabinovic. Adjusting batch effects in microarray data using
empirical bayes methods. Biostatistics, 8(1):118–127, 2007.

[3] J. T. Leek, R. B. Scharpf, H. C. Bravo, D. Simcha, B. Langmead, W. E. Johnson,
D. Geman, K. Baggerly, and R. A. Irizarry. Tackling the widespread and critical impact
of batch effects in high-throughput data. Nat. Rev. Genet., 11:733–739, Oct 2010.

[4] J.T. Leek and J.D. Storey. Capturing heterogeneity in gene expression studies by ‘sur-
rogate variable analysis’. PLoS Genetics 3:e161, 2007.

[5] J.T. Leek and J.D. Storey. A general framework for multiple testing dependence. Pro-
ceedings of the National Academy of Sciences 105:18718-18723, 2008.

12

	Overview
	Setting up the data
	Setting up the data from an ExpressionSet
	Applying the sva function to estimate batch and other artifacts
	Adjusting for surrogate variables using the f.pvalue function
	Adjusting for surrogate variables using the limma package
	Applying the ComBat function to adjust for known batches
	Removing known batch effects with a linear model
	Surrogate variables versus direct adjustment
	Variance filtering to speed computations when the number of features is large (m >100,000)
	Applying the fsva function to remove batch effects for prediction

