segmentSeq: methods for identifying small RNA
loci from high-throughput sequencing data

Thomas J. Hardcastle

November 28, 2012

1 Introduction

High-throughput sequencing technologies allow the production of large volumes
of short sequences, which can be aligned to the genome to create a set of matches
to the genome. By looking for regions of the genome which to which there are
high densities of matches, we can infer a segmentation of the genome into regions
of biological significance. The methods we propose allows the simultaneous
segmentation of data from multiple samples, taking into account replicate data,
in order to create a consensus segmentation. This has obvious applications in
a number of classes of sequencing experiments, particularly in the discovery of
small RNA loci and novel mRNA transcriptome discovery.

We approach the problem by considering a large set of potential segments
upon the genome and counting the number of tags that match to that segment in
multiple sequencing experiments (that may or may not contain replication). We
then adapt the empirical Bayesian methods implemented in the baySeq package
[1] to establish, for a given segment, the likelihood that the count data in that
segment is similar to background levels, or that it is similar to the regions to
the left or right of that segment. We then rank all the potential segments in
order of increasing likelihood of similarity and reject those segments for which
there is a high likelihood of similarity with the background or the regions to the
left or right of the segment. This gives us a large list of overlapping segments.
We reduce this list to identify non-overlapping loci by choosing, for a set of
overlapping segments, the segment which has the lowest likelihood of similarity
with either background or the regions to the left or right of that segment and
rejecting all other segments that overlap with this segment. For fuller details of
the method, see Hardcastle et al. [2].

2 Preparation

We begin by loading the segmentSeq package.
> library(segmentSeq)

Note that because the experiments that segmentSeq is designed to analyse
are usually massive, we should use (if possible) parallel processing as imple-
mented by the snow package. We therefore need to load the snow package (if it
exists) and define a cluster.

> library(snow)

> ¢l <- makeCluster(8, "MPI")

If snow is not present, we can proceed anyway with a NULL cluster. Results
may be slightly different depending on whether or not a cluster is used owing
to the non-deterministic elements of the method.

> cl <- NULL

There is a convenience function, readGeneric which is able to read in tab-
delimited files which have appropriate column names, and create an alignmentData
object. Alternatively, if the appropriate column names are not present, we can
specify which columns to use for the data. In either case, we pass a charac-
ter vector of files, together with information on which data are to be treated as
replicates to the function. We also need to define the lengths of the chromosome
and specifiy the chromosome names as a character. The data here, drawn from
text files in the 'data’ directory of the segmentSeq package are taken from the
first million bases of an alignment to chromosome 1 and the first five hundred
thousand bases of an alignment to chromosome 2 of Arabidopsis thaliana in a
sequencing experiment where libraries ‘SL9’ and ‘SL10’ are replicates, as are
‘SL26’ and ‘SL32’. Libraries ‘SL9’ and ‘SL10’ are sequenced from an Argonaute

6 1P, while ‘SL.26" and ‘SL32’ are an Argonaute 4 IP.

chrlens <- c(1le6, 2e5)

vV VVVVYVYyV

aD

An object of class "alignmentData"

13765 rows and 4 columns

Slot "alignments":

"SL10.txt",
”SL26”,

datadir <- system.file("extdata", package
libfiles <- c("SL9.txt",
libnames <- c("SL9", "SL10",
replicates <- c("AGO6", "AGO6", "AGD4", "AGO4")

aD <- readGeneric(files = libfiles, dir = datadir, replicates = replicates, libnames

"segmentSeq")

"SL26.txt", "SL32.txt")
HSL32H)

GRanges with 13765 ranges and 4 metadata columns:
ranges strand

sSegnames
<Rle>

[1] >Chri
[2] >Chri
[3] >Chril
[4] >Chri
[5] >Chril
(6] >Chri
[71 >Chril
[8] >Chril
[9] >Chri1

<IRanges>
[265, 284]
[405, 427]
[406, 420]
[600, 623]
[665, 688]
[762, 785]
[762, 786]
[770, 789]
[771, 789]

[13757] >Chr2 [179944, 179961]
[13758] >Chr2 [179958, 179981]
[13759] >Chr2 [179964, 179987]

<Rle>

I+ 4+ 4+

tag

<Rle>
AAATGAAGATAAACCATCCA
AAGGAGTAAGAATGACAATAAAT
AAGAATGACAATAAA
AAGGATTGGTGGTTTGAAGACACA
ATCCTTGTAGCACACATTTTGGCA
AGAGTGATTTGGATGATTCAAGAC
AGAGTGATTTGGATGATTCAAGACT
AGAAGTCTTGAATCATCCAA
AGAAGTCTTGAATCATCCA

ATTTTCTCCTATGTAAGC
AAGCATAATGGTTCATGAATGGCT
AGAGAGAGCCATTCATGAACCATT

1

[13760]
[13761]
[13762]
[13763]
[13764]
[13765]

[1]
[2]
(3]
[4]
(5]
(6]
[7]
(8]
[9]
[13757]
[13758]
[13759]
[13760]
[13761]
[13762]
[13763]
[13764]
[13765]

>Chr2
>Chr2
>Chr2
>Chr2
>Chr2
>Chr2

matches chunk

[179972, 179988]
[179972, 179993]
[179978, 180000]
[179999, 180022]
[180002, 180022]
[180014, 180037]

chunkDup

<numeric> <Rle> <logical>

seqlengths:

>Chri

>Chr2

1000000 200000

Slot "data":
DataFrame with 5 rows and
SL9 SL10 SL26 SL32
<Rle> <Rle> <Rle> <Rle>

O W N
o

13760 more rows...

Slot "libnames":
IISLlOII IISL26II IISL32II

[1] ngron

Slot "libsizes":
[1] 4447 6531 9666 6675

Slot "replicates":

e e e

1

e e

0

O O O O

1

e = N = =

279
279
279
279
279
279
279
279
279

O O O N O

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

4 columns

ATGAATGGCTCTCTCTA
ATGAATGGCTCTCTCTAGCGGA
GAGATTCTCCGCTAGAGAGAGCC
ATTAATATTAATTCATCGGGAAGA
ATTAATATTAATTCATCGGGA
AATATTAATGGTATTTGTGGAAAA

[1] AGD6 AGO6 AGD4 AGD4
Levels: AGD4 AGO6

Next, we process this alignmentData object to produce a segData object.
This segData object contains a set of potential segments on the genome de-
fined by the start and end points of regions of overlapping alignments in the
alignmentData object. It then evaluates the number of tags that hit in each of
these segments.

> sD <- processAD(aD, cl = cl1)
> sD

An object of class '"segData"
17706 rows and 4 columns

Slot "data":
DataFrame with 5 rows and 4 columns
SL9 SL10 SL26 SL32
<Rle> <Rle> <Rle> <Rle>

1 1 0 0 0
2 1 1 0 2
3 1 2 0 2
4 8 3 0 2
5 31 29 51 85

17701 more rows...

Slot "libsizes":
[1] 4447 6531 9666 6675

Slot "replicates":
[1] AGO6 AGO6 AGO4 AGD4
Levels: AGD4 AGO6

Slot "coordinates":
GRanges with 17706 ranges and 0 metadata columns:

seqnames ranges strand
<Rle> <IRanges> <Rle>

[1] >Chri1 [265, 284] *
[2] >Chri [265, 427] *
[3] >Chri [265, 623] *
[4] >Chrl [265, 688] *
[5] >Chrl [265, 830] *
(6] >Chri [265, 916] *
[7] >Chrl [265, 967] *
[8] >Chri [405, 427] *
[9] >Chri [405, 623] *

[17698] >Chr2 [178514, 178636]
[17699] >Chr2 [178563, 178636]
[17700] >Chr2 [179097, 179111]
[17701] >Chr2 [179708, 179731]

* ¥ X ¥ -

[17702] >Chr2 [179708, 179872]
[17703] >Chr2 [179708, 180037]
[17704] >Chr2 [179738, 179872]
[17705] >Chr2 [179738, 180037]
[17706] >Chr2 [179923, 180037]

¥ ¥ ¥ ¥ *x

seqlengths:
>Chrl >Chr2
1000000 200000

We can now construct a segment map from these potential segments.

Segmentation by Clustering

A fast method of segmentation can be achieved by exploiting the bimodality
of the densities of small RNAs in the potential segments. In this approach, we
assign each potential segment to one of two clusters for each replicate group,
either as a segment or a null based on the density of sequence tags within that
segment. We then combine these clusterings for each replicate group to gain a
consensus segmentation map.

> clustSegs <- heuristicSeg(sD = sD, aD = aD, RKPM = 300, largeness = 1e8, cl = cl)

> clustSegs

GRanges with 774 ranges and O metadata columns:

segnames ranges strand
<Rle> <IRanges> <Rle>

[1] >Chr1 [1, 264] *
[2] >Chri [265, 284] *
[3] >Chri [285, 404] *
[4] >Chri [405, 427] *
[5] >Chr1 [428, 599] *
[6] >Chri [600, 626] *
[7] >Chri [627, 967] *
[8] >Chri [968, 2569] *
[9] >Chri [2570, 2593] *

[766] >Chr2 [176884, 177099]
[767] >Chr2 [177100, 178343]
[768] >Chr2 [178344, 178370]
[769] >Chr2 [178371, 178636]
[770] >Chr2 [178637, 179096]
[771] >Chr2 [179097, 179111]
[772] >Chr2 [179112, 179707]
[773] >Chr2 [179708, 180037]
[774] >Chr2 [180038, 200000]

¥ X X X X X X X X -

seqlengths:

>Chr1 >Chr2
1000000 200000
An object of class "lociData"
774 rows and 4 columns

Slot "replicates"
[1] AGO6 AGO6 AGD4 AGO4
Levels: AGO4 AGO6

Slot "libsizes"
AGO6.1 AGO6.2 AGD4.1 AGD4.2
4447 6531 9666 6675

Slot "groups":

[[11]

[1] AGO6 AGD6 AGD4 AGO4
Levels: AGD4 AGO6

Slot "data":

AGD6.1 AGD6.2 AGO4.1 AGD4.2
[1,] 0 0 0 0
[2,] 1 0 0 0
[3,] 0 0 0 0
(4,] 0 1 0 2
[5,] 0 0 0 0

769 more rows...

Slot "annotation":
data frame with O columns and 774 rows

Slot "locLikelihoods" (stored on log scale):
AGO4 AGO6

[1,] 0.01451211 0.02129373

[2,] 0.07159889 0.81662143

[3,] 0.02437336 0.03891005

[4,] 0.41615355 0.79927895

[5,] 0.01914445 0.02856721

769 more rows...

Segmentation by Classification

A more refined approach to the problem uses an existing segment map (or, if
not provided, a segment map defined by the clustSegs function) to acquire
empirical distributions on the density of sequence tags within a segment. We
can then estimate posterior likelihoods for each potential segment as being either
a true segment or a null. We then identifying all potential segments in the with
a posterior likelihood of being a segment greater than some value ’locsens’ and
containing no subregion with a posterior likelihood of being a null greater than
‘nulsens’. We then greedily select the longest segments satisfying these criteria

that do not overlap with any other such segments in defining our segmentation
map.

> classSegs <- classifySeg(sD = sD, aD = aD, cD = clustSegs, subRegion = NULL, getLikes =
> classSegs

GRanges with 268 ranges and O metadata columns:

segnames ranges strand
<Rle> <IRanges> <Rle>

[1] >Chrl [1, 404] *
[2] >Chrli [405, 967] *
[3] >Chr1 [968, 17054] *
[4] >Chr1 [17055, 18728] *
(5] >Chri [18729, 27656] *
(6] >Chr1 [27657, 27677] *
[7] >Chr1 [27678, 42216] *
[8] >Chrl [42217, 42570] *
[9] >Chrl [42571, 44709] *
[260] >Chr2 [152794, 152794] *
[261] >Chr2 [152795, 152829] *
[262] >Chr2 [152830, 169195] *
[263] >Chr2 [169196, 169230] *
[264] >Chr2 [169231, 178343] *
[265] >Chr2 [178344, 178636] *
[266] >Chr2 [178637, 179707] *
[267] >Chr2 [179708, 180037] *
[268] >Chr2 [180038, 200000] *

seqlengths:
>Chri >Chr2
1000000 200000
An object of class "lociData"
268 rows and 4 columns

Slot "replicates"
[1] AGO6 AGO6 AGD4 AGO4
Levels: AGO4 AGO6

Slot "libsizes"
AGO6.1 AGO6.2 AGD4.1 AGD4.2
4447 6531 9666 6675

Slot "groups":

[[11]

[1] AGO6 AGD6 AGD4 AGO4
Levels: AGD4 AGO6

Slot "data":
AGO6.1 AGD6.2 AGD4.1 AGO4.2

[1,] 1 0 0 0
[2,] 54 47 65 85
[3,] 2 3 0 0
(4,] 682 621 1405 1103
[5,] 0 3 0 0

263 more rows...

Slot "annotation":
data frame with O columns and 268 rows

Slot "locLikelihoods" (stored on log scale):
AGO4 AGO6

[1,] 0.011830282 0.022544530

[2,] 0.909301209 0.977565300

[3,] 0.006679247 0.001420005

[4,] 0.999922695 0.999221291

[5,] 0.006303548 0.008718579

263 more rows...

By one of these methods, we finally acquire an annotated countData object,
with the annotations describing the co-ordinates of each segment.

We can use this countData object, in combination with the alignmentData
object, to plot the segmented genome.

> par(mfrow = c(2,1), mar = c(2,6,2,2))
> plotGenome(aD, clustSegs, chr = ">Chr1", limits = c(1, 1le5), showNumber = FALSE, cap
> plotGenome(aD, classSegs, chr = ">Chr1", limits = c(1, 1e5), showNumber = FALSE, cap

This countData object can now be examined for differential expression with
the baySeq package.

References

[1] Thomas J. Hardcastle and Krystyna A. Kelly. baySeq: Empirical Bayesian
Methods For Identifying Differential Expression In Sequence Count Data.
BMC Bioinformatics (2010)

[2] Thomas J. Hardcastle and Krystyna A. Kelly and David C. Baulcombe.
Identifying small RNA loci from high-throughput sequencing data. In press
(2011)

[($;]

"] QWIOSOUIOAD JO S9OSR (] }S1J) SWOUSS POJULUISDs O, :] 0InSL]

TO000T 10008 10009 1000% T1000¢ T
_ _ _ _ _ _ _ _ _ _ |

_ — 61S

oT1s

|

— 9C1S

—_—

— ¢S

T0O000T 10008 10009 1000¥ 1000¢ T
_ _ _ _ _ _ _ _ _ _ |

— 61S

— OT71S

— 9C1S

— ¢S

