1 Introduction

The emergence of ChIP-seq technology for genome-wide profiling of transcription fac-
tor binding sites (TFBS) has made it possible to categorize very precisely the TFBS
motifs. How to harness the power of huge volume of data generated by this new tech-
nology presents many computational challenges. We propose a novel motif discovery
algorithm that is scalable to large databases, and performs discriminative motif dis-
covers by searching the most differential motifs between a foreground and background
sequence dataset. This tool can be used in a traditional setting in which the foreground
sequence dataset is derived from a ChIP-seq binding profile, and background sequence
dataset is either sampled from the genome or generated from a null model. It can also
be used for comparative study involving two TFBS binding profiles.

In a nutshell, the method works as the following: we enumerate all fixed-length n-mers
exhaustively, and measure their discriminative power by a logistic regression model. The
top ranking seed motif is then iteratively refined by allowing TUPAC degenerate letters
and extended to a longer motif automatically. We introduce a bootstrapping robustness
test to avoid over-fitting in the optimization process. The logistic regression framework
offers direct measurement of statistical significance, and we demonstrate by permuta-
tion tests that the z-value statistics do reflect the probability of occurrence by chance.
Compared to traditional motif finding tool, use of proper control sequences for compar-
ison avoids the difficulty of modeling true genomic background, which usually presents
complicated high order structure such as dinucleotide sequence preference, repeats, nu-
cleosome positions signals, etc. When used to compare two similar ChIP-Seq samples,
the discriminative motifs usually leads to insights on sample specificity.

2 Example

We have applied this technique to the CTCF chip-seq experiment. The positive dataset
contains 10,000 CTCF chip-seq binding sites, each with 200 bases. The negative dataset
contains the same number, and the same length of sequences as the positive set. They
are chosen from chip-seq mapped regions with low coverage, and they share the same
distribution of distance to transcription start site as the positives to adjust for any
promoter bias.

> library(motifRG)

> data(ctcf.seq)

> data(control.seq)

> ### concatenate the foreground, background sequences

> all.seq <- append(ctcf.seq, control.seq)

> ### specify which sequences are foreground, background.

> category <- c(rep(1, length(ctcf.seq)), rep(0, length(control.seq)))



> ### find motifs
> ctcf.motifs <- findMotif(all.seq=all.seq, category=category, max.motif=3)

> motifLatexTable (main="CTCF motifs", ctcf.motifs)

Table 1: CTCF motifs

Consensus scores | ratio | fg.frac | bg.frac | logo

NNAGRKGGCDNN | 17.4 | 4.47 | 0.54 0.13 7 -

NNVCACATRNN 8.6 2.73 1 0.28 0.14 I _

NNCCCTCCNN -8.5 0.39 | 0.18 0.34

> ###Find a refined PWM model given the motif matches as seed
pwm.match <- refinePWMMotif (ctcf.motifs$motifs[[1]]@match$pattern, ctcf.seq)
library(seqLogo)
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## Motifs found by findMotif tend to be relatively short, as longer and
## more specific motif models do not necessarily provide better
## discrimination of foreground background vs background if they are
## already well separated. However, one can refine and extend a PWM model
## given the motif matches by findMotif as seed for more specific model.
pwm.match.extend <-

refinePWMMotifExtend (ctcf.motifs$motifs[[1]]@match$pattern, ctcf.seq)
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> seqLogo (pwm.match$model$prob)
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Figure 1: PWM logo of CTCF PWM matches

> seqLogo (pwm.match.extend$model$prob)
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Figure 2: PWM logo of CTCF PWM matches



> plotMotif (pwm.match.extend$match$pattern)
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