
ggbio: visualization toolkits for genomic data

Tengfei Yin

January 21, 2013

Contents

1 An Introduction to ggbio 5

1.1 Introduction . 5

1.2 Documentation . 6

1.3 Support . 6

1.4 Installation . 6

1.5 Citation . 7

2 Quick start 9

3 Tracks: bind and align plots 34

3.1 Objective . 34

3.2 Motivation . 34

3.3 Usage . 36

3.3.1 A minimal example for ggplot2 graphics . 36

3.3.2 Labeling and naming a track . 40

3.3.3 Arith method + . 46

3.3.4 Modification . 47

3.3.5 Customized themes for plots and tracks . 57

3.3.6 Zoom in/out . 66

3.3.7 Backup/restore utilities . 72

3.3.8 Reset and backup . 72

3.4 Discussion . 77

4 mold method 78

1

5 ggplot generic method and low level utilities 79

5.1 Objective . 79

5.2 ggplot . 79

5.3 Components . 89

6 Autoplot method 92

6.1 API . 92

6.2 Usage . 92

6.2.1 autoplot,GRanges . 92

6.2.2 autoplot,Seqinfo . 101

6.2.3 autoplot,IRanges . 101

6.2.4 autoplot,GRangesList . 103

6.2.5 autoplot,Rle . 105

6.2.6 autoplot,RleList . 108

6.2.7 autoplot,TranscriptDb . 108

6.2.8 autoplot,GappedAlignment . 115

6.2.9 autoplot,BamFile . 115

6.2.10 autoplot,character . 118

6.2.11 autoplot,matrix . 118

6.2.12 autoplot, Views . 126

6.2.13 autoplot, ExpressionSet . 131

6.2.14 autoplot, SummarizedExperiment . 132

6.2.15 autoplot,VCF . 144

6.2.16 autoplot,BSgenome . 144

7 Ideogram 151

7.1 Introduction . 151

7.2 Usage . 151

7.2.1 Visualization of ideogram for single chromosome . 151

7.2.2 Get ideogram or customize the colors . 164

7.2.3 Plot ideogram directly from Seqinfo . 170

2

8 Visualize genomic features 172

8.1 Introduction . 172

8.2 Usage . 173

8.2.1 autoplot . 173

8.2.2 geom alignment . 181

9 Circular view 183

9.1 Introduction . 183

9.2 Tutorial . 183

9.2.1 Step 1: understand the layout circle . 183

9.2.2 Step 2: get your data ready to plot . 184

9.2.3 Step 3: low level API: layout circle . 186

9.2.4 Step 4: Complex arragnment of plots . 192

10 Manhattan plot 197

10.1 Introduction . 197

10.2 Understand the new coordinate . 197

10.3 Step 2: Simulate a SNP data set . 200

10.4 Step 3: Start to make Manhattan plot by using autoplot . 202

10.5 Convenient plotGrandLinear function . 202

11 Karyogram overview 215

11.1 Introduction . 215

11.2 Usage . 215

11.2.1 autoplot . 215

11.2.2 plotKaryogram . 224

11.2.3 layout karyogram . 224

12 Ranges-link-to-data plot 229

12.1 Introduction . 229

13 Case studies 234

3

13.1 Chip-seq . 234

13.1.1 Introduction . 234

13.1.2 Usage . 234

13.2 Mismatch summary . 256

13.2.1 Introduction . 256

13.2.2 Usage . 256

14 Reference 263

15 Appendix 264

15.1 Session Information . 264

4

Chapter 1

An Introduction to ggbio

1.1 Introduction

The ggbio package extends and specializes the grammar of graphics for biological data. The graphics are
designed to answer common scientific questions, in particular those often asked of high throughput genomics
data. All core Bioconductor data structures are supported, where appropriate. The package supports de-
tailed views of particular genomic regions, as well as genome-wide overviews. Supported overviews include
ideograms and grand linear views. High-level plots include sequence fragment length, edge-linked interval to
data view, mismatch pileup, and several splicing summaries.

A mature graphic eco-system always has a well-developed data model, a grammar and a powerful computing
platform. Grammar of graphics1 is the essential part to help people understand the underlying data by using
a general visualization framework. What’s more, object-oriented graphics is especially useful for a well-
developed infrastructure system that have carefully defined data model to store specific data sets for special
purpose. Let’s say, given a GRanges we know it represents annotated genetic intervals, given TranscriptDb

we know it represents transcripts-centric annotation data, given matrix, in biology, we probably expect a
heatmap.

Let’s scrutinize what we have in R:

• data model: Bioconductor tries hard to define and generalize infrastructure for storing particular bio-
logical data. For example, we have ExpressionSet to store microarray data, we have GappedAlignments
to store NGS alignments, and IRanges to represent numeric intervals. This is especially useful, which
make object-oriented programming for specific biological questions much easier, and make object-
oriented visualization possible in Bioconductor too.

• Powerful computing platform: R is a modern statistical computing environment, provides plenty
of models and computing method for multivariate data analysis, at the same time, Bioconductor has
numerous data mining tools in genetic analysis and other fields. These well-developed and tested tool
kits make processing and analysis easier than before. And we have to pay attention to that many
useful graphics are just statistical summary of raw data, so statistical transformation exists could be
implemented as part of the visualization procedure.

1“The grammar of graphics” by Leland Wilkinson

5

• The grammar of graphics: This conceptual framework is proposed by Leland Wilkinson2. Hadley
Wickham extended the grammar and also first implemented it in R in his package ggplot2 with great
success. ggbio is built on ggplot22 and extends the grammar to genomic data with new features and
extended components.

1.2 Documentation

From Bioconductor 2.11, I have two documentation:

• One is like all other bioconductor package, one single vignettes knited from sweave file. Yes, it’s the one
you are reading now. This vignette is trying to make a general tutorial for this graphical framework,
with plenty of examples and case studies, following the logical order.

• The other source is under ggbio official websites, http://tengfei.github.com/ggbio, under doc-
umentation tab, I will use knitr to knit the Rd manual and put it under manual section(http:
//tengfei.github.com/ggbio/docs/man), so all the help manual with examples code hybrided with
graphics is shown there only. It’s a very good companion for this pdf based vignette, or R help, because
you won’t see vivid graphics in your help manual. Also more complete examples are present in the
on-line help documentations too.

These two documentation are reproducible with the version of packages specified in sessionInfo, knitr is
the key to make them reproducible. For more information about how those documentation generated, please
visit knitr ’s websites3.

1.3 Support

As described on-line (http://tengfei.github.com/ggbio/support.html).

For issue/bug report and questions about usage, you could

• File a issue/bug report at https://github.com/tengfei/ggbio/issues, this will make sure I don’t
really forget to fix it later. ggbio is a huge and flexible package, combination of components are not all
tested, you probably could hit a bug or issue the future, I will appreciate it if you could let me know
it and help me improve and fix the problem.

• Send me email at yintengfei at gmail dot com directly.

• or ask question about ggbio on biocondcutor.

1.4 Installation

As described on-line (http://tengfei.github.com/ggbio/download.html).

2Please check Wilkinson’s book “The grammar of graphics” for more detail.
3http://yihui.name/knitr/

6

http://tengfei.github.com/ggbio
http://tengfei.github.com/ggbio/docs/man
http://tengfei.github.com/ggbio/docs/man
http://tengfei.github.com/ggbio/support.html
https://github.com/tengfei/ggbio/issues
http://tengfei.github.com/ggbio/download.html
http://yihui.name/knitr/

Tips: github is only used for issue/bugs report and homepage build purpose, devel-
opemnt has been stopped and removed from there already. I only use bioconductor to
maintain and develop my package.

After R 2.15, R release cycle falls into annual release instead of semi-annual release cycle, at the same
time, Bioconductor project still follows semi-annual release cycle. So now you can install both released and
developmental version for the same version of R.

In your R session, please run following code to install released version of ggbio, but if you are using devel-
opmental version of R, you will get developmental version of ggbio automatically. Because what you get
depends on the bioconductor installer, which is implemented in package BiocInstaller and its version decides
which version of Bioconductor you got.

source("http://bioconductor.org/biocLite.R")

biocLite("ggbio")

After you run the code above, next time if you wish to install something new from Bioconductor, you can
simply run

library("BiocInstaller")

biocLite("ggbio")

Or you can check all released bioc packages here.

To install developmental version, run

library("BiocInstaller")

useDevel(TRUE)

biocLite("ggbio")

For developers, please you can find latest source code in bioc svn, username and password are all ”read-
only”(without quotes).

1.5 Citation

citation("ggbio")

##

To cite package 'ggbio' in publications use:

##

Tengfei Yin, Dianne Cook and Michael Lawrence (2012): ggbio:

an R package for extending the grammar of graphics for

genomic data Genome Biology 13:R77

##

A BibTeX entry for LaTeX users is

7

##

@Article{,

title = {ggbio: an R package for extending the grammar of graphics for genomic data},

author = {Tengfei Yin and Dianne Cook and Michael Lawrence},

journal = {Genome Biology},

volume = {13},

number = {8},

pages = {R77},

year = {2012},

publisher = {BioMed Central Ltd},

}

8

Chapter 2

Quick start

This chapter gives your a very rough overview about the usage of ggbio, but not a complete coverage for all
contents.

autoplot is the generic function which support most core Bioconductor objects, try to make different types
of graphics for specific object. Please check Chapter 6 and manual for autoplot for more information.

library(ggbio)

Loading required package: ggplot2

Need specific help about ggbio? try mailing

the maintainer or visit http://tengfei.github.com/ggbio/

##

Attaching package: ’ggbio’

The following object(s) are masked from ’package:ggplot2’:

##

geom bar, geom rect, geom segment, stat bin, stat identity,

xlim

library(GenomicRanges)

Loading required package: BiocGenerics

##

Attaching package: ’BiocGenerics’

The following object(s) are masked from ’package:stats’:

##

xtabs

The following object(s) are masked from ’package:base’:

##

Filter, Find, Map, Position, Reduce, anyDuplicated, cbind,

9

colnames, duplicated, eval, get, intersect, lapply, mapply,

mget, order, paste, pmax, pmax.int, pmin, pmin.int, rbind,

rep.int, rownames, sapply, setdiff, table, tapply, union,

unique

Loading required package: IRanges

set.seed(1)

N <- 100

gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE),

IRanges(start = sample(1:300, size = N, replace = TRUE), width = sample(70:75,

size = N, replace = TRUE)), strand = sample(c("+", "-", "*"), size = N,

replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),

sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters,

size = N, replace = TRUE))

autoplot(gr)

Object of class "ggbio"

10

chr1 chr2 chr3

0 100 200 300 0 100 200 300 0 100 200 300

NULL

autoplot(gr, stat = "coverage", geom = "area")

Object of class "ggbio"

11

chr1 chr2 chr3

0

5

10

0 bp 100 bp200 bp300 bp 0 bp 100 bp200 bp300 bp 0 bp 100 bp200 bp300 bp

C
ov

er
ag

e

NULL

autoplot(gr, aes(y = value), geom = "point")

Object of class "ggbio"

12

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

100 200 300

va
lu

e

NULL

autoplot(gr, aes(y = value), geom = "point") + geom_line()

Object of class "ggbio"

13

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

100 200 300

va
lu

e

NULL

autoplot(gr, aes(y = value), geom = "point") + geom_line() + stat_smooth()

Object of class "ggbio"

geom smooth: method="auto" and size of largest group is <1000, so using loess. Use ’method

= x’ to change the smoothing method.

14

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

100 200 300

va
lu

e

NULL

autoplot(gr, aes(y = value), geom = "point") + stat_smooth()

Object of class "ggbio"

geom smooth: method="auto" and size of largest group is <1000, so using loess. Use ’method

= x’ to change the smoothing method.

15

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

100 200 300

va
lu

e

NULL

autoplot(gr, layout = "circle")

Object of class "ggbio"

16

NULL

seqlengths(gr)

chr1 chr2 chr3

NA NA NA

seqlengths(gr) <- c(400, 500, 1000)

autoplot(gr, layout = "circle", aes(fill = seqnames))

Object of class "ggbio"

17

seqnames

chr1

chr2

chr3

NULL

autoplot(gr, coord = "genome")

using coord:genome to parse x scale

Object of class "ggbio"

18

chr1 chr2 chr3

chr1 chr2 chr1 chr2 chr1 chr2

NULL

ggplot generic method provides flexible API for constructing graphics layer by layer following the grammar
of graphics. Actually autoplot method use ggplot and other low level utilities to construct customized
graphics. Please check Chapter 5 and manual for more information.

ggplot(gr) + geom_rect()

Object of class "ggbio"

19

chr1 chr2 chr3

0 100 200 300 0 100 200 300 0 100 200 300

NULL

ggplot(gr) + geom_rect(aes(fill = value))

Object of class "ggbio"

20

chr1 chr2 chr3

0 100 200 300 0 100 200 300 0 100 200 300

5

10

15

value

NULL

for primitive geom from ggplot2, add facet manually for now

ggplot(gr, aes(x = midpoint, y = value)) + geom_point() + facet_grid(. ~

seqnames)

Object of class "ggbio"

21

chr1 chr2 chr3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

5

10

15

100 200 300 100 200 300 100 200 300
midpoint

va
lu

e

NULL

ggplot(gr, aes(x = midpoint, y = value)) + facet_grid(. ~ seqnames) + geom_point() +

stat_smooth()

Object of class "ggbio"

geom smooth: method="auto" and size of largest group is <1000, so using loess. Use ’method

= x’ to change the smoothing method.

geom smooth: method="auto" and size of largest group is <1000, so using loess. Use ’method

= x’ to change the smoothing method.

22

geom smooth: method="auto" and size of largest group is <1000, so using loess. Use ’method

= x’ to change the smoothing method.

chr1 chr2 chr3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

5

10

15

100 200 300 100 200 300 100 200 300
midpoint

va
lu

e

NULL

ggplot(gr) + layout_circle(aes(fill = seqnames), geom = "rect")

Object of class "ggbio"

23

seqnames

chr1

chr2

chr3

NULL

slightly different with autoplot api

ggplot(gr) + geom_rect() + coord_genome()

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

Object of class "ggbio"

24

chr1 chr2 chr3

NULL

ggplot(gr) + stat_aggregate(aes(y = value))

Object of class "ggbio"

25

chr1 chr2 chr3

0.0

2.5

5.0

7.5

10.0

628098116134152170188206224242260278296314332350368133149678510312113915717519321122924726528330131933735540587694112130148166184202220238256274292310328346364

.v
al

ue

NULL

ggplot(gr) + stat_aggregate(aes(y = value), geom = "boxplot")

Object of class "ggbio"

26

chr1 chr2 chr3

● ● ●

● ●
● ●

● ● ● ●

●

● ●

● ● ●

5

10

15

71891071251431611791972152332512692873053233413593772240587694112130148166184202220238256274292310328346364496785103121139157175193211229247265283301319337355373

va
lu

e

NULL

plotSingleChrom and plotIdeogram provides functionality to construct ideogram and you could download
it on the fly or save it and use it later, tracks function provides convenient control to bind your individual
graphics as tracks. Please check Chapter 3 about tracks and Chapter7 about ideogram and manual for more
information.

library(ggbio)

require internet connection

p.ideo <- plotIdeogram(genome = "hg19")

Loading required package: rtracklayer

Loading...

27

Done

use chr1 automatically

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

Loading required package: GenomicFeatures

Loading required package: AnnotationDbi

Loading required package: Biobase

Welcome to Bioconductor

##

Vignettes contain introductory material; view with

’browseVignettes()’. To cite Bioconductor, see

’citation("Biobase")’, and for packages

’citation("pkgname")’.

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

wh <- GRanges("chr16", IRanges(30064491, 30081734))

p1 <- autoplot(txdb, which = wh, names.expr = "tx_name:::gene_id")

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

Done

Constructing graphics...

p2 <- autoplot(txdb, which = wh, stat = "reduce", color = "brown", fill = "brown")

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

Done

Constructing graphics...

tracks(p.ideo, full = p1, reduce = p2, heights = c(1.2, 5, 1)) + ylab("") +

theme_tracks_sunset()

28

chr1
chr1

fu
ll

uc010bzb.1:::552900

uc010veg.2:::226

uc002dwc.3:::226

uc002dwa.4:::226

uc002dvz.3:::226

uc002dvw.3:::226

uc002dvx.3:::226

uc010bzo.2:::226

re
du

ce

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

plotGrandLinear to plot the whole genome Manhattan plot. Please check Chapter 10 and manual for more
information.

data(hg19IdeogramCyto, package = "biovizBase")

data(hg19Ideogram, package = "biovizBase")

chrs <- as.character(levels(seqnames(hg19IdeogramCyto)))

seqlths <- seqlengths(hg19Ideogram)[chrs]

set.seed(1)

nchr <- length(chrs)

nsnps <- 100

gr.snp <- GRanges(rep(chrs, each = nsnps), IRanges(start = do.call(c, lapply(chrs,

function(chr) {
N <- seqlths[chr]

runif(nsnps, 1, N)

29

})), width = 1), SNP = sapply(1:(nchr * nsnps), function(x) paste("rs",

x, sep = "")), pvalue = -log10(runif(nchr * nsnps)), group = sample(c("Normal",

"Tumor"), size = nchr * nsnps, replace = TRUE))

genome(gr.snp) <- "hg19"

nms <- seqnames(seqinfo(gr.snp))

nms.new <- gsub("chr", "", nms)

names(nms.new) <- nms

gr.snp <- renameSeqlevels(gr.snp, nms.new)

gr.snp <- keepSeqlevels(gr.snp, c(1:22, "X", "Y"))

gr.snp

GRanges with 2400 ranges and 3 metadata columns:

seqnames ranges strand | SNP

<Rle> <IRanges> <Rle> | <character>

[1] 1 [66178199, 66178199] * | rs1

[2] 1 [92752113, 92752113] * | rs2

[3] 1 [142784056, 142784056] * | rs3

[4] 1 [226371355, 226371355] * | rs4

[5] 1 [50269347, 50269347] * | rs5

[6] 1 [223924186, 223924186] * | rs6

[7] 1 [235460897, 235460897] * | rs7

[8] 1 [164704260, 164704260] * | rs8

[9] 1 [156807066, 156807066] * | rs9

...

[2392] Y [36501485, 36501485] * | rs2392

[2393] Y [30054272, 30054272] * | rs2393

[2394] Y [20065602, 20065602] * | rs2394

[2395] Y [19541601, 19541601] * | rs2395

[2396] Y [34038689, 34038689] * | rs2396

[2397] Y [3010837, 3010837] * | rs2397

[2398] Y [23806602, 23806602] * | rs2398

[2399] Y [15474595, 15474595] * | rs2399

[2400] Y [10016302, 10016302] * | rs2400

pvalue group

<numeric> <character>

[1] 1.22380 Normal

[2] 1.27916 Normal

[3] 0.01199 Tumor

[4] 0.09985 Normal

[5] 1.49938 Tumor

[6] 0.26497 Tumor

[7] 1.75456 Tumor

[8] 0.10976 Tumor

[9] 0.12073 Tumor

...

[2392] 0.93515 Normal

[2393] 0.08353 Tumor

[2394] 0.05148 Normal

[2395] 0.01483 Normal

[2396] 0.17601 Normal

30

[2397] 0.78685 Tumor

[2398] 0.48952 Normal

[2399] 0.60000 Normal

[2400] 0.03967 Normal

seqlengths:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 X Y

NA

plotGrandLinear(gr.snp, aes(y = pvalue))

using coord:genome to parse x scale

Object of class "ggbio"

31

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●●

●

●

●

●

●
●●

●
●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

NULL

layout karyogram to plot the karyogram overview. Please check Chapter 11 and manual for more informa-
tion.

hg19 <- keepSeqlevels(hg19IdeogramCyto, paste0("chr", c(1:22, "X", "Y")))

autoplot(hg19, layout = "karyogram", cytoband = TRUE)

Object of class "ggbio"

32

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

chrY

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

gieStain

acen

gneg

gpos100

gpos25

gpos50

gpos75

gvar

stalk

NULL

33

Chapter 3

Tracks: bind and align plots

Tips: To read this chapter, you don’t need any background about biology. Basic
knowledge about ggplot2 is prefered.

3.1 Objective

1. Get yourself familiar with basic ggplot2 functions.

2. Get yourself familiar with basic grammar of graphics.

3. Get yourself familiar with ggbio’s track usage.

3.2 Motivation

It might be surprising that the first chapter we are going to talk about is about alignments of plots and
especially for tracks. This is fundamental components used almost everywhere in the documentations, what’s
more important, this function could be used independently with any other ggplot2 graphics, not just
for graphics produced by ggbio, well, this is the right time to tell you that, ggbio depends on ggplot2 and
extends it to genomic world, so every graphics produced by ggbio is essentially a ggplot2 object
or a combination of them, so you can use any tricks works for ggplot2 on ggbio graphics., but
of course, we bring more features which doesn’t exists in ggplot2 at all.

Tips: If you want to manipulate graphics from ggbio more freely, I strongly recom-
mend you to read documentation about ggplot2 , most time the edit you want could
be achieved by some basic functionality already in ggplot2 , so enjoy those handy tools
and don’t reinvent the wheel! What’s more, if you want to be an expert, knowledge
about grid, gtable are necessary. Tracks relies on the new gtable package heavily, it has
several convenient ways to manipulate the graphic objects.

34

Track-based view are widely used in almost all genome viewers, it usually stacks multiple plots row by row
and align them on exactly the same coordinate, which in most cases, the genomic coordinates. In this way,
we could be able to align various annotation data against each other to make an efficient comparison. UCSC
genome browser1 is one of the most widely used track-based genome browser, as shown in Figure ??. There
are some other packages in R, that support track-based view like UCSC genome browser, such as Gviz .
General tracks for viewing genomic data should probably have following features:

• Align each plot in exactly the same X coordinate(genomic coordinate).

• Naming ability for each track, this is different from Y-label, which is used to illustrate variable used
as y.

• Shared “scale” track.

• Multiple ways to visualize the data, as points, line, bar chart or density.etc.

As comparison, ggbio is trying to be even more general in terms of building tracks, and offer more features.

• You can bind any graphics produced by ggplot2 , not necessarily produced by ggbio, in that way, ggplot2
users will find it pretty conventient that they can construct plots independently, and tracks will align
them for you. So you can use tracks to align your own data, e.g. time series data.

• Easy-to-use utilities for zooming, backup, restore a view. This is useful when you tweak around with
your best snapshot, so you can always go back.

• A extended ”+” method. If you are familiar with ggplot2 ’s ”+” method to edit an existing plot, this
is the way it works, if tracks is ”+” with anything behind, it will be applied to each track. This make
it easy to tweak with theme and update all the plots.

1http://genome.ucsc.edu/cgi-bin/hgGateway

35

http://genome.ucsc.edu/cgi-bin/hgGateway

• You could specify whether you want to label a plot or not by using labeled, labeled<-, and to
specify whether you what the plot x-axis synchronized with other tracks or not by using function
fixed, fixed<-.

• Creating your own customized themes for not only single plot but also tracks! We will show an example
how to create a theme called theme tracks subset in the following sections.

• Support not only vertical alignments, but also horizontal alignments.

Tips: tracks function only support graphic objects produced by either ggplot2 or
ggbio. If you want to align plots, produced by other grid based system, like lattice,
users need to tweak in grid level, to insert a lattice grob to a layout.

3.3 Usage

Function tracks is a constructor for an object with class Tracks. This object is a container for each plot
you are going to align, and all the graphic attributes controlling the appearance of tracks.

3.3.1 A minimal example for ggplot2 graphics

Instead of showing you the genomic examples for constructing tracks, let me first do a small favor for ggplot2
users, suppose you don’t have any background about biology, all you want to do is to align two time series
data. We can construct any graphics independently without worrying about aligning them. Just use your
knowlegge about ggplot2 to create any simple or fancy graphics, only one thing you need to make sure about
is that the x-axis you are going to align must have the same meanings, in this minimal example,
it’s time.

I am going to introduce some basic usage about ggplot2 all the way through this vignette every now and
then, to make it easier for people who first use ggplot2 or ggbio and not quite familiar with its grammar.

load ggbio automatically load ggplot2

library(ggbio)

make a simulated time series data set

df1 <- data.frame(time = 1:100, score = sin((1:100)/20) * 10)

p1 <- qplot(data = df1, x = time, y = score, geom = "line")

df2 <- data.frame(time = 30:120, score = sin((30:120)/20) * 10, value = rnorm(120 -

30 + 1))

p2 <- ggplot(data = df2, aes(x = time, y = score)) + geom_line() + geom_point(size = 4,

aes(color = value))

In ggplot2 , most working object are data.frame, in comparison, we support many other core data structure
in Bioconductor, which we will introduce later mainly in Section6 and Section5, when we introduce function
generic method such as autoplot and ggplot.

When you see qplot function, you have to know it’s ggplot2 ’s function(means ’quick plot’), since Bioconductor
2.10, ggbio stop using a confusing generic qplot function, instead, we are using a new generic method
introduced in ggplot2 , called autoplot, we heavily override this function in ggbio to support more data
structure.

36

To introduce qplot function, we need to first get an idea about grammar of graphics(GoG), it’s basically
composed of following components:

• Data: Data you are going to visualize with a set of variables, it’s usually the first argument passed in
function autoplot.

• Statistical transformation: Statistical methods performed on the variables of raw data and generate
more informative summary. It’s usually controlled by the parameters stat.

• Geometric object : e.g arrow, rectangle. It’s usually controlled by the parameters geom.

• Coordinate system: eg Cartesian. It’s usually controlled by the parameters coord.

• Scales:Transformation of scales, such as logarithm. It’s usually controlled by the parameters scale.

• Facetting :Subset the data by factors and create small panels for each subset of data with same repre-
sentation of graphics. It’s usually controlled by the parameters facets.

So basically speaking we have two API or usage here for constructing graphics in ggplot2 , it’s similar in
ggbio.

• The first method is called quick plot in ggplot2 , implemented in function qplot, it’s one general wrapper
for quick mapping and constructing the grammar’s components. Similar in ggbio, we have autoplot

for this purpose, what’s more, autoplot is more object-oriented visualization methods, which will be
introduced in other chapter6. so in the qplot API, we specify data to be the data frame and map x
to time variable and map y to score varialbe, geom arguments means Geometric objects, we could use
multiple geom in qplot function. To print the graphic object on the screen, simply call print on it or
just type the name and show it.

• The second method is very flexible or more close to the grammar itself, the way it is constructed is
like the way it is described in the grammar or like in plain human languange. Let’s say we want to
“use data df2, and generally use time as x and use score as y, then we add a line to the plot, next
we add points to the plots, for those points, we want to map color to value varialbe and use arbitrary
value to set size for points”. See, it is exactly what we described compared to the actuall code! That’s
what ggplot2 bring to us, the implmentation of grammar of graphics in R. Notice, function aes used
for mapping aesthetics to variables in the data.

Tips: If you don’t know how many existing components you could use in pure gg-
plot2 package, please check Hadley’s online documentation. Websites is here http:

//had.co.nz/ggplot2/, For ggbio based components, please read relevant part in this
vignettes and visit http://tengfei.github.com/ggbio/docs to check documenta-
tion. There are plenty of examples with graphics there.

print(p1)

37

http://had.co.nz/ggplot2/
http://had.co.nz/ggplot2/
http://tengfei.github.com/ggbio/docs

−10

−5

0

5

10

0 25 50 75 100
time

sc
or

e

p2

38

●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●

−10

−5

0

5

10

50 75 100
time

sc
or

e

−3

−2

−1

0

1

2

value

As shown in Figure ??, we can see these two plots have different scale on x-axis, but we want to compare those
two plots and hope to align them on exactly the same x-axis scale, then we could make vertical comaprison
easily. Now we introduce the tracks function, we can pass the multiple plots we want to align into it, and
it will do some obvious modification including :

• squeeze the plots together

• remove x-axis and make a shared scale.

• do the alignments automatically.

• construct and return a tracks object.

39

tracks(p1, p2)

−10

−5

0

5

10

sc
or

e

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

As shown in Figure ??, those two plots are aligned well on the x-axis, so here it is, our first track. You could
also assign the tracks to an object, this will avoid printing on the screen immediately.

tks <- tracks(p1, p2)

tks

3.3.2 Labeling and naming a track

Y labels are kept for each track plot, but in general, you may want to annotate the plot for title or x label,
just specify arguments in tracks function.

40

tracks(p1, p2)

−10

−5

0

5

10

sc
or

e

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

tracks(p1, p2, xlab = "xlab", main = "main")

41

main

−10

−5

0

5

10

sc
or

e

●●●
●●●●

●●●
●●●
●●●
●●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

xlab

To add label for each track, simply naming the plots, there are several ways to label it.

• pass names togther with graphics.

• for complicated name, use quotes.

• use named list of graphics

As shown below in following examples.

labeling: default labeling a named graphic simply pass a name with

it

tracks(time1 = p1, time2 = p2)

42

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

or pass a named list with it

lst <- list(time1 = p1, time2 = p2)

tracks(lst)

43

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

more complicated case please use quotes

tracks(time1 = p1, `second time` = p2)

44

tim
e1

−10

−5

0

5

10

sc
or

e

se
co

nd
 ti

m
e

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

Sometimes, even though you passed a named or no-name graphics, but you still don’t the gracks to show
the label background for that plot, you can simply set the labeled attribute of plot to be FALSE.

labeled(p2)

[1] TRUE

labeled(p2) <- FALSE

set labeled to FALSE, remove label even the plot has a name

tracks(time1 = p1, time2 = p2)

45

tim
e1

−10

−5

0

5

10

sc
or

e

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

labeled(p2) <- TRUE

3.3.3 Arith method +

Before we move on to more modificatino method for Tracks object. We are going to introduce the flexible +

method first. Arith + method is very powerful and heavily used in ggplot2 and ggbio, for constructing a plot
layer by layer, + is used to connect and add components one by one, and could also be used for updating
and editing an existing plot. Many people hates this, this maybe raise the learning curve, but mean wile,
more people love it, at least, I am one of those people. This is a good way to learn grammar of graphics,
after you master it, you will definitely benefit from it.

I have to mention the improvements in ggbio, + is extended to work on not only the single plot but also the

46

Tracks object.

• For single plot, + apply or add the change on the right hand side to the left hand side object.

• For Tracks object, + apply or add the change on the right hand side to every plot stored in the tracks,
it’s like a ’batch’ mode, so you don’t have to edit plots before passing into the tracks, unless you want
to edit them respectively.

remember, you can always get the plot you passed from a Tracks object, by accessing grobs slot, such as
tks@grobs[[i]], grobs is a list of plots.

Please read following section for more examples.

3.3.4 Modification

We provide some attributes associated with plot, they won’t affect the single plot, those attributes will take effect
when they are embeded into tracks. Those attributes include

• height: defeault height for this plot.

• bgColor: background color for this plot.

• labeled: if you want to show label(and backgrond) for the plot or not, even through the plot is named.

• fixed: control if scale of plot is fixed or not.

• mutable:control if plot is affected by + method on tracks or not.

To modify the heights for each track, simply pass the heights argument with ratio.

set heights

tracks(time1 = p1, time2 = p2, heights = c(1, 3))

47

tim
e1

−10
−5

0
5

10

sc
or

e

tim
e2

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

To change background for each plot, you could set bgColor attribute or use argument track.plot.color.

bgColor

bgColor(p1)

[1] "white"

tracks(time1 = p1, time2 = p2)

48

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

bgColor(p1) <- "brown"

mutable for '+' method

tracks(time1 = p1, time2 = p2)

49

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

set it back

bgColor(p1) <- "white"

track color

tracks(time1 = p1, time2 = p2, track.bg.color = "yellow")

50

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

tracks(time1 = p1, time2 = p2, track.plot.color = c("yellow", "brown"))

51

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

To control axis, you could set attribute hasAxis.

hasAxis(p1)

[1] FALSE

hasAxis(p1) <- TRUE

ready for weird looking

tracks(time1 = p1, time2 = p2)

52

tim
e1

−10

−5

0

5

10

0 40 80 120

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

hasAxis(p1) <- FALSE

fix a plot, not synchronize with other plots

p3 <- p1

default is always FALSE

fixed(p3)

[1] FALSE

set to TRUE

fixed(p3) <- TRUE

tracks(time1 = p1, time2 = p2, `time3(fixed)` = p3)

53

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●●

●●●●
●●●●

●●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

tim
e3

(f
ix

ed
)

−10

−5

0

5

10

sc
or

e

0 40 80 120

fixed(p3) <- FALSE

tracks(time1 = p1, time2 = p2, `time3(fixed)` = p3)

54

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●●

●●●●
●●●●

●●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

tim
e3

(f
ix

ed
)

−10

−5

0

5

10

sc
or

e

0 40 80 120

otherwise you could run tracks(time1 = p1, time2 = p2,

'time3(fixed)' = p3, fixed = c(FALSE, FALSE, TRUE))

mutable only control whether ’mutable’ to themes or not, NOT control x,y limmits changing, the fixed control
it’s response to x limits change.

mutable

mutable(p1)

[1] TRUE

tracks(time1 = p1, time2 = p2) + theme_bw()

55

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

mutable(p1) <- FALSE

mutable for '+' method

tracks(time1 = p1, time2 = p2) + theme_bw()

56

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

mutable(p1) <- TRUE

3.3.5 Customized themes for plots and tracks

ggplot2 has a theme system, please run ?theme to find out how to merge, update theme for your own usage.

For example, we simply change the theme for a single plot.

try theme_bw() defined in ggplot2

p1 + theme_bw()

57

−10

−5

0

5

10

0 25 50 75 100
time

sc
or

e

try theme_clear() define in ggbio

p1 + theme_clear()

58

−10

−5

0

5

10

0 25 50 75 100
time

sc
or

e

ggbio has a way to define a theme to even affect the Tracks object, the strategy is to store attributes with single
plots and parsing and apply those attributes to tracks in the construction time of tracks. Below we show an
example how to define a ’sunset’ theme for tracks, please make sure you name your theme in different way, to
indicate if it affect tracks or not.

• theme * for theme apply to any graphics.

• theme tracks * for theme apply to also tracks.

theme_tracks_sunset <- function(bg = "#fffedb", alpha = 1, ...) {
res <- theme_clear(grid.x.major = FALSE, ...)

attr(res, "track.plot.color") <- sapply(bg, scales::alpha, alpha)

attr(res, "track.bg.color") <- bg

59

attr(res, "label.text.color") <- "white"

attr(res, "label.bg.fill") <- "#a52a2a"

res

}

This theme is defined in ggbio, you can use it directly after loading ggbio.

apply a pre-defiend theme for tracks!

tracks(time1 = p1, time2 = p2) + theme_tracks_sunset()

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

tracks(p1, p2) + theme_tracks_sunset()

60

−10

−5

0

5

10

sc
or

e

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

apply a theme to each track

tks <- tracks(time1 = p1, time2 = p2) + theme_bw()

tks

61

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

will introduce

reset(tks)

62

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

store it with tracks

tks <- tracks(time1 = p1, time2 = p2, theme = theme_bw())

tks

63

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

tks <- tks + theme_gray()

tks

64

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

reset will be introduced later

reset(tks)

65

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

3.3.6 Zoom in/out

tracks(time1 = p1, time2 = p2) + xlim(1, 40)

66

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●●●●●●●●●●●●●●●●●●●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

10 20 30 40

tracks(time1 = p1, time2 = p2) + xlim(1, 40) + ylim(0, 10)

Warning: Removed 38 rows containing missing values (geom path).

Warning: Removed 58 rows containing missing values (geom path).

Warning: Removed 58 rows containing missing values (geom point).

Warning: Removed 38 rows containing missing values (geom path).

67

tim
e1

0.0

2.5

5.0

7.5

10.0

sc
or

e

tim
e2

●●●●●●●●●●●●●●●●●●●●
●

●

0.0

2.5

5.0

7.5

10.0

sc
or

e

−3

−2

−1

0

1

2

value

10 20 30 40

tracks(time1 = p1, time2 = p2) + xlim(1, 40) + ylim(0, 10)

Warning: Removed 38 rows containing missing values (geom path).

Warning: Removed 58 rows containing missing values (geom path).

Warning: Removed 58 rows containing missing values (geom point).

Warning: Removed 38 rows containing missing values (geom path).

68

tim
e1

0.0

2.5

5.0

7.5

10.0

sc
or

e

tim
e2

●●●●●●●●●●●●●●●●●●●●
●

●

0.0

2.5

5.0

7.5

10.0

sc
or

e

−3

−2

−1

0

1

2

value

10 20 30 40

library(GenomicRanges)

gr <- GRanges("chr", IRanges(1, 40))

GRanges

tracks(time1 = p1, time2 = p2) + xlim(gr)

69

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●●●●●●●●●●●●●●●●●●●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

10 20 30 40

IRanges

tracks(time1 = p1, time2 = p2) + xlim(ranges(gr))

70

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●●●●●●●●●●●●●●●●●●●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

10 20 30 40

tks <- tracks(time1 = p1, time2 = p2)

xlim(tks)

[1] -10.9 131.9

xlim(tks) <- c(1, 35)

xlim(tks) <- gr

xlim(tks) <- ranges(gr)

71

3.3.7 Backup/restore utilities

3.3.8 Reset and backup

• reset restore a backup tracks.

• backup clear previous backup and save and backup current tracks.

tks <- tracks(time1 = p1, time2 = p2)

tks

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

72

tks <- tks + xlim(1, 40)

tks

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●●●●●●●●●●●●●●●●●●●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

10 20 30 40

reset(tks)

73

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●
●●●●

●●●
●●●
●●
●●
●●
●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

0 40 80 120

tks <- tks + xlim(1, 40)

tks

74

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●●●●●●●●●●●●●●●●●●●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

10 20 30 40

tks <- backup(tks)

tks <- tks + theme_bw()

tks

75

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●●●●●●●●●●●●●●●●●●●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

10 20 30 40

reset(tks)

76

tim
e1

−10

−5

0

5

10

sc
or

e

tim
e2

●●●●●●●●●●●●●●●●●●●●●●

−10

−5

0

5

10

sc
or

e

−3

−2

−1

0

1

2

value

10 20 30 40

3.4 Discussion

77

Chapter 4

mold method

We already know ggbio depends heavily on ggplot2 , and data.frame is the data format ggplot2 support, everything
happens from this point. Since biological data is much more complicated and more specific format are introduced
in Bioconductor, to utilize existing components and to make a smooth working pipeline, the first step we do is
almost always to convert an object into a data.frame. mold is added into ggbio after Bioconductor 2.11, used
for this purpose, before that we use fortify generic method, this usually take original data as second argument,
and take model as first argument, so we developed our own new generic function here which accept original data
as its first argument for dispatching.

Tips: alternatively, GRanges is a core data structure we supported in ggbio, most compo-
nents knows how to work for it directly, so coercion from other object to a GRanges object
is also doable. Actually internally, it is exactly what we did most time.

You may be aware of that most object already support coercion to a data.frame object by using function
as.data.frame or as method. So what’s the deal here?

• More information will be coerced into data.frame, for example, column names and row names of the matrix,
or phenotype data for eSet-like object.

• Create more variable statistics, for example, ’midpoint’ is added when ’start’ and ’end’ provided.

• Some object may doesn’t have one coercion defined, here is the working point.

eSet, GRanges, IRanges, GRangesList, Seqinfo, matrix, Views, ExpressionSet, SummarizedExperiment, Rle,
RleList are currently supported. Please check manual for more information about which column created.

78

Chapter 5

ggplot generic method and low level
utilities

5.1 Objective

• Learn how to construct the graphics by using low level utilities.

To start this chapter, it’s recommended to take look at current supported components in ggplot2 ’s websitehttp:
//docs.ggplot2.org/current/. Just walk around, you will see basic components you could utilize already with
pure ggplot2 .

5.2 ggplot

autoplot 6 is indeed the most conventient way to plot something in ggbio, but to create customized graphics,
what happened inside autoplot? or sometimes later you may want to create your own graphics layer by layer,
you may want to learn the trick more in this chapter.

In ggbio, ggplot support many core data object in Bioconductor, it take in the original data, and save the original
data in .data element of the object, you can use obj$.data to get the original data, and a data.frame is stored
as any other ggplot in ggplot2 . The data frame is coerced by running mold method 4 in ggbio.

Running ggplot is just creating the data layer only, no plot will be generated at all. You have to specify statistics
and geometry by adding components later.

Keep in mind, all varaibles in your molded data.frame could be used to map to graphics.

Let’s see a ggplot2 style construction first.

library(ggbio)

p <- ggplot(mtcars, aes(x = mpg, y = wt))

p + geom_point()

79

http://docs.ggplot2.org/current/
http://docs.ggplot2.org/current/

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

2

3

4

5

10 15 20 25 30 35
mpg

w
t

p + geom_point(aes(color = cyl)) + geom_line(color = "red")

80

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

2

3

4

5

10 15 20 25 30 35
mpg

w
t

4

5

6

7

8
cyl

adding a new data layer

p + geom_point(aes(color = cyl)) + geom_line(data = data.frame(x = 10:35,

y = rnorm(26)), aes(x = x, y = y), color = "red")

81

●

●

●

●

●●
●

●●

●●

●

●●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

−2

0

2

4

10 15 20 25 30 35
mpg

w
t

4

5

6

7

8
cyl

If you don’t pass any new data in later additive component, the default data would be used, otherwise if you want
to show a different data on another layer, just pass it with the components.

Then let’s take a look at ggbio’s API, following the same style.

library(GenomicRanges)

set.seed(1)

N <- 100

gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE),

IRanges(start = sample(1:300, size = N, replace = TRUE), width = sample(70:75,

size = N, replace = TRUE)), strand = sample(c("+", "-", "*"), size = N,

replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),

sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters,

size = N, replace = TRUE))

82

class(gr)

[1] "GRanges"

attr(,"package")

[1] "GenomicRanges"

str(gr)

Formal class 'GRanges' [package "GenomicRanges"] with 6 slots

..@ seqnames :Formal class 'Rle' [package "IRanges"] with 4 slots

..@ values : Factor w/ 3 levels "chr1","chr2",..: 1 2 3 1 3 2 1 3 2 3 ...

..@ lengths : int [1:69] 1 2 1 1 2 2 3 1 1 1 ...

..@ elementMetadata: NULL

..@ metadata : list()

..@ ranges :Formal class 'IRanges' [package "IRanges"] with 6 slots

..@ start : int [1:100] 197 106 82 298 191 64 39 144 278 180 ...

..@ width : int [1:100] 71 71 73 71 71 73 73 70 71 74 ...

..@ NAMES : NULL

..@ elementType : chr "integer"

..@ elementMetadata: NULL

..@ metadata : list()

..@ strand :Formal class 'Rle' [package "IRanges"] with 4 slots

..@ values : Factor w/ 3 levels "+","-","*": 3 1 2 3 1 3 1 2 1 3 ...

..@ lengths : int [1:74] 1 1 3 1 1 1 1 1 2 2 ...

..@ elementMetadata: NULL

..@ metadata : list()

..@ elementMetadata:Formal class 'DataFrame' [package "IRanges"] with 6 slots

..@ rownames : NULL

..@ nrows : int 100

..@ listData :List of 4

..$ value : num [1:100] 11.23 15.07 14.76 9.01 3.14 ...

..$ score : num [1:100] 126.8 68.6 159.1 88.5 149.6 ...

..$ sample: chr [1:100] "Tumor" "Normal" "Tumor" "Tumor" ...

..$ pair : chr [1:100] "v" "t" "h" "e" ...

..@ elementType : chr "ANY"

..@ elementMetadata: NULL

..@ metadata : list()

..@ seqinfo :Formal class 'Seqinfo' [package "GenomicRanges"] with 4 slots

..@ seqnames : chr [1:3] "chr1" "chr2" "chr3"

..@ seqlengths : int [1:3] NA NA NA

..@ is_circular: logi [1:3] NA NA NA

..@ genome : chr [1:3] NA NA NA

..@ metadata : list()

head(gr)

GRanges with 6 ranges and 4 metadata columns:

seqnames ranges strand | value score sample

83

<Rle> <IRanges> <Rle> | <numeric> <numeric> <character>

[1] chr1 [197, 267] * | 11.228 126.81 Tumor

[2] chr2 [106, 176] + | 15.067 68.58 Normal

[3] chr2 [82, 154] - | 14.760 159.14 Tumor

[4] chr3 [298, 368] - | 9.007 88.49 Tumor

[5] chr1 [191, 261] - | 3.144 149.62 Normal

[6] chr3 [64, 136] * | 17.493 145.37 Tumor

pair

<character>

[1] v

[2] t

[3] h

[4] e

[5] f

[6] b

seqlengths:

chr1 chr2 chr3

NA NA NA

p <- ggplot(gr)

p + geom_rect()

Object of class "ggbio"

84

chr1 chr2 chr3

0 100 200 300 0 100 200 300 0 100 200 300

NULL

p + stat_coverage()

Object of class "ggbio"

85

chr1 chr2 chr3

0

5

10

0 100 200 300 0 100 200 300 0 100 200 300

C
ov

er
ag

e

NULL

p + stat_coverage() + geom_point()

Object of class "ggbio"

86

chr1 chr2 chr3

●●●

●●

●●

●●

●●●●●●●

●

●

●

●●●●●●●●●

●●●●●●●●●●●●●

●●

●

●●

●●●●

●

●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●

●●●●

●●

●

●●●

●●●●●●●●●●●●

●●●●●

●●●●

●

●

●●●

●

●

●●

●●●

●

●●●

●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●

●●

●

●●●●●●●●●●●●●●●

●

●●●

●●

●

●●

●●●●●●●●●

●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●

●●●●●●●

●●●●●●●●●

●●●

●

●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●●●

●●●●

●

●

●●●●●

●

●●●●

●

●●●●

●●●●●

●●●●●●●●●●●

●●●

●●●●●●●●●●●●

●●●

●

●●●

●●

●●●●●

●●

●●

●●●●●

●●

●

●●●

●●●●●●●●●●●●

●●

●●●●

●●

●●

●●●●

●

●●●

●

●●●●●●●●●●●●●●●

●●●●

●

●●●●

●●●

●●

●●●●

●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●

●

●●●

●●

●

●●●●●

●

●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●

●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●●●●●●

●●●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●●●●●●

●●●●●●●●●●●●●

●●●●●●

●●●●●

●●●

●●●●●●●●●●●●●

●

●●●●●●●●●●

●●●●●

●

●●

●●

●●

●●●●

●●●●●●●

●●●●●●●●●●●●

●●●●●

●

●●●●

●●●●●●

●●●●●●●●●●●

●

●●●●●●●

●●

●

●●●●

●●

●●●

●●

●●●●●●●●●●●●●

●

●●●●●●●●●●●

●●

●●●●●●●●

●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●

●

●

●●●●●●

●●●●

●

●●●●

●●

●●●●●

●●●

●●●●●●●●●

●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●

●●●●●

●●●●●

●●●●●

●

●●●●●●●●●●●●●●●●●

●

0

5

10

0 100 200 300 0 100 200 300 0 100 200 300

C
ov

er
ag

e

NULL

p + stat_coverage() + geom_area()

Object of class "ggbio"

87

chr1 chr2 chr3

0

5

10

0 100 200 300 0 100 200 300 0 100 200 300

C
ov

er
ag

e

NULL

new data

p + stat_coverage() + geom_area() + geom_point(data = data.frame(x = 1:300,

y = rnorm(300, 20)), aes(x = x, y = y))

Object of class "ggbio"

88

chr1 chr2 chr3

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●●

●

●●
●

●

●

●
●

●

●●

●
●

●

●●

●
●●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●
●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●●

●

●●
●

●

●

●
●

●

●●

●
●

●

●●

●
●●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●
●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●●

●

●●
●

●

●

●
●

●

●●

●
●

●

●●

●
●●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●●●

●

●

●

●●

●

●●●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●
●●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

5

10

15

20

0 100 200 300 0 100 200 300 0 100 200 300

C
ov

er
ag

e

NULL

In next section, we introduce more extended components.

5.3 Components

Let’s first take a look at a general table about stat/geom/layout/coord/scale, Please notice the difference between
ggplot2 and ggbio, in ggbio, those components are also generic method. So many of them works for not only
GRanges object, but some other objects too. But don’t be supprized when you autoplot on objects other than
GRanges, GRangesList, IRanges, and some components or transformation doesn’t work. Support will be fullfiled
gradually.

89

Comp name usage icon

geom geom rect rectangle
geom segment segment
geom chevron chevron
geom arrow arrow
geom arch arches
geom bar bar
geom alignment alignment (gene)

stat stat coverage coverage (of reads)
stat mismatch mismatch pileup for alignments
stat aggregate aggregate in sliding window
stat stepping avoid overplotting
stat gene consider gene structure
stat table tabulate ranges 1 4

stat identity no change

coord linear ggplot2 linear but facet by chromosome chrYchrX

genome put everything on genomic coordinates chrYchrX

truncate gaps compact view by shrinking gaps

layout track stacked tracks chrYchrX

karyogram karyogram display

chr1
chr2

chr3

50 100 150 200 250 300
start

circle circular

faceting formula facet by formula chr1 chr2 chr3

Tum
or

 Norm
al

ranges facet by ranges chrX:1-100 chrY:200-1000

scale scale x sequnit change x unit:Mb, kb, bp
scale fill giemsa ideogram color
scale fill fold change around 0 scaling, for heatmap.

Table 5.1: Components of the basic grammar of graphics, with the extensions available in ggbio.

90

If you want’t to get some instance about using those components, please check the on-line manual(http://
tengfei.github.com/ggbio/docs/man/index.html), it is provided with graphics help you to understand.

91

http://tengfei.github.com/ggbio/docs/man/index.html
http://tengfei.github.com/ggbio/docs/man/index.html

Chapter 6

Autoplot method

6.1 API

API about is autoplot is kind of like a wrapper around the grammar. If you are familiar with API of ggplot2 ,
it’s very similar.

autoplot(object = , geom = , stat = , coord = , facets = , scale = , ...)

Most time only object parameters are required, and we have default for all other components, ggbio have default
for each object trying to make smart guess for user’s purpose for particular data. ... means for particular data
we accept or sometimes require extra arguments to control the graphics. For example, in some cases, like for a
TranscriptDb object, user has to pass a which argument to tell ggbio which region you want to visualize, not
the entire genome which make no sense here.

6.2 Usage

6.2.1 autoplot,GRanges

autoplot for GRanges object is designed to be most general plot API in ggbio package. GRanges is most suitable
data structure for storing interval data with medata data, which could be used for representing a set of short
reads or genomic features.

Supported geom designed specifically for GRanges, including ”rect”, ”chevron”, ”alignment”, ”arrowrect”, ”ar-
row”, ”segment”, ”arch”, and special statistical transformation contains ”identity”, ”coverage”, ”stepping”,
”aggregate”, ”table”, ”gene”, ”mismatch”. And they are implemented in lower API, such as geom alignment

and stat coverage. If you pass other ’geom’and ’stat’ other than those ones, it first use ’mold’ method in ggbio
to coerce a GRanges into a ’data.frame’ object. And a new variable ’midpoint’ is created and added to final
’data.frame’ to be used to mapped as ’x’. So you can use it as other ggplot2 API. For a full table supported,
please check

Inside, autoplot will choose the best choice for your combination of ’geom’ and ’stat’.

92

autoplot(data, color = score)

this won't work, you have to use aes() around variable mapping.

autoplot(data, aes(color = score))

For arbitrary setting like you just want to use “red” for your fill color, don’t wrap it in your code.

autoplot(data, aes(color = score), fill = "red")

Tips: This is very different from design of qplot API in ggplot2 package, I force users to
pass the mapping in aes. This allow you to wrap the function into your own customized
function and make sure the evaluation accurate.

Let’s generate some simulated interval data and store it as GRanges object.

set.seed(1)

N <- 1000

library(GenomicRanges)

gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE),

IRanges(start = sample(1:300, size = N, replace = TRUE), width = sample(70:75,

size = N, replace = TRUE)), strand = sample(c("+", "-", "*"), size = N,

replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),

sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters,

size = N, replace = TRUE))

idx <- sample(1:length(gr), size = 50)

93

Default is to use geom ”rect” to represent those ’short reads’, show overlaped intervals on different levels to help
visualize the data, by defeault, the plot will be facetted automatically by chromosomes.

autoplot(gr[idx])

Object of class "ggbio"

chr1 chr2 chr3

0 100 200 300 0 100 200 300 0 100 200 300

NULL

Figure 6.1: gr-default

94

Geom ’bar’just show intervals’ region as they are and use a sepcified y in aes() to show as the height of bars,
default is to use ’score’ in the data if exists, because in most genomic data format, such as BED format, the score
are reserved column.

set.seed(123)

gr.b <- GRanges(seqnames = "chr1", IRanges(start = seq(1, 100, by = 10),

width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10,

3), value = runif(10, 1, 100))

gr.b2 <- GRanges(seqnames = "chr2", IRanges(start = seq(1, 100, by = 10),

width = sample(4:9, size = 10, replace = TRUE)), score = rnorm(10, 10,

3), value = runif(10, 1, 100))

gr.b <- c(gr.b, gr.b2)

Warning: Each of the 2 combined objects has sequence levels not in the other:

- in ’x’: chr1

- in ’y’: chr2

Make sure to always combine/compare objects based on the same reference

genome (use suppressWarnings() to suppress this warning).

head(gr.b)

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand | score value

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] chr1 [1, 5] * | 15.1451949606498 96.3393990211189

[2] chr1 [11, 18] * | 11.3827486179676 90.327605466824

[3] chr1 [21, 26] * | 6.2048162961804 69.3798225638457

[4] chr1 [31, 39] * | 7.93944144431942 79.7512743510306

[5] chr1 [41, 49] * | 8.66301408970013 3.436754766386

[6] chr1 [51, 54] * | 13.6722453923184 48.3018011380918

seqlengths:

chr1 chr2

NA NA

Facetting, some combination of geom/stat

autoplot(gr[idx], geom = "arch", aes(color = value), facets = sample ~ seqnames)

Object of class "ggbio"

95

p1 <- autoplot(gr.b, geom = "bar")

use score as y by default

use value to fill the bar

p2 <- autoplot(gr.b, geom = "bar", aes(fill = value))

use score as y by default

tracks(default = p1, fill = p2)

de
fa

ul
t

chr1 chr2

0

5

10

15

sc
or

e

fil
l

chr1 chr2

0

5

10

15

sc
or

e

25

50

75

value

0 25 50 75 100 0 25 50 75 100

Figure 6.2: Bar geom for GRanges.

96

chr1 chr2 chr3

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

N
orm

al
Tum

or

0 100 200 300 0 100 200 300 0 100 200 300

yy

5.0

7.5

10.0

12.5

15.0

value

NULL

Faceted by strand help you understand coverage from different sequencing direction.

New coordinate transformation ’genome’ will transform a GRanges object into a genome space, align them up
based on ’seqlevel’ orders. This transformation allows you to add ’seqlengths’ to your GRanges object to produce
a fixed width. and add buffer in between by specifying space.skip. This transformation is useful for grand linear
view as Manhattan plot or circular view.

Please read another two vignette about how to plot Manhattan plot and generate circular view for detail.

A little more

You will find a more general tutorial for circular view in chapter 9

97

autoplot(gr, stat = "coverage", geom = "area", facets = strand ~ seqnames,

aes(fill = strand))

Object of class "ggbio"

chr1 chr2 chr3

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

+
−

*

0 bp100 bp200 bp300 bp 0 bp100 bp200 bp300 bp 0 bp100 bp200 bp300 bp

C
ov

er
ag

e strand

*

+

−

NULL

Figure 6.3: Facet by strand to show coverage.

98

autoplot(gr[idx], layout = "circle")

Object of class "ggbio"

NULL

Figure 6.4: minimal example for circular transformation.

99

seqlengths(gr) <- c(400, 500, 700)

values(gr)$to.gr <- gr[sample(1:length(gr), size = length(gr))]

idx <- sample(1:length(gr), size = 50)

gr <- gr[idx]

ggplot() + layout_circle(gr, geom = "ideo", fill = "gray70", radius = 7,

trackWidth = 3) + layout_circle(gr, geom = "bar", radius = 10, trackWidth = 4,

aes(fill = score, y = score)) + layout_circle(gr, geom = "point", color = "red",

radius = 14, trackWidth = 3, grid = TRUE, aes(y = score)) + layout_circle(gr,

geom = "link", linked.to = "to.gr", radius = 6, trackWidth = 1)

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

40

80

120

160
score

Figure 6.5: Circular layout minimal example.

100

6.2.2 autoplot,Seqinfo

When a GRanges has seqlengths information which defined chromomsome lengths, we have a way to quickly give
a karyogram overview for adding data on later. Please read another vignette about karyogram overview.

You can easily subset/re-order the visualized the chromosomes by using ’[’ method.

data(hg19Ideogram, package = "biovizBase")

sq <- seqinfo(hg19Ideogram)

sq

Seqinfo of length 93

seqnames seqlengths isCircular genome

chr1 249250621 <NA> hg19

chr1_gl000191_random 106433 <NA> hg19

chr1_gl000192_random 547496 <NA> hg19

chr2 243199373 <NA> hg19

chr3 198022430 <NA> hg19

chr4 191154276 <NA> hg19

chr4_ctg9_hap1 590426 <NA> hg19

chr4_gl000193_random 189789 <NA> hg19

chr4_gl000194_random 191469 <NA> hg19

...

chrUn_gl000242 43523 <NA> hg19

chrUn_gl000243 43341 <NA> hg19

chrUn_gl000244 39929 <NA> hg19

chrUn_gl000245 36651 <NA> hg19

chrUn_gl000246 38154 <NA> hg19

chrUn_gl000247 36422 <NA> hg19

chrUn_gl000248 39786 <NA> hg19

chrUn_gl000249 38502 <NA> hg19

chrM 16571 <NA> hg19

6.2.3 autoplot,IRanges

autoplot for IRanges is used to visualize simple interval data with element data together, it’s almost identical
to API for GRanges, actually, everything works for GRanges should work for IRanges, we simply turn it to a fake
GRanges inside.

Let’s generate some simulated interval data and store it as *IRanges* object. and add some element meta data.

set.seed(1)

N <- 100

ir <- IRanges(start = sample(1:300, size = N, replace = TRUE), width = sample(70:75,

size = N, replace = TRUE))

add meta data

df <- DataFrame(value = rnorm(N, 10, 3), score = rnorm(N, 100, 30), sample = sample(c("Normal",

"Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N,

101

autoplot(sq[paste0("chr", c(1:22, "X"))])

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

Figure 6.6: Seqinfo visualization for chromosomes 1 to 22 and X.

102

replace = TRUE))

values(ir) <- df

ir

IRanges of length 100

start end width

[1] 80 152 73

[2] 112 183 72

[3] 172 242 71

[4] 273 347 75

[5] 61 133 73

[6] 270 340 71

[7] 284 353 70

[8] 199 270 72

[9] 189 263 75

...

[92] 18 89 72

[93] 193 262 70

[94] 263 337 75

[95] 234 304 71

[96] 240 312 73

[97] 137 206 70

[98] 124 198 75

[99] 244 314 71

[100] 182 255 74

autoplot will coerce IRanges together with its element meta data, so aesthetics mapping works for those extra
information too.

6.2.4 autoplot,GRangesList

GRangesList is most suitable data structure for storing a set of genomic features, for example, exons/utrs in
a gene. ‘autoplot‘ is designed to consider the native grouping information in this structure and automatically
showing gaps within group in ‘geom‘ *alignment* and make sure grouped items are shown together on the same
level with nothing falling in between.

Argument range.geom and gap.geom control geometry for entities and gaps computed for them. group.selfish
help you put grouped items in unique y levels and show the y labels for group names.

Let’s create a GRangesList object by splitting a GRanges object.

set.seed(1)

N <- 100

##

==

simmulated GRanges

==

gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE),

IRanges(start = sample(1:300, size = N, replace = TRUE), width = sample(30:40,

103

p1 <- autoplot(ir)

p2 <- autoplot(ir, aes(fill = pair)) + opts(legend.position = "none")

’opts’ is deprecated. Use ’theme’ instead. (Deprecated; last used in version 0.9.1)

p3 <- autoplot(ir, stat = "coverage", geom = "line", facets = sample ~ .)

p4 <- autoplot(ir, stat = "reduce")

tracks(p1, p2, p3, p4)

05
101520

05
101520

N
orm

alTum
orC

ov
er

ag
e

0 100 200 300 400

Figure 6.7: IRanges visualization.

104

size = N, replace = TRUE)), strand = sample(c("+", "-", "*"), size = N,

replace = TRUE), value = rnorm(N, 10, 3), score = rnorm(N, 100, 30),

sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters,

size = N, replace = TRUE))

grl <- split(gr, values(gr)$pair)

For GRangesList object, default is coerce it to GRanges and adding extra column to preserve the grouping
information. main geoms and gaps geom are separately controlled.

Internal variable grl name added to keep a track for grouping information, you could use it for faceting or other
aesthetic mapping, the variables could be renamed by indName argument in autoplot, you could pass either
..grl name.. or grl name in the mapping, I prefer the first one, it tells that it’s interval variables.

6.2.5 autoplot,Rle

Rle is a general container for storing atomic vector which is defined in package IRanges, data is stored in a
run-length encoding format.

For Rle, we bring following method, three stat, two geom and four types.

Two geom

• bar: default, controlled by ’nbin’.

• heatmap: show Rle as heatmap, use color to indicate values, controlled by ’nbin’.

Three default statistical transformation

• bin: bin the object, default is 30 bins in the view, controlled by argument nbin. Then in each bin make
summary against specified types.

• identity: transform data to raw vector, then you can use many other geom such as line or point. Default
x and y is internally set to position and value.

• slice: use lower to slice the object to islands, then use bar or heatmap to represent the island.

Four types for compute the statistical summary.

• viewSums: sums in the sliced view or bins.

• viewMins: min values in the sliced view or bins.

• viewMaxs: max values in the sliced view or bins.

• viewMeans: mean values in the sliced view or bins.

Let’s simulate some data first.

105

default gap.geom is 'chevron'
p1 <- autoplot(grl, group.selfish = TRUE)

p2 <- autoplot(grl, group.selfish = TRUE, main.geom = "arrowrect", gap.geom = "segment")

tracks(p1, p2)

chr1 chr2 chr3

b
d
fg

hi
kl

mn
pq
rs
uv
wx
z

a
c
e

j

t

y

o

chr1 chr2 chr3

b
d
fg

hi
kl

mn
pq
rs
uv
wx
z

a
c
e

j

t

y

o

0 100 200 300 0 100 200 300 0 100 200 300

Figure 6.8: Some examples showing GRangesList

106

autoplot(grl, aes(fill = ..grl_name..))

Object of class "ggbio"

chr1 chr2 chr3

0 100 200 300 0 100 200 300 0 100 200 300

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

NULL

equal to autoplot(grl, aes(fill = grl_name))

Figure 6.9: Tweak with name.

107

library(IRanges)

library(ggbio)

set.seed(1)

lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001,

length = 500))

@knitr create

xVector <- rpois(10000, lambda)

xRle <- Rle(xVector)

xRle

numeric-Rle of length 10000 with 823 runs

Lengths: 779 1 208 1 1599 1 ... 5 2 9 1 4507

Values : 0 1 0 1 0 1 ... 0 1 0 1 0

6.2.6 autoplot,RleList

All methods are the same for RleList as for Rle, it’s just faceted by listed group automatically. Please read the
autoplot,Rle section first.

Let’s simulate some data first.

xRleList <- RleList(xRle, 2L * xRle)

xRleList

SimpleRleList of length 2

[[1]]

numeric-Rle of length 10000 with 823 runs

Lengths: 779 1 208 1 1599 1 ... 5 2 9 1 4507

Values : 0 1 0 1 0 1 ... 0 1 0 1 0

##

[[2]]

numeric-Rle of length 10000 with 823 runs

Lengths: 779 1 208 1 1599 1 ... 5 2 9 1 4507

Values : 0 2 0 2 0 2 ... 0 2 0 2 0

6.2.7 autoplot,TranscriptDb

Some simple demonstration:

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

data(genesymbol, package = "biovizBase")

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

108

p1 <- autoplot(xRle)

Default use binwidth: range/30

p2 <- autoplot(xRle, nbin = 80)

Default use binwidth: range/80

p3 <- autoplot(xRle, geom = "heatmap", nbin = 200)

Default use binwidth: range/200

tracks(`nbin = 30` = p1, `nbin = 80` = p2, `nbin = 200(heatmap)` = p3)

nb
in

 =
 3

0

0

500

1000

1500

2000

y

nb
in

 =
 8

0

0

300

600

900

y

nb
in

 =
 2

00
(h

ea
tm

ap
)

0

1

2

3

4

5

y

0

100

200

300

400

y

0 2500 5000 7500 10000

Figure 6.10: Compare different geom and nbin by using default bin stat.

109

p1 <- autoplot(xRle, stat = "identity")

p2 <- autoplot(xRle, stat = "identity", geom = "point", color = "red")

tracks(line = p1, point = p2)

lin
e

0

5

10

15

y

po
in

t

●●●

●

●●

●

●●●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●

●●

●●●

●

●

●

●●●

●

●

●

●●●●●

●●

●●●●●●●●●

●

●●●0

5

10

15

y

0 2500 5000 7500 10000

Figure 6.11: Compare different geom and nbin by using stat identity.

110

p1 <- autoplot(xRle, type = "viewMaxs", stat = "slice", lower = 5)

p2 <- autoplot(xRle, type = "viewMaxs", stat = "slice", lower = 5, geom = "heatmap")

tracks(bar = p1, heatmap = p2)

ba
r

0

100

200

300

y

he
at

m
ap

0

1

2

3

4

5

y

100

200

300

y

4500 4750 5000 5250 5500

Figure 6.12: Compare different geom and nbin by using stat slice.

111

p1 <- autoplot(xRleList)

Default use binwidth: range/30

p2 <- autoplot(xRleList, nbin = 80)

Default use binwidth: range/80

p3 <- autoplot(xRleList, geom = "heatmap", nbin = 200)

Default use binwidth: range/200

tracks(`nbin = 30` = p1, `nbin = 80` = p2, `nbin = 200(heatmap)` = p3)

nb
in

 =
 3

0

0
1000
2000
3000
4000

0
1000
2000
3000
4000

1
2

y

nb
in

 =
 8

0

0
500

1000
1500
2000

0
500

1000
1500
2000

1
2

y

nb
in

 =
 2

00
(h

ea
tm

ap
)

0
1
2
3
4
5

0
1
2
3
4
5

1
2

y

0

250

500

750

y

0 2500 5000 7500 10000

Figure 6.13: Compare different geom and nbin by using default bin stat.

112

p1 <- autoplot(xRleList, stat = "identity")

p2 <- autoplot(xRleList, stat = "identity", geom = "point", color = "red")

tracks(line = p1, point = p2)

lin
e 0

10

20

30

0

10

20

30

1
2

y

po
in

t

●●
●
●●●●●
●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●
●
●

●●●●●
●
●●●
●
●●
●●
●●
●

●●●●
●
●●●
●●
●
●
●
●●
●●●●●●●●●
●●●●
●
●
●●
●

●●●●●●●●

●

●
●
●

●●●●●●●●●●●●

●

●●

●
●●
●●●●●
●
●

●
●●●●
●●

●
●●●

●●
●●●●

●

●
●
●
●
●●
●●●

●
●●●●

●
●
●
●
●●

●

●●●
●●
●●●●●

●●●●●

●

●
●
●
●
●●●
●

●●●●
●
●●

●
●●
●
●●●

●●

●
●
●
●●

●
●

●●●●●

●●

●
●
●●

●

●●●●●
●●●
●

●

●●●●●●
●

●

●

●
●●●
●

●●●
●

●

●●

●

●

●
●
●
●●

●
●●
●●
●●
●

●

●●
●

●
●●●

●

●●
●

●
●●

●
●●

●
●
●

●
●
●
●
●
●

●
●
●●●●
●●
●●●●

●

●
●
●
●

●●●

●●
●
●
●
●

●
●

●●

●●
●

●

●
●

●

●●●
●

●
●●
●
●●

●

●
●

●
●
●

●

●

●

●●
●●
●●

●

●●●●●

●●●

●

●
●●

●●●●

●

●
●
●

●
●

●●
●
●
●●●

●
●●
●●

●●
●

●

●

●●
●
●●
●●
●
●

●●
●●

●

●

●

●

●●
●●●●

●

●
●

●
●

●

●

●●●

●

●
●●

●

●
●●

●
●●

●

●

●

●

●●
●

●

●●
●
●

●

●
●

●
●

●

●●
●
●

●

●
●
●
●
●

●
●

●●
●
●
●
●●

●

●●

●

●●

●●

●
●●●
●
●

●

●

●

●

●

●●
●

●

●●

●●●

●
●

●
●
●●

●

●●●●
●
●
●
●●

●

●●

●

●
●
●

●
●

●●
●

●
●

●

●
●

●
●
●●
●

●●●●

●

●●
●

●
●

●

●
●●

●●
●

●●●●

●

●
●●

●

●
●
●●●
●●

●
●●●●

●●●
●●●
●●
●
●
●●●●

●

●
●
●●

●

●

●
●
●●
●
●

●

●●
●
●
●

●

●

●●●
●
●●●
●

●●●

●

●

●

●
●

●

●●

●●●
●

●●
●

●

●
●
●●

●●
●
●

●
●
●

●

●

●●

●

●●
●

●
●
●

●

●

●

●

●

●
●●●
●●●●●
●
●
●

●

●●●

●
●●

●●
●●
●
●

●

●
●
●
●
●●
●

●●●●●

●●
●
●
●●
●●●

●

●

●●●
●
●

●
●●

●
●

●
●
●●
●●
●●●
●●
●

●

●

●

●●
●

●●●●●●
●
●●

●
●●●
●●
●
●
●●
●
●
●
●●●●●
●

●●●●●
●

●
●
●
●●
●

●
●●●●

●

●

●
●●●
●●
●
●
●●●●●●●●●
●●●●
●●
●●
●
●●●●

●

●
●●●●

●

●●●
●
●

●
●●
●●●●●●
●●●●●

●
●●●
●
●
●
●●●
●●●●●●●●
●●●
●●●●
●
●
●●●●●●

●
●●
●
●●●●●●
●●●●
●

●

●
●●
●●●●●
●
●
●●●
●
●●
●●
●
●
●●
●
●●●
●●●
●●
●
●●●●
●●●●●●●●
●
●
●
●●

●●●
●
●●

●
●●●

●
●●●

●
●●

●
●
●
●●
●
●
●
●
●●
●
●
●

●
●
●●
●
●
●●●
●
●
●

●
●
●●

●

●
●●●●●
●
●
●
●●
●●
●
●
●

●

●

●
●●
●●

●

●
●

●

●

●
●
●
●

●●

●

●
●●●
●

●
●●
●
●
●

●

●

●
●

●
●
●●
●●●●
●

●
●●
●

●

●

●●

●

●
●
●●●
●
●

●

●

●

●

●

●
●
●
●
●
●
●●●
●
●●

●

●
●

●

●
●

●
●
●
●●
●

●

●

●
●
●
●
●●

●

●●
●

●
●

●●
●●

●

●

●

●

●

●●

●●
●

●

●
●●●

●

●

●

●

●
●

●

●
●
●

●●

●●
●
●

●

●
●●●●

●

●

●

●

●

●
●
●

●

●
●
●●

●

●●

●

●
●

●

●
●●

●●

●

●

●

●●

●

●

●●
●
●
●

●
●

●

●

●●

●

●
●
●●
●

●
●
●

●

●

●
●

●●●●

●

●

●

●

●
●
●

●

●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●
●

●

●

●
●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●
●
●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●
●
●

●
●

●
●
●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●●

●●

●

●

●

●
●

●

●●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●●
●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●
●
●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●●

●

●●●●

●

●

●●

●

●

●

●
●●

●
●

●

●
●
●●

●●
●

●
●

●

●●

●

●

●●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●●
●
●

●

●

●

●

●●
●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●
●

●

●●●●●

●
●
●

●

●
●

●●
●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●
●

●

●
●●
●●
●
●

●
●

●

●
●
●

●●

●

●

●
●

●

●

●

●●●●
●

●

●●●●●

●

●

●

●

●●

●

●

●
●●
●

●

●

●

●
●

●

●
●

●

●

●
●
●
●●●●●

●

●
●
●

●

●
●

●
●

●

●●●●

●

●

●●
●
●

●

●
●
●

●

●

●

●
●

●
●●
●●●

●
●
●
●●

●

●
●●

●

●

●

●
●
●
●●
●
●

●●
●
●
●●
●

●
●
●●
●

●

●●
●

●
●

●

●

●
●
●

●
●
●●
●

●

●
●●
●

●

●

●

●
●

●
●●
●
●
●

●

●
●●

●

●
●
●●

●

●

●
●

●

●●
●

●
●
●

●
●

●

●●
●●
●
●●
●●

●●●

●

●

●

●●●
●
●
●
●●●●●
●●
●●●●●●●●●
●
●●●

0

10

20

30

0

10

20

30

1
2

y

0 2500 5000 7500 10000

Figure 6.14: Compare different geom and nbin by using stat identity.

113

p1 <- autoplot(xRleList, type = "viewMaxs", stat = "slice", lower = 5)

p2 <- autoplot(xRleList, type = "viewMaxs", stat = "slice", lower = 5, geom = "heatmap")

tracks(bar = p1, heatmap = p2)

ba
r 0

1000

2000

0

1000

2000

1
2

y

he
at

m
ap 0

1
2
3
4
5

0
1
2
3
4
5

1
2

y

1000

2000

y

4500 4750 5000 5250 5500

Figure 6.15: Compare different geom and nbin by using stat slice.

114

which argument accept a GRanges, list which is required to subset the data. names.expr accept string
pattern or expression to parse the y tick labels. Otherwise it’s not going to show all of them. We are trying to
show the ALDOA gene in the following example.

6.2.8 autoplot,GappedAlignment

The GappedAlignments class is a container to store a set of alignments, which is defined in package Genomi-
cRanges.

Let’s load some data.

library(Rsamtools)

Loading required package: Biostrings

data("genesymbol", package = "biovizBase")

bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package = "biovizBase")

need to set use.names = TRUE

ga <- readBamGappedAlignments(bamfile, param = ScanBamParam(which = genesymbol["RBM17"]),

use.names = TRUE)

Default is to show gapped line, we also could show them as simple short reads and coverage.

6.2.9 autoplot,BamFile

For BamFile, we bring a fast estimated method(implemented by Michael Lawrence), which is suitable for overview
for particular chromosome and a much slower raw data view which could be used in visualizing a small region.

Load some raw data first, we didn’t provide an attached data here, you can try to download a whole genome NGS
seq file fro ENCODE or somewhere else.

library(Rsamtools)

bamfile <- "./wgEncodeCaltechRnaSeqK562R1x75dAlignsRep1V2.bam"

bf <- BamFile(bamfile)

A very efficient method called ’estimate’, which argument accepted a chromsome names, will give you an overview
about coverage. If multiple chromosome names are provided, it will be faceted by seqnames. If which is missing,
it’s going to use the first chromosomes appeared in the header.

autoplot(bamfile)

autoplot(bamfile, which = c("chr1", "chr2"))

autoplot(bf)

autoplot(bf, which = c("chr1", "chr2"))

data(genesymbol, package = "biovizBase")

autoplot(bamfile, method = "raw", which = genesymbol["ALDOA"])

115

p1 <- autoplot(txdb, which = genesymbol["ALDOA"], names.expr = "tx_name:::gene_id")

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

Done

Constructing graphics...

p2 <- autoplot(txdb, which = genesymbol["ALDOA"], stat = "reduce", color = "brown",

fill = "brown")

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

Done

Constructing graphics...

tracks(full = p1, reduce = p2, heights = c(5, 1)) + ylab("")

fu
ll

uc010veg.2:::226

uc002dwc.3:::226

uc002dwa.4:::226

uc002dvz.3:::226

uc002dvw.3:::226

uc002dvx.3:::226

uc010bzo.2:::226

re
du

ce

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

Figure 6.16: TranscriptDb visualziation. Top track shows all the transcripts while bottom track reduce them
and show a single track.

116

p1 <- autoplot(ga)

p2 <- autoplot(ga, geom = "rect")

extracting information...

p3 <- autoplot(ga, geom = "line", stat = "coverage")

extracting information...

tracks(default = p1, rect = p2, coverage = p3)

de
fa

ul
t

re
ct

co
ve

ra
ge

0

200

400

C
ov

er
ag

e

6120000 6125000 6130000 6135000 6140000

Figure 6.17: Visualization of GappedAlignemnt object

117

library(BSgenome.Hsapiens.UCSC.hg19)

autoplot(bf, stat = "mismatch", which = genesymbol["ALDOA"], bsgenome = Hsapiens)

6.2.10 autoplot,character

When the object is character it accept a file with extensions .bam or any other extension names package rtracklayer
supported, such as .bed, .gif. If the object could be imported by rtracklayer , it will be turned into a GRanges

object, and ’score’ column will be potentially used. So please read Section 6.2.1 Section 6.2.8 Section 6.2.9 for
related topics.

For example, if you have a bam file

bamfile <- "./wgEncodeCaltechRnaSeqK562R1x75dAlignsRep1V2.bam"

autoplot(bamfile)

Or for an example bed file, remember you can pass an argument which to subset the data.

6.2.11 autoplot,matrix

For object matrix, the default graphic would be heatmap, here we bring more controls over it.

• Function scale fill fold change(not default) will scale the heatmap due to a classic blue-white-red color
scheme, where 0 is set to white color, negative value set to blue and positive value set to red.

This underlies fundamental heatmap for other object such as ExpressionSet, SummarizedExperiment, VCF,
which we will introduce later.

We use volcano default data as an example, it’s not a real microarray data, just demonstrate how to visualize a
matrix.

autoplot(volcano)

118

library(rtracklayer)

test_path <- system.file("tests", package = "rtracklayer")

test_bed <- file.path(test_path, "test.bed")

autoplot(test_bed, aes(fill = name))

reading in

use score as y by default

Object of class "ggbio"

chr7 chr16

0

1

2

3

4

5

127471000127472000127473000127474000127475000127476000127477000127471000127472000127473000127474000127475000127476000127477000

sc
or

e

name

Neg1

Neg2

Pos1

Pos2

Pos3

NULL

Figure 6.18: autoplot for bed files

119

20

40

60

80

20 40 60

100

125

150

175

value

In biological papers, a blue-white-scale is commonly used for making heatmap.

autoplot(volcano - 150) + scale_fill_fold_change()

120

20

40

60

80

20 40 60

−50

−25

0

25

value

When column name or row name is associated with matrix, they will be labeld, but you can still force disable the
label by using logical arguments colnames.label, rownames.label.

autoplot for matrix also support a matrix storing categorical data, even with NA, missing value will be shown as
gray color by default, by your can explicitly set it to other colors. Default geom for this is ’tile’ more flexible, you
can specify the height and width for the unit.

x <- sample(c(letters[1:3], NA), size = 100, replace = TRUE)

mx <- matrix(x, nrow = 5)

mx[1:5, 1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] "c" NA "a" "c" "c"

[2,] "a" NA "c" "b" NA

121

[3,] "a" "a" "c" "a" "b"

[4,] "a" "a" NA "a" "c"

[5,] NA "c" "c" "b" "c"

autoplot(mx)

1

2

3

4

5

5 10 15 20

value

a

b

c

tile gives you a white margin

rownames(mx) <- LETTERS[1:5]

autoplot(mx, color = "white")

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

122

A

B

C

D

E

5 10 15 20

value

a

b

c

default 'tile' is flexible

autoplot(mx, aes(width = 0.6, height = 0.6))

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

123

A

B

C

D

E

5 10 15 20

value

a

b

c

change missing value color

autoplot(mx, aes(width = 0.6, height = 0.6), na.value = "white")

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

124

A

B

C

D

E

5 10 15 20

value

a

b

c

autoplot(mx, aes(width = 0.6, height = 0.6)) + theme_clear()

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

125

A

B

C

D

E

5 10 15 20

value

a

b

c

6.2.12 autoplot, Views

autoplot for Views object, first convert it to a matrix, and align it from left, so you can compare multiple region
on the genome with scores all together, this is useful, when you are trying to compare multiple binding region
around tss and make a summary plot.

Here is a simulated data.

lambda <- c(rep(0.001, 4500), seq(0.001, 10, length = 500), seq(10, 0.001,

length = 500))

xVector <- dnorm(1:5000, mean = 1000, sd = 200)

xRle <- Rle(xVector)

v1 <- Views(xRle, start = sample(400:600, size = 50, replace = FALSE), width = 1000)

126

autoplot(v1)

Object of class "ggbio"

10

20

30

40

50

250 500 750 1000

0.0005

0.0010

0.0015

value

NULL

names(v1) <- letters[sample(1:24, size = length(v1), replace = TRUE)]

autoplot(v1)

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

127

Object of class "ggbio"

c
s

m
p
i

h
s
h
l

d
p
s
w
g
m
u
d
p
t
x
e
r
c
k
g
i

e
n
t

u
h
m

i
k
r
a
b
i

p
m
o
s

m
o
u
v
w
u
t
t

250 500 750 1000

0.0005

0.0010

0.0015

value

NULL

autoplot(v1, geom = "line", aes(color = row)) + theme(legend.position = "none")

Object of class "ggbio"

128

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

0 250 500 750 1000

NULL

make a 1000 fake gene region,

gr <- GRanges("chr0", IRanges(start = c(500, 600, 800), width = c(80, 100,

100)))

p.model <- autoplot(gr, geom = "alignment")

p.v <- autoplot(v1)

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

p.v2 <- autoplot(v1, geom = "line", facets = NULL, alpha = 0.1)

tracks(model = p.model, v = p.v, v2 = p.v2, heights = c(1, 5, 2))

129

m
od

el
v

cs
mp

ih
sh
ld

ps
wg
mu
dp
tx

er
ck
gi
en
tu

hm
ik
ra
bi
pm
os
mo
uv
wu
tt

0.0005

0.0010

0.0015

value

v2

0.0000
0.0005
0.0010
0.0015
0.0020

0 250 500 750 1000

tracks(model = p.model, v = p.v, v2 = p.v2, heights = c(1, 5, 2)) + theme_tracks_sunset()

130

m
od

el
v

cs
mp

ih
sh
ld

ps
wg
mu
dp
tx

er
ck
gi
en
tu

hm
ik
ra
bi
pm
os
mo
uv
wu
tt

0.0005

0.0010

0.0015

value

v2

0.0000
0.0005
0.0010
0.0015
0.0020

0 250 500 750 1000

6.2.13 autoplot, ExpressionSet

ExpressionSet object is commonly used container for storing high-throughput assays and experimental metadata.
it’s defined in Biobase.

Graphics we bring for this type of data includes:

• ’heatmap’: default.

• ’pcp’: parallel coordinate plots, level change for particular gene(row) can be easily observed cross samples.

• ’boxplot’: boxplot, summary over samples.

• ’scatterplot.matrix’ pairwised comparison across samples, a quick way to observe correlation.

131

• other specific experimental types may require loading other packages, such as types ’mean-sd’ and ’volcano’.

Let’s have some examples.

library(Biobase)

data(sample.ExpressionSet)

sample.ExpressionSet

ExpressionSet (storageMode: lockedEnvironment)

assayData: 500 features, 26 samples

element names: exprs, se.exprs

protocolData: none

phenoData

sampleNames: A B ... Z (26 total)

varLabels: sex type score

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'
Annotation: hgu95av2

set.seed(1)

idx <- sample(seq_len(dim(sample.ExpressionSet)[1]), size = 50)

eset <- sample.ExpressionSet[idx,]

6.2.14 autoplot, SummarizedExperiment

SummarizedExperiment is a eSet-like container, where column represetns samples and rows represent ranges
of interest, for example, a GRanges object, and it could contain one or more assays. It’s defined in package
GenomicRanges.

• ’heatmap’: default.

• ’pcp’: parallel coordinate plots, level change for particular gene(row) can be easily observed cross samples.

• ’boxplot’: boxplot, summary over samples.

• ’scatterplot.matrix’ pairwised comparison across samples, a quick way to observe correlation.

nrows <- 200

ncols <- 6

counts <- matrix(runif(nrows * ncols, 1, 10000), nrows)

rowData <- GRanges(rep(c("chr1", "chr2"), c(50, 150)), IRanges(floor(runif(200,

1e+05, 1e+06)), width = 100), strand = sample(c("+", "-"), 200, TRUE))

colData <- DataFrame(Treatment = rep(c("ChIP", "Input"), 3), row.names = LETTERS[1:6])

sset <- SummarizedExperiment(assays = SimpleList(counts = counts), rowData = rowData,

colData = colData)

132

p1 <- autoplot(eset)

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace

the existing scale.

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

p1

31372_at
31425_g_at
31525_s_at
31691_g_at

31340_at
31684_at
31706_at
31565_at
31549_at

AFFX−PheX−M_at
31735_at
31326_at

31575_f_at
31427_at
31614_at

31481_s_at
31587_at
31719_at
31423_at
31613_at
31688_at
31341_at
31551_at

AFFX−HUMGAPDH/M33197_M_st
31367_at
31721_at

AFFX−BioB−3_at
31420_at

31650_g_at
31400_at
31466_at

31521_f_at
31470_at
31728_at
31625_at
31550_at

31608_g_at
AFFX−HSAC07/X00351_M_at

31574_i_at
31429_at
31617_at
31537_at

31598_s_at
31492_at
31724_at

31599_f_at
AFFX−BioDn−3_at

31456_at
31571_at
31552_at

ABCDEFGHI JKLMNOPQRSTUVWXYZ
Samples

F
ea

tu
re

s

0

2000

4000

value

Figure 6.19: Heatmap default

133

p2 <- p1 + scale_fill_fold_change()

p2

31372_at
31425_g_at
31525_s_at
31691_g_at

31340_at
31684_at
31706_at
31565_at
31549_at

AFFX−PheX−M_at
31735_at
31326_at

31575_f_at
31427_at
31614_at

31481_s_at
31587_at
31719_at
31423_at
31613_at
31688_at
31341_at
31551_at

AFFX−HUMGAPDH/M33197_M_st
31367_at
31721_at

AFFX−BioB−3_at
31420_at

31650_g_at
31400_at
31466_at

31521_f_at
31470_at
31728_at
31625_at
31550_at

31608_g_at
AFFX−HSAC07/X00351_M_at

31574_i_at
31429_at
31617_at
31537_at

31598_s_at
31492_at
31724_at

31599_f_at
AFFX−BioDn−3_at

31456_at
31571_at
31552_at

ABCDEFGHI JKLMNOPQRSTUVWXYZ
Samples

F
ea

tu
re

s

0

2000

4000

value

Figure 6.20: Heatmap default with blue-white-red scale

134

autoplot(eset, type = "pcp")

0.00

0.25

0.50

0.75

1.00

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Sample Name

va
lu

e

Figure 6.21: Parallel coordinate plot.

135

autoplot(eset, type = "boxplot")

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

0.00

0.25

0.50

0.75

1.00

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Sample Name

va
lu

e

Figure 6.22: Boxplot.

136

autoplot(eset[, 1:7], type = "scatterplot.matrix")

This function is deprecated. For a replacement, see the ggpairs function in the

GGally package. (Deprecated; last used in version 0.9.2)

A B C D E F G

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●
●●●

●
●●●

●●●●●●●●●●●

●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●
●

● ●●●●●
●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●

●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●
●

● ●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●
●●●

●
●●●

●●●●●●●●●●●
●

●●●
●

● ●●●●●
●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●● ●
●●●

●●●●●●●●●●●
●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●● ●●●●●●●●●●●●●●●●

●

●●●●●
●●●

●
●●●

●●●●●●●●●●●

●

●●●
●

●

●

●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●● ●
●●●

●●●●●●●●●●●
●●●●

●

●

●

●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●
●

●

●

●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●
●●●
●

●●●

●●●●●●●●●●●

●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●
●

● ●●●●●
●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●
●●●

●
●●●

●●●●●●●●●●●

●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●
●

● ●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●
●●●

●
●●●

●●●●●●●●●●●

●

●●●
●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●
●

● ●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●●●●●●●●●●●
●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●

0

2000

4000

6000

0

2000

4000

6000

0

2000

4000

6000

0

2000

4000

6000

0

2000

4000

6000

0

2000

4000

6000

0

2000

4000

6000

A
B

C
D

E
F

G

0100020003000400002000400060000100020003000 0500100015002000010002000300040000 20004000 0200040006000
x

y

Figure 6.23: Scatterplot matrix.

137

autoplot(eset, type = "mean-sd")

Loading required package: vsn

●●

●
●

●

●

●
●●

●
●

●●

●

●

●

●

●

● ●●

●

● ●●

● ●
●

●●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●● ●
● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●

●

●

●

0

250

500

750

1000

1250

0 10 20 30 40 50
rank(mean)

sd

Figure 6.24: Scatterplot matrix.

138

autoplot(eset, type = "volcano", fac = pData(sample.ExpressionSet)$type)

Loading required package: genefilter

genefilter::rowttests used

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

2.0

−200 −100 0 100 200
mean log2 fold change

−
lo

g 1
0(p

)

Figure 6.25: Scatterplot matrix.

139

autoplot(sset) + scale_fill_fold_change()

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

50

100

150

200

A B C D E F
Samples

F
ea

tu
re

s

2500

5000

7500

value

Figure 6.26: heatmap

140

autoplot(sset, type = "pcp")

0.00

0.25

0.50

0.75

1.00

A B C D E F
Sample Name

va
lu

e

Figure 6.27: Parallel coordiante plot.

141

autoplot(sset, type = "boxplot")

0.00

0.25

0.50

0.75

1.00

A B C D E F
Sample Name

va
lu

e

Figure 6.28: Boxplot.

142

autoplot(sset, type = "scatterplot.matrix")

This function is deprecated. For a replacement, see the ggpairs function in the

GGally package. (Deprecated; last used in version 0.9.2)

A B C D E F

●

●

● ●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●●

●
●

●

●

●
●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

● ●

●

● ●
●

● ●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●●

● ●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

● ●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

● ●

● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●
●
●

●

●
● ●

●

●

●

●

●●

●

●
●

●
●●

●●
●

●●

●

●
●

●●

●

●

● ●

●

●

●●

●

●
●
●

●

●
●

●

●

● ●

●●

●

●

●

●
●

●

●

● ●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ● ●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●

●● ●

● ●

●
● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●●

● ●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

● ●

●●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●●
●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●●

● ●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

● ●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●
● ●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●
●

●

●

●
●●

●

●

●

●

● ●

●

●
●

●
●●

●●
●

● ●

●

●
●

●●

●

●

● ●

●

●

●●

●

●
●

●

●

●
●

●

●

● ●

● ●

●

●

●

●
●

●

●

● ●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●

● ●●

●●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●●

● ●

●

●

● ●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

● ●

●
●

●

●

●
●

●
●

●

●●

● ●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
● ●

●

●

●

●

● ●

●

●● ●

●●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

● ●

●
●●

●

●
●

●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●
● ●

●

●

●

●

● ●

●

●
●

●
●●

●●
●

●●

●

●
●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●

●●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
● ●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●

●●●

●●

●
● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

● ●

● ●

●

●

●● ●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●
●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●●

●
●

●

●

●
●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

● ●

●

● ●
●

● ●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
● ●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
● ●

●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●

● ●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

● ●

● ●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

● ●
●

●●

●

●
●

●●

●

●

● ●

●

●

● ●

●

●
●

●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●

●● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
●●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●
●

●●

●

●
●

●

●

●
●

●

●

●●●

●●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

●●

●●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

● ●

●●

●

●

● ●●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

● ●
●

●

●

●

●●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●●

●
●

●

●

●
●

●
●

●

● ●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

● ●

●

● ●
●

●●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●●

●●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●●

●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●● ●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●●

●

●
●

●

●

●
●

●

●

● ● ●

● ●

●
● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●
●

●

●

●

●

● ●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

● ●

● ●

●

●

●● ●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
● ●

●

●
●
●

●
●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●

●

● ●
●

●

●

●

●●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●
●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

● ●

●
●

●

●

●
●

●
●

●

●●

● ●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●●

●

● ●
●

●●

●

●
●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●●
●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
● ●

●●

●

●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●

● ●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

● ●

● ●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●
●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●

●

●

●
●●

●

●

●

●

●●

●

●
●

●
●●

●●
●

●●

●

●
●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●

● ●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●
● ●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

0
2500
5000
7500

10000

0
2500
5000
7500

10000

0
2500
5000
7500

10000

0
2500
5000
7500

10000

0
2500
5000
7500

10000

0
2500
5000
7500

10000

A
B

C
D

E
F

025005000750010000025005000750010000025005000750010000025005000750010000025005000750010000025005000750010000
x

y

Figure 6.29: Scatterplot matrix

143

6.2.15 autoplot,VCF

VCF(Variant Call Format) class extends a class we have introduced SummarizedExperiment, and with additional
slots, ’fixed’ and ’info’. It’s defined in package VariantAnnotation.

We have done some experimental visualization, and features are going to be extended or changed later.

• For type ’geno’: we get an assay, and test if ’GT’ is in. Then we make a heatmap to show geno types.

• For type ’info’: Please specify one variable as y to show as bars.

• For type ’fixed’: You can plot ref/alt strings on the plot, default plot both reference and variants, and if
one string is over 1, we will use a black ’I’ to indicate that’s an indel, then if at each position there are
multiple data, we will show them in different y levels. Argument full.string control if you want to show
full strings of indels or not, even they are shown as full string, they will still be in balck color, to indicate it’s
on the single position. ref.show controls if you want to show REF column in the data or not, sometimes
people may want to just plot BSgenome object as reference track.

library(VariantAnnotation)

##

Attaching package: ’VariantAnnotation’

The following object(s) are masked from ’package:Biobase’:

##

samples

vcffile <- system.file("extdata", "chr22.vcf.gz", package = "VariantAnnotation")

vcf <- readVcf(vcffile, "hg19")

hdr <- exptData(vcf)[["header"]]

6.2.16 autoplot,BSgenome

The BSgenome class is a container for the complete genome sequence of a given organism, it’s defined in package
BSgenome. We use it to plot reference genome, along with other tracks.

144

autoplot(vcf)

GT,DS,GL could be used for ’geno’ type

use GT for type geno as default

Index: 744,3604,4738,7096,7287,10037,10198 snp with duplicated start position may be

masked by each other

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace

the existing scale.

HG00096

HG00097

HG00099

HG00100

HG00101

50400000 50600000 50800000

value

0|0

0|1

1|0

1|1

autoplot(vcf, genomic.pos = TRUE)

GT,DS,GL could be used for ’geno’ type

use GT for type geno as default

Index: 744,3604,4738,7096,7287,10037,10198 snp with duplicated start position may be

masked by each other

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace

the existing scale.

HG00096

HG00097

HG00099

HG00100

HG00101

50400000 50600000 50800000

value

0|0

0|1

1|0

1|1

Figure 6.30: default heatmap to show GT for type ’geno’.

145

autoplot(vcf, type = "info", aes(y = THETA))

Other options for potential mapping(only keep numeric/integer/character/factor

variable):

0.00

0.01

0.02

0.03

50400000 50600000 50800000 51000000

Figure 6.31: default bar chart for type info, use THETA as y.

146

autoplot(vcf, type = "fixed")

GTATTACAACAAGTAAATTATACACTATTCATTIACTAGACGCATTAGTAATTGTTTGGTAACCACATTCCGCTATAAAATTTAGACTTAAAACAAAACCTAAACTTAATGGTCTAACAGTTTTATITAGAGATATAAATTCCATGAATCAGATAAGCTAAGTTICACCACAAAAATGATGAAAATCTATTTACCAAAATGGTICTTGATATTTTITGAGCAAAACAGAATCATGTTGTGGCGGTACCTCTTACTATACGCACCTTCGTTCAATCTAATTGAACAGTTATTGTAIGTTGCACTACTTAAGGTAIGGTATAGTATTCTGCTGCATAATGTTAATTAGGCGGACACTATAIACGTATTACTAITAAAGGCGAATATCATATCACTGTTGGCCCGTAACTTTTATACTAATGACTTGATTTTCCATAAAAAAATTCAATGTGGTTTTATTATTATTTGTTAAGATTGTTTITGTGCCIAGIAAATCACGGAAGCCTATTTTATATAGTCGTAAGTAATCGTCTATAAGCACATCGCCGTAACATTTTCTTAAATATAGTAACTCTICATTGGACTCCTAATCCATACTGGAATGAAAGTATAATCAAGCACGTCTATATTGTGTACTGAICTGTATAGAAAAGGTTIIIIGGCGTGTTCTGATTGATATAGTTAGTATGAATAATATTACTAGCCTGTCATAGAICCCCAATCAAATATTTATTTATGACTGGTAG

I

CTTTTTTTTAAGTGCGAATAGAGTAITACTTTTCAAGTTAGGCTTTGGGAATCTAAAATTTTCTAGTTCGAGATTTTTACAGTATATTTGTTCCATTATATCGGGAGTTAATCTACAGAACTACTCTTACATAGIACAITCATTTTAAAATTTGTAAAACCCCTCAATCCCAATAAGAAGGCCACTCGTATTAGTGTGTTGCTTCAGCATACCAACTTGAAACATTTATITAGTTATACCAACAGACAAGTTAGTAATGTATGCATCCTGACAAACCTATATATATCTCTTTAAGCCACTTTTATTTTATTATGTAAGGTTCAGTTCTACATAACGAATTTTTTCCGGCAACTAATGTAGACAGTAGAGTAACGATAGTTAAATAGATTACTTAGGAGCCACGACTGAGCTGGTTATCCGGCTCT TCTTAACAATATTTCCGTAAAAATCTTGTACTAGCATTAGTGGCCCTTTGTTATAGGCAATTTCGTCCCCGIATTTCTAAGTCGGCACTTACGTAATAAACAAAACGTGTCGTAAAACTACGTTGTCTTAAICGGTAGGGGGAGIGCTATCGTGTGATAAGCGTAGCGCATACACAITAIGIACCTTAATGGCCGTACTGAATACTGCGTAAACTTAACCGGTTGTCTAATATTGTTATCTGATACGAGGCGGAITATTATGCGTGAGGGCGTIATCTTTGAAAGCTATGAAATGCATAAAATTAGCCTTATTAGAAACAAACTCAAATAACGAATTATCTCGCTGTATCACACAATTTGTAAAAAAGTCCAATTTCCCCTAAGCTATATATTTGAAAAAAGCATACTTCCTTTTCACATTTAGCCATCCITGCAIGTAAGTTGTTTAGACTTTGAAGTCATGTAAATAICTCTICTIGIAGAGTTCTTTGTCATITTTTGCAGGGCATATTGTCCCCAGCTCGTAGCTTTTCCAACIATCAGITGITGTCTATGAATGTCGTAGTTGCAATGTAGCAAGATTATAATTTTCTAAACTAAACGATTTTCAATTTAGAGAAGTITATAACTCCCCCTACGTATCTTTTGTAAATGTCAACACTCTTACCGCGATACAGCCCGTGCCTTACCTCTCGTAAACGCGTATATGAAAACTTAGATGAAGATTTACAATTTACAAAAAIIGTGCGTGTATTTCTTAGACAAAATTTACTCCTCCTATATTCGATTTATTTGAAAATAAAATAGAGAGACGTCGTTAACACACTTCAATATGAGTACCTAACAGCTGGGATATTTTAACGAGGTAAAACAATTCAAGCITCTAAACTCCAATAAAGTATAGCGAAATAAAACCCTAAAAGTTCCTATGGTTTGTATTTTAGCTAAAAATACTGCTCGTATCCTTAACCGCAATAATTTTAATAAATTACACTTCGCACCCTTACATATCCACTTTAAAACCCACATATTCATTAAGCAATTTATATTATCACTAAAATAATGTTGCTGATATAATGTGGTTACCTTGTAATATACTTCCGAATTGTCAGACAACTATAACTTTAATGGGAACAACTGTTACATGGGAAAGCCATTCGTTATATGTAGCTAAIGAAGTACAGCCTAAAGACAATATGTICTCTGACAAITCTAAAAACGAATGCAACCAATTAGGTAAATAAACACTTTCTTACTCTACAAAAGACGTTATATGAGTTTCAAGCIAGCCGGTACATTGACCAGATAATACTCCGTAAGTACAGTIAGTACTTTAGGTCCATTATGCGCTAAAAAGGCGCGTAGIAICGAATGACAIGACATAICGAACATAATAGTCAATACCGAGATCCCCTCGAAATTTAAACAGCTAATCTAAGGTTAGTCAATTTCATGTTAGTCAATCATCCTTTCTATAACCCCTCGTGTTAATAGCAGGCGGGTTATAACATTCCTATGAATAIAGACTIGAGAGAGCTACTTCCACAATTATTTATTTTCAACAATATGTAATAGATTACAATGTCTGCCCCATTAGGTAGCAACTATTTCAATAATTAATTCTTGATCATGCTGAGGGTTTTGTGTATTCAGTCATATTATTAGTTACATATTGTGACCAGAAACTITAGCTTGGTCTCACGCTCACCAAGTTATAGATCTAGTGACACGAAGGATGATTTTGGTAGTTTTTCATTCTGGTTGGAGACTCCTAGTCCTGGACTCCGGGGCAGGATAIAGTATACAGGTGTAATTTIGGATTAAAATCGTCGCTCTGAAGCGGTCGAGCGGCCAGAAATTGTTIICTTCAACGCATGGCCATGGATATAGTCGCCAAGAGGTGGTCGTAAGACTACAGCTAACTTATCTIATGTGCTGTCGTGAGTATAATCGGAGTGTTGTTGCAGGCGGCCAACAGTTGTCAACTTCCTACTTCGTACATACCTTTGTGTTGGTTGCACATGATATAATTTTATCCTTATTGATGTATTTCGATCTACGGTTACAAAATTTIAATGCTACAATGTACCAATGGTGAGGAGGTACGAGAGCTGGATTAAGTCAACTGAGATTATGTCTTTTTTATCCTGATATTTGGGGTCCGGTTTAATGTATTTGCTTTTACTAAACAGTGTCAAGCAATGTTTTTCATTTCCAACAGAATATTTACCTATTAGAICAGGGAAGGAACAATTGTTGTTAAATATGGTGAAAGAAAGTAGAAAGATAAAAAGCTGTTTCTCGATTATAAGTCTAATGGCGTAGCGTCGTCCCTGTGGCTGAGTAAAATAGTTTAATATAATTGTTCGCGAIGATTCGCGTCTGTAAAGTGAAGAGTTTACGGTTATTTATGCCGCGGCCTGGGCACCTATTC

I

CAAAGTGCTTCGGCGCAAATCTGAAAIGGCAAATAGCAGTATTTGAGGTGAGCGTCGGTTGTIGACTCACCTTATTAGATCACGAACIIITGAGAGGGTATACAATCGTCAGTACCCAACTAGTCTGGCTAATCGAAGCTGCTTCTTTCCCITTGTTTTACTAAAAGTTTGATATATGGGGCCCTATTGGGGACTCTGTCATTCGGATTACTTATTTCCATATCCATCTAATTTACAAAGTAAATGATGCACGGTAGGTGGGTATGCAATGTACTCATGAGCAGCATCTAACTATTIIIITTAACTTAGAGTAGTTAATGGGCCTTTCTCAAAGACTTTTATACTATAGTGTACTTAATTGTACCTTTTAATTATAGGGTCGAITCAAAAAATAGTAGAGATAGCTTTAGACGTGTAAATATAAAGTGATTTATCATAATAGGAAGGATCTTCAGTAGTATTGGTAGATTATCGATTCTTGTACATCAGAGAITATAAGACAATACTTGCTTAACTAGGTATCTTTCTACATICAAAATTTTATTTTAAATTCGTGCAGAGGATTATCTTTATTACIIITTITACTAGCTGGGCTTCTATGTTGTATAGGATTGAGCAAGAGGGAIAGGAGAAATCCTAIAGCATCAATGACTCTCCATTCTGCAGGGAGCAATTTAGATTCGGAAAAGTCCCTGTGATGCCGTATTAGTCGACATAGGAAATCATTTTATGTAAGAAATTGAATTTACAGATCIAAAGAAGTTTCGCATCGTAAAATTTATTTTATTTCAAATCGGAACAATAATGCTAAAGTTTGGTTAAGGATTATTATGGTTTATAATAATGCCTTTCITTTTTTGTACGCTCAAACAAICGATTCCGTCGTATGCACTTCCAAGTTGATATTTTTAGATTTAGTTGTCGAAGTAAAAATATGATTATTATTTCATTACATCTATATGGTAATTTCAATAAGGTCTTAAAAATAATCATAATTAAAAAATTTTTGGTACATAACTCAGAAGAAGTGCATAAATTAGAAGTATGTAAAATAATCACTGTAGGTTTCAATAAGTATATTTTTTTTTGCCCTTCTTGAAIATACCAAGAAGTGAICCCCAGCAAACCTTCIC

I

TTTGAGTAGGAATCCGCTCTATCCCTATGATTGAGACTTAATAAATTAAGGGACAAAAGGTAAATCAGATCCATTTATAATTAAACTGAAGCTACATAATATTTAGAAGGGTAAAACITAGTTTATACATGTTATATTTACTTTCGCTGGCATTAATCGCGACAATCTCGCATTTGCGGTTGTGTTTATAAGTAACTAGTTTGACCTAGGACATATCTATGCTCCTATTTGATACAAAGATAGTGTAATCTTTAGATTTTGACATATAATTAATATTATTTTATTAAGCAAACAGTAACTGATCAATTGACATACATAAAATTAATATAAAAAATGCTATATGTTTAACAGTTAGTCACTTAAGTGATGAGTCGAATAATTATAAATACATTATTGATAGAAAAGAGCATAAATACCAATATACCAAACTTCGTTCACAACCATAATCTGGATAAACATCGAAAGGAAAGTAGTTTGCATTAATAAACTATCTAAATGTCAAGCATTCTAAGATATATTTTAGGAATAACAAAGTATCCAGCAAATAATCGACCGGGATGTTTCCACACGCTAAAAATATGTGAAACTCAATATTTTATTTCGAAATACTAGTATTTCATGCATAAGCCGGTAGTAATATTAATAIATATTAACTACATCAAACCGGTATTTCATGGTCCAATCAGGGACAAATAAACCAGAACTCACCAAGAATCTAACCAATCACAACGAAGGAACCCATAAATGGAACAGACCGCTTGAAATGCAGTACAACAGTTGCACGCATTTACAIAAACTCCTGAGAACGACATCCTGATTAATGCCAATGTTTGATAAATAAGATGGTGGTCTTAGTTAAAATAAGGAATGCCTAAGTATATCATAAATATGAGTTGCTTCAATGATTTTATATTCTAAAGTCAAAGTCATCACAGAGGCTCATGGTAAGAGTAAAAGTCGTTACGTTAGCTCACCCAAATTACTATTATTAGTAATGTAGTCTTTATATAATACTACGTAAATACAAAAAGATAAATTATGAAGTATGCTGTATTTTATTTTCATAAGTTCATAACTACAATGTGGTCTAGTTACAGCTTCTGITTTTAACTTTAATTATGAATGTTTTGTCCAAIAATAATCTTATATGACAACTTAGTTCGTGTCCTAATTACTAGAATCGAGTATGAATAAGCAAATGAATTTGCGICCATAGCTTCAGAGATAACGGTAGATCGTGACTGTTACCGATGAGCCTTTTCTTTTCTTTCTTCTTTTATAGIAGGTTACAAGAATCTTATCGAAAGCATCCGGAAGTAATTTTAAAATTATCAGATGTTAACITATCAATTAGACGATATAAATATCAAGAAAAAACAACTATATTGTAAAAATTCTGTACTCATGATCITTATTTCTACTTCTTAATTTATACCAGTACAAAATAAAIACCGACGACTAGTTGATACCTAAAATTTAAATTCAAAATTCATTATTATCAAAAAAATAATACATCATATAAGACATCTCATGACAATTCTTATTAGATGAGCCTTATTTAGTATGGGCTTATTTATTCCATTAATTAIATTTAGTGAATGTGATCTTCCTCATGAATTCAAAAGTGAGGCGTAAACTAAATATCTCCGAGCAATGTCAGAIAAGGCAACACCITAGTGGAATAAGACGATAAAACGCGTTAATGAAACAGATACGTAATAATAAAAAAACGAICTGAAAACCITTATAAGTAGTATAGTTCCTACCTAGATTGAGTGTATATTATACAACCTACTGTATTTATCTAACTACATTGAAACAAAATCGTTATCITTATTATCCAAAAATTTATAAAATATATATACAATTTGACCTCATATACAAGTTTTACATTCAGCACAAAAGTCAATGTAAGAAAGGGATCTACCTCAATCTGTTGTATATTTTCCAAGTAAATAACGGATCAACCGAAAAATATTTCGATGCCCTAGTTGTAGAAGTCTTAGTTTGACAGATCCAAACATAAAATATTAGAGCGAGAGGTTTCGGTCCGAAGGACCCCTCCAGTIGAGTATGGGGAAATCAGAATTAGCATATTATTATTGTTGTGAAGGGACCCTATCACTATGTCAGGATAGCGAGTGATTACTGGTACTTAAGCTTAACATTATTAATTACTCAGGTITATCATTTTGAGTGAGCGCGCITTTTCGGTTTTAGTTATTGAAGTGGATCAAGATAGGCCTACAATTCCAAGGAATACATACGCTTGATTIAAAGAGGAGTTAATAGTCAGCGTCAATAGCTTGCCCTGAGTGGATGGATGGGGACAIIITTATAIAAATTGAGGTTTTCTA

G

CTTGAGCGTTAGCGCAGTGTATGATATAAATAATAGTGTGGACAGIAATCGTGCCGGAGTTGCGGAATGAGGAATACTCGATTTTGGGCCAAATTCTCCTCCTACTCTTAATGGTATATCTTCATTGTTTCACGIIIGAATATACAGTATAATGGAATCATAGCATGATTICCTCIGGCTTATCTGGTGG

A

ATACACCCGAGATAGGTAAAGCAAATACATGTACATGGGTCGCGATATATTCGGCCATTTTATTTAITTCATTTAGCCACCCCTGGTCTGTCGCATCCTTGGTCTTGAGACTGATTGGCTGTIGIGGCAGGGTATTAGACTCAAGAACAGTTTATTGGCAACTCCCACTCACTCAGCTGGGTTTCTTACGAAGTCTCAACAAGCAITAAATGGAGGCTTIATGGGTCTTAAGTAACAAGAACATATGACTTTATGATAACATAAAAAGATAATGGCTAGTGGAAAAGTTGGTTGGTCACAGGGTTGTGGAGAAATGGTTTAACTCTCACTTAAGAAATACAACAACATTTGTCITGTATTGCTCGAATTGTCCAATTGAGCTAGCGITCAITATTTGACAGCAAAAGTTGGTTGTAACGCGTACCCTGGCCCTGCATAITCATATGAGGCCGTAATAGCGATTTTGTTTTAGTACTAGGIGATTACTATGATCTTAACGTACAGCATTTAATGTCTITIATAGAAAGAAGTTATAGAGTTTTTTATCTTTTAAAGTTTTGGAGATGTACGTGATAGGTCATAACTCTATAGGGTCTGIACAAATTAGAAGAATTCTATGTTGTTTTTTCCTTCCACGTCGTTGTTGTGTACTAATGGGTCAAAGAATAACCAATTACGATTTTTCCGTACAGAAAAGGACGTATAATTCATACCGGACCTTTATTAACCCGATACATCGATGCATACATAATTCAACGGATTAGAAAGTTAGGCGTAACGTATCTGCCAAGGATAGTAATIIATTAATTGGGTCAACGATCCGACAGCITAAATACGACTATAATAGACCTGTATACAAAGTATCCTTTATCAATTCGGTTAAATGAACTTTTAACAGATAGGAGCTTCATTTATTTATGTGACTGCCGTGCATAGATAATCTTAATTTTATCTACGCTATCCCCTCGGAAGTAGTTTAGCTATTCCTCCATTTTIAAAGAAACTTAGAGCATCAGACAGGATTATTTAATACGTTGICTAAGTCGTAGATGATTATATACICGATCATAGCAAGTACATGAACGCACTTACATAAATCAATTGATCTATCGTCAAAGAATAAAGACCTTATAAAATTTAATACTCTIGICGATATAGTAGAIGCACATACCAAICAGAACTTGTTCCTTATAAGICTCAATTTAAATATTCGTTTCCGATGCCTTATTCCCAGATAAAIATAAAGATAATTGTTAAGTCAACATAGAAATCTTAACIICCAGAAGTAGATTTGGCAAGACGCTGTAACAGGTTCATTTAACTCACACATAATAGAATTACAAAAGTTAAATGAGTAATAAACACTGAATTATTGAAATAACAAATCATTTGACCTTAGTTAATAGTCGTAGTGGCCACCATGTTTATGATAAAATTAATTATTGTTATAGTCGAATATGAAAAAAACATAAATTAAGAAAAAAGTAAAAAGGAAATTTTAAGTATCTCAACAGCCATTTATTCTCAAAAAAGATAATACCAAACAACTTAGTAAGACGCAGTCTCATTATTCCATCAGAAAACCCCTATAGACCATCTATAACACATATTCAAACAAAAIAGACCITGAGCTTCATATATAATACGATTTCTATATATTGTTACGGATATACTAGAAGCAATCTAGGATCATTAATTATAAATGTAATGAACAATAATACAATCACTCGATTTTCGCAATATGTCAAAATATTACTATTTTTACTGTGAAAAAATCTTCTATGAATTTATTGTATATGGGTTAGTTCATTCTTCCTAAGCTGATGCTTTCTCATAAATGTAATATTATTTAAAATAGAAAACGTCTGAATATCTCGTAGCCACATATCGCGCATTCTTAGATTTTAGGATGTAACGTATCTGCTTAATTAAAACCCTTCTATTAGCATTACAGCTTTTCTGAGGACTCCTTATACCGAGTGCTACTAGAACAGATGATACTTATTAATTCCAATGTCTIACATAACAGCCATATTGTGGAAATATTGCGACICTACITAGTTATGAAGATATCCACIATTGTTGAAICCGTTTTGTGACAGTAACGATATATGCTTATTTACATGTTAGGGAGGGGAAATACATATAGATCATAAAAATGTTATTAAAAGGAAAATGTTGGGACGTGCGGTCGGTGTACGGAGTTTTCCGTCGTCGTTTTCTCATTGGCTACTGAAGATGGTGTCAACATGCCAAGATTGCGACGTCATCCTGATAGATAGATATAGATATAAATATTGATTGATTTTTIAGTATTCTGGACGCAGGAAAGTTCIGTGAATGTCGTCTTTTTTGAATGTATCATGTTATAAAAAATAGCATTAGAATAAGGATGATAAGTCTTGCTACCAGTTAGACATTCTITTATACGTATATGGCTAAAIATGATACGTCTAAAATATATTGCAGATGATATTTCTAATTTCCCGTTTAATTGTAATATAGTGATATAAAACTCTTTGTIGCATATCTTATTTTTATGTTAGTCGTGGTTTTAGCATTCGCGAGTTATTATAGATAIATTTTGTCATTTCCAATGTGTTCAGCTAGTIITTCAAAAATTTAATTGCAGCAAGCCTATTATTATATACAGTGATCAGGAGTACACTTAACATGCGGATAAGTGCCCCTCGGITTATGGACCACTACTGAATACGAAATTAAGGAAATGGACAIIIATTCGAGCAGG

I

AAAATTTATGGGGGTCATGTCTTGTTGTTTCGTTAATCGTACATAAAATGCTATCACATAGATTTGTCCGCTCAGTGACATACATGTTCATTCATAGTGTTCTTCTATTGCTTTTTAAGTTAAAGTACGGATGCTCTTCTTATTTGCCTAGTTTAAGAIG

I

CATTTTGTAATAATTCAGGTCTGCTACTATCTTAAATATATAGGACCACTGATCTGGTTTGGTTCTGAATITGTACCCTAGATAAGTTCCAGTAACAACGATTAATCCGCAACTGATGCIATTATCCAGAATGAGTCCCGTGTCTATTTTGCAAACCTTTCCTCACITCATAAGGGAC

ACGCCGTGGTGGACGCGCCGCGAGTCGCCTGCCCCICGCGGATGCCGACGTCCACCCCACGGTGGAGCCATCTCGCGGGTCCCGAGTCCGGGGAGGGCGTCGGGGCCGTGTCCTCGGGGCACCCGCGCGAGCGGGCGGGCGIAGCCGGCTCCTCGGATCGGCCCTGGAGGAGGCGGCTGCCGGTGCTCGAAAGGTGGGGCCAGGTICAGIGCCGAACCGAGGCGGGGAGICTGCCCCACCATACCGATCTCCGGCGIGGCGGTGCCTACCTGGCGGGCCCCGGGGACCGCCACGTACCAGGGCGTCCGCCACGCAACGCGCCGCCGGCGCCGGCGGCAGAGGCCGAAAIAGGGTCGCGGGTACGCCGACGCCGGGAATTGGGGCGGCGCTGTCTCCCATTTACGGGCCCCGCGTCGGCTGGCCAGCCCCATGCGGGGGGGCCTGGCAGAACCACGCCGCCGCCCCCCGGAGCCACCCGGACAGTCGCGGCTCGGGCTGGATGGGCCGCGCGCGCCGAGGGACGTCTACTCGCGGAIGTTCTATTTCGGTGICCCTCCGGGCGCGAACGGCTCCIGCGATGTGGTCGCCGGGCGTCATGGGTGGCTCGAGGCTGGCTGTACTCGGTCCACCGGTCCGTTAACGCGAGGCGACCCTTTTCATACACCTCAGCCCGCGCGACCGACGCAGTCGICGCGGACGIAGIACTICGIIGTGTTGGCTGGGGGCCCCCCCGCAGTCCACGA

A

AGIICCICCCCCCCTACGCCAGCCGGCGACCCCTGGCACGAAACCCAAAGCCGCGGGGCCCCTCGACCTAGAGGCCCCGTGCCGCGCCCTCCAGGCCGCGGTTTACCGCGGCGCGTGAGGGCTTCGCCGIGCGIGGTTCCTGCCCCGGGGCCACCGGGGGGATCTGGCGTACGCGCAGGCAIAGTCTACGCCGCCACACCAGCCTGAGGCGTTGGTGCCCGGTGCCCGCGGGCCIGCGTTGGGGAGTCGACCGACGGCACGCAGGCAGCCGTTGGAGGCCGCGIGCGCGCCCGGCATGTCGCCGCCCCGCCGCCAGGACCCTGICCACGTGGGGGTGGCCCCCCIGTCATGTCGGCTCGACTTACGTGCCGTAAGAGACCCGGCGAGCGTTCCGTACAGTGTATTCCGCTCATCCGCAGCIICGC CTCCGGTGTCGIIITICCCGGGGCTGCACGGCGAIGCCGAAAATTTGCAACGGCGAATIICCCTAAGATGACGCCGTCGGACTAAITTCCGTTCGGAGGGTGCGGGACAAAACGTGGTCGTACCTCACICGATACCGAAICAGATATCCCGACTCACCGTATACITTATGCTAGTTAICCATGTTACGCCACTGACGTCCCGCGTAAACCGGGGGCGGTIACCCAATCGGCGCCACCGCAGAGCGTAGAAAIACCATCGGCATAACGACATTCGGGGCCACGCGCTCGCACGGCCTGCGGGGCCGTAACGCGCCAGCCGGGCGGGGGGCGGGAGGCCGCGCGATGACGCAGGGTCGACCCCGGGGGGAGGGTGACGTTTACCGATCGCGCGCCCAGGGGGGCTCCGTGGGTCCCGTGGGCCCGAATGCTTGCAGGITACGACCCICCGCGTCCGAGGACGCCAGCTGCGATCTCATCTAGCCGACCGCCCACTGCTGCGCCGTAAATCCGGIACATTGGCTCIICGCGCCCCIACCTATCAGACCAGCACTCCCTGGCAATCCGAGACGGGCACGAGGGAGGCGCGGCCCGGCGGGGAGGGGAGICCCTGGGCCGTGTGGACTCGCGCTCTTTTTCGTACGCTCACCACTGCCACTGGTTTCTCCGTGATAGCGTCCTGAACATTCCTTTCTCTAAGGGTAGACGCGCACGCGTCAGAGCAGGAGCCCCTGGCACGTGCCICAAACCGACACGCCGTCCGCGTGGGGCCGGTGAGCTTCGCGCCGAGCCCGCGCCGGGGCGGCCGGTGAIATTTCTTCAGGTGTGTCGGGGCCCAGCCCGACGGGGATGACAGCGCCCGGGGCGTACGGGGTGGCCGGGATACTCGGGIGTTGGCGGGAGGCGAAAGGGCGGGGTGACTGGGACCATCGCAAGCCACTCCCCGITCGCGGGCGTCAGCGACGCTGCCGGGTATGGCGGCGCGGGCGGGCCGTGACCGCTGGATCCGGGCGCTGTTACCGGGCAGGGTGCGCCTGCCGGATGGCCCGGGCCGCTCTCCGCGCGGCACATTCTGCGCTGCACATCCGATCCACGGCGCGTCCATAGGCGACTGAGAGGGCGCGGTCCCGGCTAAGGACCICACCGTCCATAGGGCTTGGATACCCGGCCCGATCGGTIGGACGTGITGCGGGTCGGGCTCACGGCACCCACGACTCGGCGGACGGCTTGGITGGCCGACGGGGGGGGTGTCCCTCGGTCACGTCGGGAGTACGCCGCAGAACGTGGCTAGTGTTACGTGCCAGTGCAGAGGCGTCTACCGGIGIICACCGCCGTCCCGCACGTGCCGCATATIGGGGGAATATTCGCGCTGIGGAAGTGGACTGCGTTATCAICGGCGACTGGCGGTCGTGCAGTGCACGGGCCCCGGTGCGCTGAACGGAACCGAGGGGCCATTCCACGACTGGCAGCTGCACTCGCGGTTTACTCCACCGCCGAGGTAACTCCGGCCGTGCITACCATGGCGCGCGTCCAGAGCGAACGTCCTTGAGGACGCCCCCCCGTGGGGGCGCCCGGCGTGCCGGCGCACTCTTATTGCCGAACGAGGGTCGCCCTGGCGCCGGGCCGCGCGCGGGCTCAGCAACGCCCCACCCCTGCCTGCGCCGCCGACCGTGCGCCTAAGTAGAGGGTCGCCATCCAACTCGGGATGTCTTGGTCCGCGACCTAGACATATTACGTAGGCGCGCCTAACACCCCCAGCGTCCACATAGCCTCATGCCCGGAATGGCGTAAACGGCCGGGCGCGGGGTTCACTCGGCCAACAGCCGGGGCTTCAATCGCACGAGATGTCTATCCTTGTGGCCCAIIACTGCTGCTATGAAAATGCATGCGCCACTTGGGGCGATAATCGAIGGAGTCTTGCTCGCTCCGCTCCGCACATCTGGAGACACGGGGCTACGAGACACCCATGCATAATTCGGTCCCACTGGTCATGCITCCTTCGTGCGTTGCGACACCAACCCAGGGCTGCGCGGCCCCGCGTCCTGCAGCACGCCCGAGCGCGTAACCGTGIGGCCCTTCCAGCGAGCCCGGGTGGCCTCAGATGAACGGTGTGCGCCCGCCGGACAGGGCAGCGCCGGACTCCCCCGGATTCAGCGCCGCAAAAGAAACCGCGCACGCAAAGCCCCGTCGGGTGCGACGTGCTGCCAGCCACGICCCAGGCTGATGCGCCCCATCGACGAGCTGTAACCTAGGTIGCCACCTCCGGGGGCATCAGGGCGGGCCGCIGGAGCGGGGGATCTCCCAGTCTAIICGGACACGCCTAGACGAAACTACTGACACCATCCGAAGGGGCGAACCGTGGGGGCCACCTCTTTAACCCTATIGTGACGGCACAGGCGACCCGTTTCCGCCCGAAGTATATITCATATGGIAGCGT

T

TTCGAAAGCCTACGAGGGTAACCGGIGAIAGGGCGATGAAGCCCAICAGAGCTAGGAAAGAGCAGTCGGTTCCTCCGACCTGTAGGTATAIIGATATCCGCGAGGCTTCTGACCGTTTGTAGACACTATCCCGTCGGATAAACITCIATATCACAACCCGGCCGGGACCCCGCGCGAAAAATTTCGCGAATTGGGTCACTGCCGCATCCGTGCGGCCGGGCGGTTCCGCGCCCCGTGIITCGCGCAGCATCIITCGAACAATCGCATGGCACGGCAGCCGCTTATGCACCGGCGCCGAGCGCGCGGCGTGACGCICGGGACCIGCCCGGGGGCCGTCCCGGCGGCGCGTCACGTCGGGCAACCTGGCCCGGCCCCGCAAITAGGCTGGGCCGCGACIAGCGCGATGCCGCGTACACGGGCGCGGGACACCCGGCTGCGGCGAAGCTCGCGCCTGACCTCGAGTACCCGCGTCGAGCCTGCTICTGATGTGCGCCGGGGACTTGCGTCCATCCGGTCGAACGCACCCACGTGCATCGGGCCCGGCCCCGGGCCTACTTGAGCTGGCGCACCCGCAGTTTTIITGGGCGCACACATCCTCGCAICTCGGGCAGCIAGATCGAGAAAGTGTCGAGIGCGGGGGGAGCCGGGCAITGTGTTGGCTGATGAACCCGGCCGCGAGCGGITGGGGACGGIGCCTGCAGGACCCCGACTIGAGCGCAGGGCTGCGGGGCACGGAGGGCCAGTCCCGTGAGCTGGGGCGCCCCGTAGGCGCGGGGCCCCGCCCCGCCCTGGGCGAAGGTGGCGGCCGCGGGTCCCACCCCGAAGCCGGCGCCCCCCGCGGCGGGAGTCCGTACIICCCCCGAAGCGGGCTGGAGCGCCGGTCTCCGAAGGTCAAICCACCCGCGCCCCCGAGCCGGACCACGTGGCCGGGGGCGGTGGCTCAGGCCTGACGGGCTCGCGGAACGGCCCGGGCGGCACTCCGGGGGCGGCGGCGGCCGGGGGGCCGACTACGTGCGGTCTGTGGAGGCCIAGCGGGCGGACGACGCACGGGGCGGCGGGCAGGCCCCCTCGGGGACGCGCCCCACCCCATGACCGCCCCGCGGGTTGGCGGAGCCTIATTGCTGGCGGGCTGA

A

CCGCTCAGTACGCTGTTCGCGGTGGCGCCGCCAGAGTGCGGCGGGGCGGACTGTGGGGCACGGGCGGCGCGGGCCCGCGGCCGGGTCAGGIGCGTGCGGCGCCCGTGGCCACTGGGTTGGCGGCGCGTGCTCCGCGGCCGGCCCGAGCACTGCCGGAGATAGGGGCACATGGCACCGTACGACTICCGCGGACICACGACCGCGGTCGAAGTCCCCTCGCAICGGCGCCCAGCTTGTGTGCGACACGGCGCCCGAGGCCCACAGCGCGGCCGGCGCCGCCCCTCCTCAAGGGTGCCGGTCCGCTGGCCCGAGCGGGCGGGGCCGCCGCGGGGGGGCTCGCGCACCCGGTCCCCGCCGGTCCGCACAGCCTACTAGGCGGCCGCGGGCGAGCCGCCCCCGCGGGGCGCGGGGGCCGATGGCTCGGGGGGAGCTCCCGGGGGGTGCGGCTCACGCGGGGCCACGGGACGGGCCGACCCATGCCGGCGGGTCGCGCGGGCACTGGATGCCTCGGCGCGCGCCCCGACGGCGGACGGCCGCTGGAGGGGCGGCGAGGGTACGCACGCTICTGACGCGGCGGCGCTCAGIGAATGGCGCACCGCCCTCGGGCGGCCACGCCCTGGTTICGGCITACCCCCGGCGCCGGCGGGCGCGCGTGCTCCAGCGGGTACGCCCTGGCACGTGGGTIIACGTGGGCCCGTTCCGCTCTGGGGGCGTCTCCGGTGGCTGTGGTAGGATGGTTTGCGGGCCATGAGAGATATCCAGGGCATGACIGCGTCAGGCTGGAAGCCCGTGAGGGTCGGGATCCGTAGTGGTGCCGCCGGCAGGGGCCCCCACCGGGGGGATGCACAACTGCGTCCGGCGACGAAGGCAGGCGGACGCGCGGCCGCCGCAGACCCICCTGCCAGCCCAGCGCCGCGGGACGGGGACTGGGGGGICACGCTGCTCCGGCGICGGGGCCTACCGTACCGCGAAGGITGGGCCGTCGCCGACCACGGCACGACGCCCGCGCGGCGGCGTACGGGCGAGGGGGTGAGGGCGTCCGCACGGCTCCCGCCCCGCCCCTGCGGAGCTGCGGGCGTCGCTCIAAGCGCGCIGGATCCGCCGCICCGGTCCCGGCCCCTGTCACCACACIGGGCGGCGGCGCCGCGGCGTGGAGCGACCTACACGTCGGCIGAGGAGGCGTCACGCTCGCGGATCGCCAGGGCIAGTCATGCGCTCCGGCGTCCTGGCCGIIICGCCAGTCAACGATAGCAGCGTCCCCTCCCCTCCCTCCTCCACGCGACCTCCCGGGGAGGCTCCGCAAGCGCTGCTTTAGGCCGGGCCCGGGGCGGGTGAGCTCCGCTGCCCTCGGCCAGTCGCGCCGGCGCTGGAGGGGGCGGGTCGCGCCCCGGGGGCCGCCCCACGTCAGCGGCCGCCCTCGACCTCCGGCCCGCGTTGACGTGGGGCCGTAGGGCGGAGTGGAGGAGCTGGCGGGGGGGGGGCCGGGGCCCTGCGGCCGCAGGGGGCGCGCGGGGCGGCGCTGAGTGCTCTGCCGTGGCCTGCGCGGCGCAGCTTGCGCACGTGGCACIICCGGGCGCCITGCCGGCCGAGCCCCACAGGCACCGCGCCTGCGGCATGCCTGGCGACAGATTACGGGTCGGGCGCTCGTAGCTGGGTCGGAGACGACGGTTGGGCCGCCTCGGCGGIGTCGCCCGCGCGCCCGGCCGGGGGCCCTGAIIGCGGCCGGGGGGTCTTACAGGGGTTCCCGGGGAGGTCGCGTICATCGATGGCGCCTGCCCCCCGCGGGGTGTTTCGTCACGCGGCGACGGGCGGGCCCGGGTGGGGCGICCGCGCCCGCCGCTAGGGGGCCCGGGGGGCGCGCGCGTGGCCCCGGTITGCGIIGGCACACCGTGCCAGCTGTGGGGCCGGGCACGCAGGGTCAGCGCGTTCTGCCTCTCCAGGACGCCCGTGGTCGGGCCGTCACCAGGATCTGGGGCGCCCAAGCAATGCGCCGACGAGGCCTCGCAGCGCGTGAGAGACGCGGGGGGCCGGCGCGATAICGAACCCGAACTTAGGACGTTATCAGGACGAGACGCAAIAGGGCACTGGCCGTGGCGCCGCCGCGACCTCAGGCAAGTAGCGCTGAGGCTCTGACGCGAGTTACAGGCGTCCTAGGCCGGATCCGGTGACGACIGIIGTGIGATIAIICTGCCACCGACATITCTCGGCCCCTTCGCCCGAGCGCCCGGCCACCCGGGAGCCATGAATTCGGCGGGGAAIICCTGCGTCTCGCGCGTGGGAGAACACCIGCGTCTGTGTCAGGCGAGCCCGAGCTCAGAAGCCCGCAAAAGTCCTTCGGCTGICICCCGCAGCCAGCG

I

ACCAGAGCCICITTGGAGTCGCACCGCGITGGGCCCCCCAAGTGACGGCTAGATGAATCCCTAAAGGCAGATGGCGTGTCGCACCCCAGGGGGCATGTTCTTCGTCACCGGATACGCGCGIAAGCCACCCAGTAGTCAGGCGAGGGACGCGGAACGGCTGCCCGGCAGCCGTTCTGAATCAGCTCAACAA

I

GCGTCTTTAGAGCGAAAGGGCTTGIAGTGCACGGGAACCCAATACACCGCCGAATTICCCCGCGACGGCTGCCCGATGGATTTCCCCGCACAATGATACCCCCGCCAGAGGGAGCAAATCTCACAATTITTAAGAAGTTGATGGAGCTGCCCCGCGAAGGTTCTTTGGGTGTGTGITAAAACCCTCCGTACGAGGGTGGACGAAGAGGGGGAAGTCGCCAGCACACTCCGGTAGCTGGAGGGGCGCTTGGCCGCTGCGGTTAITGGGAGCCGGAATCGCGCCGGCGTCCCAACCCCGGTTIACAGTCAAGATGGCAACCCGTGCTCGGAGGGCAGGGCGTGGGGGTTCCCACGGCACGCCATCATGGCCACTGGGGCAGAGCGAAAACTGTCGACCCGTCAAGGGGCGCAAGCCCGTTATTCGGTTGAAAATCCAGCGTCTGCGCAGAAGTACCGCGATCGCCCCCGGCCGCCTTGGCACCGCCGGGGCAGCTACCGTACGTGAGGGGCGGCCCTCGCCGCTAGGCAGGTCCGCTTTACCCCCCCCAGCACGGGTGCCCAAGAGCCCGTTCACCGCACTGCGGGGTCCCGTATCTCAAGTGGGGCGAGGATGIGTCGCTCCTCCCCCCTTGCTTGTCCTAGCACCACCCGTGCGCACCAAGGGTGGGGGTACGCCGTAGCCCCCTGAAGTGCCGGGAAGTCGGCGGCCTGGGAAACGTTCCCGCCGGGTGTGCGGGCTAGCAGGCGACCGGCCTGGTATTCGTCGGGAAAGTTTACGGGACGCGCAGTGGAATATACGTCGTGCCGTCCAAACGCCTAGATTAGAGATCGGGGCGTAGTCGCGGCGAGTACAAGCCAGGCCCGCTGCCCGGAGGGGTAACCGGGGCGGTCCCCGGTGCGCGATCATCCTGCGGGGCCGCACAGTGATTACATCCTTGCGGCTCCGGCCGCCCTAGGCTCGCTGTTCGCAGGCGGTCCCCATCGCCAGCGTGCACCTGGGAGGGICCGCGAGTCTGCGAGIIGCGGCCCGGCGGTCCAAGCGGACICCGAGCAGCCGCGGGITIAGCTGAGATGGAGTTCCCGGGCIGGCCCAGCGGGCGGGCGCGCGGGCIIIGCGGAGGCGGGCGTTCCGCGGGGCCCGGCGICACCCCAACCGIGACGAGCATGIGGGTAGGTGGAGGTCCACGATCCGCGGATICTTTCGCTGGCGCCTCCCAGGAGCAAGCCGCCAGGGCGCCGIGGCGTGAGCGGCCACGGGACGGCGGCGCGGGGGCCGGTGCTTGAGGAGGIGCCCAATCGAGGCTGICTGGGCACCAGCCCGGTGTGGGTGCGGCGAGTCCGGGGGGCCCGGGCTGCCGGCGGGAGTCAGTCCGCCCGGGCGGGGGGCTGCCCCGGTCAGACCGGCGCCTACGACAAGTGGGGCACICGCAGCTGGGCCGGCCGACCCCCCGCGTAGGCGCAGGGGGGGIGCGGGCCGGTGGGGGGACGGCGCACGGGCCCCGGACGGGCTCGTGCTTGCCGCGCTCTGGGGGGCGCGGCGGTGGCAGGTACGACGGCGGCGGCCTCTGCGGCCTIGCTGAGGGGGGGGCGCGCGGAGCICGCGGTGAGCCCGGGGGTGGGGTGAGAGACAGTTCCIGCGCGAGGGGTAGCGGGGGCGAGCCCGCGGACGCGCGTCGAGGAGGGCTCGACGCACCCCICCGCGGGCCCCGGAGCTGTGGGCGGGGCIGGGGCGGCCCTTGGGCGCACTGGGTCGCCGGCGCACCCGACCGTGGGGTGCIIGTCGCIGCCCCGCCTCGCGCAACCCCAGCGGCCGCCTACCGITCCGCATGCATCTGCCGGAACGGCGCCGCCCGGGGCGAGGGGGCAGCAGGCGCTCTACGCITGTGCCCTAGCTGIGICCGTGCCCCGTAGGCCGGTACGCTCTACCGCCCGGGGGTGCCACGCGCATGCCGTGATCCCCACCGICGGCTTCCGCGTTAGACATCGTCGCGCTGAGCACCGICCTIATGCCTAGGCCGTCTTAGCGGGGCATGCGCCTCAAGGGCGICAGTGTATCGTTGGICGGAAGGAGCGCGTGGTGGCACGAGGCAGCCCCCAGAGGGAGGGGCGCGCGCATCCGCCGGTGCCGIGAAAGCACICGGCGTGCGCGCGGTGCGGGGGCACCGCCGGGGATGGGGGCGCCTAGTAICTACCTCACACITAAGACCACGTACAACTACCCCTCACCCAATCTTCAGGCGCATCACTGGTGCCATGTAGCCATAGTACTCCGICCCCGAGCGTCCGCGAGGGCGGGGTCCTGCCCGCCCAATGAAGCCTCAAGTAAIITGGGTGCTTCCTGGCACTACACGCCCCAGGCCCGCTGGCCCGCGGGGGGCGCTGGCGCGGCGGACGCAGCGGAITCCCTCGGTGACCGCGTTCCTCAACICGATCGCGCACTCGGGTGCCGCGACCGCCGGGCGCGACCGGAGCCGCCGCCTCGGCCCTTTCCICGGGCTCGGCGCGACCCGTCGIGIGCGCCCCCCCTGCGAGCCGICCACGGACCGACTACACGCCCCCTGCCGAGCGCCCGCCGGCTCCGCCCCGCCCGGCCCTGCGGACACCTGATIGTCACAAAGGGGGGGIGGCCATGATGCCTTCTCCGCCGCGCGTGCCAGCTGAAGCCGTGACCGGIGAATTAGAGGICATTTGCTCAACGGCTACTTGACGGAAGGCCTCGCGCCGGTATGGCCCGTGAAAGCITCCCTITT

T

CGCGIICGCAAACACTCGCCTCGACAACCCGTCCGGCACCITGCCGGTCTTCGCTGTGAGCGCCGCCGTCGCTGACAGTGCGIGGCCCGCCCTGCGACCCGTCITAGGGATCACCCCGACGGGGACCTCAGCTICTCCGCCGCGCAITGGACCCGGAIGA

A

TGCCCGACTGCGGCGTGAAGTCCTCGTCGGTCCGTCCGCGCGCAGATGTCAGCTCAACGCAACCTCAGGCTCACGAGTCTACATGACCTAGACTCACGTAGGCGGGTTATGGTCTGCATAGCCCCTAGAGTCTCACTGGACTGACCCCCCTGGGGTTCGCAACGGAACTGCGGAAAGG

1.00

1.25

1.50

1.75

2.00

1.00

1.25

1.50

1.75

2.00

A
LT

R
E

F

50400000 50600000 50800000 51000000

type

a
a
a
a
a

A

C

G

I

T

Figure 6.32: default heatmap to show GT as heatmap for type ’fixed’.

147

p1 <- autoplot(vcf, type = "fixed") + xlim(50310860, 50310890)

p2 <- autoplot(vcf, type = "fixed", full.string = TRUE) + xlim(50310860,

50310890)

tracks(`full.string = FALSE` = p1, `full.string = TRUE` = p2) + scale_y_continuous(breaks = NULL,

limits = c(0, 3))

Warning: Removed 1 rows containing missing values (geom text).

fu
ll.

st
rin

g
=

 F
A

LS
E

I CTT

G TIC

A
LT

R
E

F

type

a
a
a
a
a

A

C

G

I

T

fu
ll.

st
rin

g
=

 T
R

U
E

GCCTT

G TTC

C

A
LT

R
E

F

type

a
a
a
a
a

A

T

G

C

I

50310860 50310870 50310880 50310890

Figure 6.33: Demonstration of full.string.

148

p3 <- autoplot(vcf, type = "fixed", ref.show = FALSE) + xlim(50310860, 50310890) +

scale_y_continuous(breaks = NULL, limits = c(0, 2))

p3

I CT T

50310860 50310870 50310880 50310890

type

a
a
a
a
a

A

C

G

I

T

Figure 6.34: Demonstration of ref.show.

149

library(BSgenome.Hsapiens.UCSC.hg19)

Loading required package: BSgenome

##

Attaching package: ’BSgenome’

The following object(s) are masked from ’package:AnnotationDbi’:

##

species

data(genesymbol, package = "biovizBase")

p1 <- autoplot(Hsapiens, which = resize(genesymbol["ALDOA"], width = 50))

p2 <- autoplot(Hsapiens, which = resize(genesymbol["ALDOA"], width = 50),

geom = "rect")

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace

the existing scale.

tracks(text = p1, rect = p2)

te
xt CCTAGCTTGGCGCGGAATCCGTGAATTGCCCGCGGCCCGAGGGTGCAGGT

seqs

a
a
a
a

A

C

G

T

re
ct

seqs

A

C

G

T

30064490 30064500 30064510 30064520 30064530 30064540

Figure 6.35: plot BSgenome

150

Chapter 7

Ideogram

7.1 Introduction

Ideograms are a schematic representation of chromosomes showing the relative size and banding patterns of the
chromosomes. Single chromosome ideogram overview is widely used in most track-based genome browsers, usually
on top of all tracks, and use a indicator such as a highlighted winbdow to indicate current region being viewed
for tracks below, in this case, users won’t lose too much context when zoomed into certain region.

7.2 Usage

7.2.1 Visualization of ideogram for single chromosome

For single chromosome ideogram, we require they have been arranged into a GRanges object in order to be
visualized in ggbio. We will introduce how to get those ideogram on-line and manually later. Let’s first take a
look at what the data looks like.

We have two types of ideogram, which have different requirements for data, let’s first introduce the most commonly
used one: Ideogram with cytoband. It could be visualized with banding information, and require extra columns
such as

• name: start with p or q. to tell the different arms of chromosomes. such as p36.22 and q12.

• gieStain: dye color of cytoband. such as gneg.

Keep in mind, now, the data need to be transformed into a GRanges object. In the following example, we use a
default data set in ggbio called hg19IdeogramCyto to show human ideogram. And a function called isIdeogram

in package biovizBase could be used to check on your data, to see if it contain sufficient information about
cytoband and arms or not.

Tips: after ggbio 1.5.14, if you doesn’t provide any data, you can just provide genome to
get it on the fly, or provide nothing, it will give you a list to choose from.

151

p <- plotIdeogram()

Please specify genome

1: hg19 2: hg18 3: hg17 4: hg16 5: felCat4

6: felCat3 7: galGal4 8: galGal3 9: galGal2 10: panTro3

11: panTro2 12: panTro1 13: bosTau7 14: bosTau6 15: bosTau4

16: bosTau3 17: bosTau2 18: canFam3 19: canFam2 20: canFam1

21: loxAfr3 22: fr3 23: fr2 24: fr1 25: nomLeu1

26: gorGor3 27: cavPor3 28: equCab2 29: equCab1 30: petMar1

31: anoCar2 32: anoCar1 33: calJac3 34: calJac1 35: oryLat2

36: myoLuc2 37: mm10 38: mm9 39: mm8 40: mm7

41: hetGla1 42: monDom5 43: monDom4 44: monDom1 45: ponAbe2

46: chrPic1 47: ailMel1 48: susScr2 49: ornAna1 50: oryCun2

51: rn5 52: rn4 53: rn3 54: rheMac2 55: oviAri1

56: gasAcu1 57: echTel1 58: tetNig2 59: tetNig1 60: melGal1

61: macEug2 62: xenTro3 63: xenTro2 64: xenTro1 65: taeGut1

66: danRer7 67: danRer6 68: danRer5 69: danRer4 70: danRer3

71: ci2 72: ci1 73: braFlo1 74: strPur2 75: strPur1

76: apiMel2 77: apiMel1 78: anoGam1 79: droAna2 80: droAna1

81: droEre1 82: droGri1 83: dm3 84: dm2 85: dm1

86: droMoj2 87: droMoj1 88: droPer1 89: dp3 90: dp2

91: droSec1 92: droSim1 93: droVir2 94: droVir1 95: droYak2

96: droYak1 97: caePb2 98: caePb1 99: cb3 100: cb1

101: ce10 102: ce6 103: ce4 104: ce2 105: caeJap1

106: caeRem3 107: caeRem2 108: priPac1 109: aplCal1 110: sacCer3

111: sacCer2 112: sacCer1

Selection:

Or you could specify genome argument, if you don’t specify subchr argument, it will try to parse all information
automatically.

Tips: after first plotting, the data is automatically hooked with the graphic object, when
you do edit and zooming, it will not download it anymore.

library(ggbio)

requrie connection

p <- plotIdeogram(genome = "hg19", aspect.ratio = 1/20)

Loading...

Done

use chr1 automatically

p

152

Object of class "ideogram"

chr1

chr1

ch
r1

NULL

the data stored with p, won't download again for zooming

attr(p, "ideogram.data")

GRanges with 862 ranges and 2 metadata columns:

seqnames ranges strand | name gieStain

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] chr1 [0, 2300000] * | p36.33 gneg

[2] chr1 [2300000, 5400000] * | p36.32 gpos25

153

[3] chr1 [5400000, 7200000] * | p36.31 gneg

[4] chr1 [7200000, 9200000] * | p36.23 gpos25

[5] chr1 [9200000, 12700000] * | p36.22 gneg

[6] chr1 [12700000, 16200000] * | p36.21 gpos50

[7] chr1 [16200000, 20400000] * | p36.13 gneg

[8] chr1 [20400000, 23900000] * | p36.12 gpos25

[9] chr1 [23900000, 28000000] * | p36.11 gneg

...

[854] chrY [3000000, 11600000] * | p11.2 gneg

[855] chrY [11600000, 12500000] * | p11.1 acen

[856] chrY [12500000, 13400000] * | q11.1 acen

[857] chrY [13400000, 15100000] * | q11.21 gneg

[858] chrY [15100000, 19800000] * | q11.221 gpos50

[859] chrY [19800000, 22100000] * | q11.222 gneg

[860] chrY [22100000, 26200000] * | q11.223 gpos50

[861] chrY [26200000, 28800000] * | q11.23 gneg

[862] chrY [28800000, 59373566] * | q12 gvar

seqlengths:

chr1 chr10 chr11 chr12 chr13 chr14 ... chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA

We will introduce a method to download the data manully and use it through the vignette by a function called
getIdoegram. The data hg19IdeogramCyto is a default data with ggbio for convenient use. The argument
aspect.ratio controls the height/width ratio if you want a fixed plot no matter how you resize the window.

Tips: aspect.ratio by default is NULL, for the reason, when it’s passed to tracks

function, it will cause some issue if you pass a fixed aspect.ratio plot in it.

library(biovizBase)

data(hg19IdeogramCyto)

data structure

hg19IdeogramCyto

GRanges with 862 ranges and 2 metadata columns:

seqnames ranges strand | name gieStain

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] chr1 [0, 2300000] * | p36.33 gneg

[2] chr1 [2300000, 5400000] * | p36.32 gpos25

[3] chr1 [5400000, 7200000] * | p36.31 gneg

[4] chr1 [7200000, 9200000] * | p36.23 gpos25

[5] chr1 [9200000, 12700000] * | p36.22 gneg

[6] chr1 [12700000, 16200000] * | p36.21 gpos50

[7] chr1 [16200000, 20400000] * | p36.13 gneg

[8] chr1 [20400000, 23900000] * | p36.12 gpos25

[9] chr1 [23900000, 28000000] * | p36.11 gneg

...

154

[854] chrY [3000000, 11600000] * | p11.2 gneg

[855] chrY [11600000, 12500000] * | p11.1 acen

[856] chrY [12500000, 13400000] * | q11.1 acen

[857] chrY [13400000, 15100000] * | q11.21 gneg

[858] chrY [15100000, 19800000] * | q11.221 gpos50

[859] chrY [19800000, 22100000] * | q11.222 gneg

[860] chrY [22100000, 26200000] * | q11.223 gpos50

[861] chrY [26200000, 28800000] * | q11.23 gneg

[862] chrY [28800000, 59373566] * | q12 gvar

seqlengths:

chr1 chr10 chr11 chr12 chr13 chr14 ... chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA

return TRUE, if the object could be visualized by ggbio

biovizBase::isIdeogram(hg19IdeogramCyto)

[1] TRUE

When the data is ready to be plotted, as you can tell, most time you only want to visualize a single chromosome, so
you need to specify it. To visualize it, in ggbio, there two functions to do it, plotIdeogram, plotSingleChrom,
they are just synonyms. If the graphic device is big, resize it to proper size or bind it in tracks use specified height.
The plot is shown in Figure 7.1

xlim accpet

• nuemric range

• IRanges

• GRanges object, when it’s GRanges object, it will change the chromosome if it is not what it is before.

plotIdeogram(hg19IdeogramCyto, "chr1", aspect.ratio = 1/20)

Object of class "ideogram"

155

chr1

chr1

ch
r1

NULL

plotIdeogram(hg19IdeogramCyto, "chr1", aspect.ratio = 1/20, zoom.region = c(1e+07,

5e+07))

Object of class "ideogram"

156

chr1

chr1

ch
r1

NULL

plotIdeogram(hg19IdeogramCyto, "chr1", aspect.ratio = 1/20, zoom.region = c(1e+07,

5e+07), fill = NA, color = "blue")

Object of class "ideogram"

157

chr1

chr1

ch
r1

NULL

p <- plotIdeogram(hg19IdeogramCyto, "chr1", aspect.ratio = 1/20)

p + xlim(1e+07, 5e+07)

Object of class "ideogram"

158

chr1

chr1

NULL

library(GenomicRanges)

p + xlim(IRanges(5e+07, 7e+07))

Object of class "ideogram"

159

chr1

chr1

NULL

change seqnames

p + xlim(GRanges("chr2", IRanges(1e+07, 5e+07)))

Object of class "ideogram"

160

chr2

chr2

NULL

Default ideogram has no X-scale label, to add axis text, you have to specify argument xlabel to TRUE.

Some time, you don’t want to visualize a chromosome with cytobands, or you cannot find any information about
cytobands, in this case, you can simply visualize a blank chromosome just to indicate the position. ggbio has
several ways to do it.

• Use argument cytoband. Set it to FALSE.

• Pass a GRanges with no extra column such as name, gieStain. it will automatically parse and estimate the
chromosome lengths. It is IMPORTANT that to create an accurate lengths for chromosomes, you need
to either make sure the ranges you passed covers all chromosomes or you need to specify the seqlengths

for our GRanges object.

161

p <- plotIdeogram(hg19IdeogramCyto, "chr1")

df <- data.frame(x = seq(from = 5e+07, to = 9e+07, length = 100), y = rnorm(100))

p2 <- qplot(data = df, x = x, y = y, geom = "line") + ylab("")

tracks(p, p2 = p2, heights = c(1.2, 5))

chr1

chr1

p2

−2

−1

0

1

2

5e+07 6e+07 7e+07 8e+07 9e+07

tracks(p, p2 = p2, heights = c(1.2, 5)) + xlim(6e+07, 7e+07)

chr1

chr1

p2

−2

−1

0

1

2

60000000 62500000 65000000 67500000 70000000

Figure 7.1: Chromosome1 ideogram for human. Cytoband is colored, and you can tell left and right arms of
this chromosome.

162

plotIdeogram(hg19IdeogramCyto, "chr1", xlabel = TRUE)

Object of class "ideogram"

chr1

chr1

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

ch
r1

NULL

Figure 7.2: Idoegram for human chromosome 1 with x scale labeled.

163

So please make sure the GRanges object you passed has an accurate seglengths information, or you are confident
the ranges(for example, cytoband) will cover all the chromosome space, otherwise, you will end up with some
very inaccurate chromosome lengths and you may NEVER notice from the plot. A example of this is shown in
Figure 7.3.

There is another data set called hg19Ideogram, with no cytoband information, but with accurate seqlegnths
information.

data(hg19Ideogram)

head(hg19Ideogram)

GRanges with 6 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 249250621] *

[2] chr1_gl000191_random [1, 106433] *

[3] chr1_gl000192_random [1, 547496] *

[4] chr2 [1, 243199373] *

[5] chr3 [1, 198022430] *

[6] chr4 [1, 191154276] *

seqlengths:

chr1 chr1_gl000191_random ... chrM

249250621 106433 ... 16571

7.2.2 Get ideogram or customize the colors

We only provide default cytoband ideogram information for human, but what if you want to create your ideogram
yourself? There is a high possibility that it’s already in UCSC data base, and we can use package rtracklayer to
download the data from the server.

• ucscGenomes function in package rtracklayer will list all available UCSC genomes.

• You can also use biovizBase’s getIdeogram function without any arguments, that will give you some items
names you can choose from. This function is a convenient wrapper over some functionality in rtracklayer .

• Keep in mind, not all available genomes have cytoband information and not all of them have the same
default dye names as humans.

Let’s first see how to get available genomes in following examples, we need the db column to use them in function
getIdeogram.

library(rtracklayer)

need UCSC connection

head(ucscGenomes())

> head(ucscGenomes())

164

library(GenomicRanges)

there are no seqlengths

seqlengths(hg19IdeogramCyto)

chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2

NA NA NA NA NA NA NA NA NA NA NA NA

chr20 chr21 chr22 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA NA NA NA NA NA NA

so directly plot will try to aggregate and estimate lengths of

chromosomes, this is not accurate

data(hg19IdeogramCyto)

p1 <- plotIdeogram(hg19IdeogramCyto, "chr1", cytoband = FALSE, xlabel = TRUE)

Warning: geom(ideogram) need valid seqlengths information for accurate mapping,

now use reduced information as ideogram...

let's assign a short length to this object

hg19_fake_chr1 <- hg19IdeogramCyto

seqlengths(hg19_fake_chr1)[1] <- 1e+08

Warning: ’ranges’ contains values outside of sequence bounds

Warning: ’ranges’ contains values outside of sequence bounds

this will use it's 'seqlengths' information to visualize the

chromosome.

p2 <- plotIdeogram(hg19_fake_chr1, "chr1", cytoband = FALSE, xlabel = TRUE)

Warning: ’ranges’ contains values outside of sequence bounds

see the difference

alignPlots(p1, p2)

chr1

chr1

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

ch
r1

chr1

chr1

0 Mb 20 Mb 40 Mb 60 Mb 80 Mb 100 Mb

ch
r1

Figure 7.3: Comparison of two idoegram for human chromosome 1. The top ideogram with no seqlengths
information, we use estimated lengths. The bottom ideogram with a fake seqlength 1e8 for “chr1”, which is
way shorter than the estimated lengths or real length, you can tell from those two tracks.

165

db species date name

1 hg19 Human Feb. 2009 Genome Reference Consortium GRCh37

2 hg18 Human Mar. 2006 NCBI Build 36.1

3 hg17 Human May 2004 NCBI Build 35

4 hg16 Human Jul. 2003 NCBI Build 34

5 felCat4 Cat Dec. 2008 NHGRI catChrV17e

6 felCat3 Cat Mar. 2006 Broad Institute Release 3

getIdeogram without arguments will give you choice to choose from too.

library(biovizBase)

obj <- getIdeogram()

Please specify genome

1: hg19 2: hg18 3: hg17 4: hg16 5: felCat4

6: felCat3 7: galGal4 8: galGal3 9: galGal2 10: panTro3

11: panTro2 12: panTro1 13: bosTau7 14: bosTau6 15: bosTau4

16: bosTau3 17: bosTau2 18: canFam3 19: canFam2 20: canFam1

21: loxAfr3 22: fr3 23: fr2 24: fr1 25: nomLeu1

26: gorGor3 27: cavPor3 28: equCab2 29: equCab1 30: petMar1

31: anoCar2 32: anoCar1 33: calJac3 34: calJac1 35: oryLat2

36: myoLuc2 37: mm10 38: mm9 39: mm8 40: mm7

41: hetGla1 42: monDom5 43: monDom4 44: monDom1 45: ponAbe2

46: chrPic1 47: ailMel1 48: susScr2 49: ornAna1 50: oryCun2

51: rn5 52: rn4 53: rn3 54: rheMac2 55: oviAri1

56: gasAcu1 57: echTel1 58: tetNig2 59: tetNig1 60: melGal1

61: macEug2 62: xenTro3 63: xenTro2 64: xenTro1 65: taeGut1

66: danRer7 67: danRer6 68: danRer5 69: danRer4 70: danRer3

71: ci2 72: ci1 73: braFlo1 74: strPur2 75: strPur1

76: apiMel2 77: apiMel1 78: anoGam1 79: droAna2 80: droAna1

81: droEre1 82: droGri1 83: dm3 84: dm2 85: dm1

86: droMoj2 87: droMoj1 88: droPer1 89: dp3 90: dp2

91: droSec1 92: droSim1 93: droVir2 94: droVir1 95: droYak2

96: droYak1 97: caePb2 98: caePb1 99: cb3 100: cb1

101: ce10 102: ce6 103: ce4 104: ce2 105: caeJap1

106: caeRem3 107: caeRem2 108: priPac1 109: aplCal1 110: sacCer3

111: sacCer2 112: sacCer1

Selection:

Function getIdeogram have some control over it.

• subchr argument: to parse a subset of chromosomes information from genome.

• cytoband argument: default is TRUE, try to parse cytoband information, but sometimes you may came
across errors when there is no data about cytoband available for certain genomes. We need to get that
information manually somewhere else.

166

Let’s try to get a mouse genome from the data base, we know the data base name is mm9 from above listed
choices.

library(biovizBase)

just need information about chromosome lengths

mm9 <- getIdeogram("mm9", cytoband = FALSE)

Loading...

Done

have

head(mm9)

GRanges with 6 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr1 [1, 197195432] *

[2] chr1_random [1, 1231697] *

[3] chr2 [1, 181748087] *

[4] chr3 [1, 159599783] *

[5] chr3_random [1, 41899] *

[6] chr4 [1, 155630120] *

seqlengths:

chr1 chr1_random chr2 ... chrUn_random chrM

197195432 1231697 181748087 ... 5900358 16299

need information about cytoband

mm9 <- getIdeogram("mm9")

Loading...

Done

head(mm9)

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand | name gieStain

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] chr1 [0, 8918386] * | qA1 gpos100

[2] chr1 [8918386, 12386647] * | qA2 gneg

[3] chr1 [12386647, 20314102] * | qA3 gpos33

[4] chr1 [20314102, 22295965] * | qA4 gneg

[5] chr1 [22295965, 31214352] * | qA5 gpos100

[6] chr1 [31214352, 43601000] * | qB gneg

seqlengths:

chr1 chr10 chr11 chr12 chr13 chr14 ... chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA

167

with extra column 'name' and 'gieStain'.

Now we have to explain where define our default cytoband color, it’s in an option list of package biovizBase.
Later you will notice some of the staining color for ’mm9’ is not defined in our color list.

cyto.def <- getOption("biovizBase")$cytobandColor

cyto.def

gneg stalk acen gpos gvar gpos1 gpos2

"grey100" "brown3" "brown4" "grey0" "grey0" "#FFFFFF" "#FCFCFC"

gpos3 gpos4 gpos5 gpos6 gpos7 gpos8 gpos9

"#F9F9F9" "#F7F7F7" "#F4F4F4" "#F2F2F2" "#EFEFEF" "#ECECEC" "#EAEAEA"

gpos10 gpos11 gpos12 gpos13 gpos14 gpos15 gpos16

"#E7E7E7" "#E5E5E5" "#E2E2E2" "#E0E0E0" "#DDDDDD" "#DADADA" "#D8D8D8"

gpos17 gpos18 gpos19 gpos20 gpos21 gpos22 gpos23

"#D5D5D5" "#D3D3D3" "#D0D0D0" "#CECECE" "#CBCBCB" "#C8C8C8" "#C6C6C6"

gpos24 gpos25 gpos26 gpos27 gpos28 gpos29 gpos30

"#C3C3C3" "#C1C1C1" "#BEBEBE" "#BCBCBC" "#B9B9B9" "#B6B6B6" "#B4B4B4"

gpos31 gpos32 gpos33 gpos34 gpos35 gpos36 gpos37

"#B1B1B1" "#AFAFAF" "#ACACAC" "#AAAAAA" "#A7A7A7" "#A4A4A4" "#A2A2A2"

gpos38 gpos39 gpos40 gpos41 gpos42 gpos43 gpos44

"#9F9F9F" "#9D9D9D" "#9A9A9A" "#979797" "#959595" "#929292" "#909090"

gpos45 gpos46 gpos47 gpos48 gpos49 gpos50 gpos51

"#8D8D8D" "#8B8B8B" "#888888" "#858585" "#838383" "#808080" "#7E7E7E"

gpos52 gpos53 gpos54 gpos55 gpos56 gpos57 gpos58

"#7B7B7B" "#797979" "#767676" "#737373" "#717171" "#6E6E6E" "#6C6C6C"

gpos59 gpos60 gpos61 gpos62 gpos63 gpos64 gpos65

"#696969" "#676767" "#646464" "#616161" "#5F5F5F" "#5C5C5C" "#5A5A5A"

gpos66 gpos67 gpos68 gpos69 gpos70 gpos71 gpos72

"#575757" "#545454" "#525252" "#4F4F4F" "#4D4D4D" "#4A4A4A" "#484848"

gpos73 gpos74 gpos75 gpos76 gpos77 gpos78 gpos79

"#454545" "#424242" "#404040" "#3D3D3D" "#3B3B3B" "#383838" "#363636"

gpos80 gpos81 gpos82 gpos83 gpos84 gpos85 gpos86

"#333333" "#303030" "#2E2E2E" "#2B2B2B" "#292929" "#262626" "#242424"

gpos87 gpos88 gpos89 gpos90 gpos91 gpos92 gpos93

"#212121" "#1E1E1E" "#1C1C1C" "#191919" "#171717" "#141414" "#121212"

gpos94 gpos95 gpos96 gpos97 gpos98 gpos99 gpos100

"#0F0F0F" "#0C0C0C" "#0A0A0A" "#070707" "#050505" "#020202" "#000000"

setdiff(unique(values(mm9)$gieStain), names(cyto.def))

character(0)

We notice gieStain gpos33, gpos66 is not defined in default, if we directly plot them, those region will be blank.
Otherwise, we could

• either edited the default color option list

• or use ggplot2 lower level utilities.

168

In the following code, we compare a incomplete color default with customized color.

p1 <- plotIdeogram(mm9, "chr1")

cyto.def

gneg stalk acen gpos gvar gpos1 gpos2

"grey100" "brown3" "brown4" "grey0" "grey0" "#FFFFFF" "#FCFCFC"

gpos3 gpos4 gpos5 gpos6 gpos7 gpos8 gpos9

"#F9F9F9" "#F7F7F7" "#F4F4F4" "#F2F2F2" "#EFEFEF" "#ECECEC" "#EAEAEA"

gpos10 gpos11 gpos12 gpos13 gpos14 gpos15 gpos16

"#E7E7E7" "#E5E5E5" "#E2E2E2" "#E0E0E0" "#DDDDDD" "#DADADA" "#D8D8D8"

gpos17 gpos18 gpos19 gpos20 gpos21 gpos22 gpos23

"#D5D5D5" "#D3D3D3" "#D0D0D0" "#CECECE" "#CBCBCB" "#C8C8C8" "#C6C6C6"

gpos24 gpos25 gpos26 gpos27 gpos28 gpos29 gpos30

"#C3C3C3" "#C1C1C1" "#BEBEBE" "#BCBCBC" "#B9B9B9" "#B6B6B6" "#B4B4B4"

gpos31 gpos32 gpos33 gpos34 gpos35 gpos36 gpos37

"#B1B1B1" "#AFAFAF" "#ACACAC" "#AAAAAA" "#A7A7A7" "#A4A4A4" "#A2A2A2"

gpos38 gpos39 gpos40 gpos41 gpos42 gpos43 gpos44

"#9F9F9F" "#9D9D9D" "#9A9A9A" "#979797" "#959595" "#929292" "#909090"

gpos45 gpos46 gpos47 gpos48 gpos49 gpos50 gpos51

"#8D8D8D" "#8B8B8B" "#888888" "#858585" "#838383" "#808080" "#7E7E7E"

gpos52 gpos53 gpos54 gpos55 gpos56 gpos57 gpos58

"#7B7B7B" "#797979" "#767676" "#737373" "#717171" "#6E6E6E" "#6C6C6C"

gpos59 gpos60 gpos61 gpos62 gpos63 gpos64 gpos65

"#696969" "#676767" "#646464" "#616161" "#5F5F5F" "#5C5C5C" "#5A5A5A"

gpos66 gpos67 gpos68 gpos69 gpos70 gpos71 gpos72

"#575757" "#545454" "#525252" "#4F4F4F" "#4D4D4D" "#4A4A4A" "#484848"

gpos73 gpos74 gpos75 gpos76 gpos77 gpos78 gpos79

"#454545" "#424242" "#404040" "#3D3D3D" "#3B3B3B" "#383838" "#363636"

gpos80 gpos81 gpos82 gpos83 gpos84 gpos85 gpos86

"#333333" "#303030" "#2E2E2E" "#2B2B2B" "#292929" "#262626" "#242424"

gpos87 gpos88 gpos89 gpos90 gpos91 gpos92 gpos93

"#212121" "#1E1E1E" "#1C1C1C" "#191919" "#171717" "#141414" "#121212"

gpos94 gpos95 gpos96 gpos97 gpos98 gpos99 gpos100

"#0F0F0F" "#0C0C0C" "#0A0A0A" "#070707" "#050505" "#020202" "#000000"

cyto.new <- c(cyto.def, c(gpos33 = "grey80", gpos66 = "grey60"))

method 1:

optlist <- getOption("biovizBase")

optlist$cytobandColor <- cyto.new

options(biovizBase = optlist)

p2 <- plotIdeogram(mm9, "chr1")

p3 <- plotIdeogram(mm9, "chr1") + scale_fill_manual(values = cyto.new)

alignPlots(p1, p2, p3)

169

chr1

chr1

ch
r1

chr1

chr1

ch
r1

chr1

chr1

ch
r1

7.2.3 Plot ideogram directly from Seqinfo

More information could be found in autoplot tutorial.

170

data(hg19Ideogram)

seqs <- seqinfo(hg19Ideogram)

class(seqs)

[1] "Seqinfo"

attr(,"package")

[1] "GenomicRanges"

p1 <- autoplot(seqs["chr1"])

p2 <- autoplot(seqs["chr1"], FALSE)

tracks(type1 = p1, type2 = p2)

ty
pe

1

chr1

chr1

ty
pe

2

chr1

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

Figure 7.4: Plot Seqinfo object.

171

Chapter 8

Visualize genomic features

8.1 Introduction

Transcript-centric annotation is one of the most useful tracks that frequently aligned with other data in many
genome browsers. In Bioconductor, you can either request data on the fly from UCSC or BioMart, which
require internet connection, or you can save frequently used annotation data of particular organism, for ex-
ample human genome, as a local data base. Package GenomicFeatures provides very convenient API for
making and manipulating such database. Bioconductor also pre-built some frequently used genome anno-
tation as packages for easy installation, for instance, for human genome(hg19), there is a meta data pack-
age called TxDb.Hsapiens.UCSC.hg19.knownGene, after you load this package, a TranscriptDb object called
TxDb.Hsapiens.UCSC.hg19.knownGene will be visible from your workspace. This object contains information
like coding regions, exons, introns, utrs, transcripts for this genome. If you cannot find the organism you want
in Bioconductor meta packages, please refer to the vignette of package GenomicFeatures to check how to build
your own data base manually.

ggbio providing visualization utilities based on this specific object, in the following tutorial we cover some usage:

• How to plot genomic features for certain region, including coding region, introns, utrs.

• How to change geom of introns, how to revise arrow size and density.

• How to change aesthetics such as colors.

• How to plot single genomic features by make statistical transformation of “reduce”.

• How to revise y label using expression and pattern.

• How to change x-scale unit to arbitrary kb,bp.

• How to use lower level API.

172

8.2 Usage

8.2.1 autoplot

autoplot API is higher level API in ggbio which tries to make smart decision for object-oriented graphics. Another
vignette have more detailed introduction to this function.

In this tutorial, we solely focus on visualization of TranscriptDb object.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

suppose you already know the region you want to visualize or for

human genome, you can try following commented code data(genesymbol,

package = 'biovizBase') genesymbol['ALDOA']
aldoa.gr <- GRanges("chr16", IRanges(30064491, 30081734))

aldoa.gr

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] chr16 [30064491, 30081734] *

seqlengths:

chr16

NA

library(ggbio)

p1 <- autoplot(txdb, which = aldoa.gr)

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

Done

Constructing graphics...

p1

173

uc010bzb.1(552900)

uc010veg.2(226)

uc002dwc.3(226)

uc002dwa.4(226)

uc002dvz.3(226)

uc002dvw.3(226)

uc002dvx.3(226)

uc010bzo.2(226)

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

You can changing some aesthetics like colors in autoplot, since rectangle is defined by ’color’ which is border
color and ’fill’ for filled color.

library(ggbio)

p1 <- autoplot(txdb, which = aldoa.gr, fill = "brown", color = "brown")

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

Done

Constructing graphics...

p1

174

uc010bzb.1(552900)

uc010veg.2(226)

uc002dwc.3(226)

uc002dwa.4(226)

uc002dvz.3(226)

uc002dvw.3(226)

uc002dvx.3(226)

uc010bzo.2(226)

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

autoplot function for object TranscriptDb has two supported statistical transformation.

• identity: full model, show each transcript, parsing coding region, introns and utrs automatically from
the database. intorns are shown as small arrows to indicate the direction, exons are represented as wider
rectangles and utrs are represented as narrow rectangles. This transformation is shown in Figure ??

• reduce: reduced model, show single reduced model, which take union of CDS, utrs and re-compute introns,
as shown in Figure ??.

p2 <- autoplot(txdb, which = aldoa.gr, stat = "reduce")

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

Done

Constructing graphics...

175

print(p2)

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

To better understand the behavior of “reduce” transformation, we layout these two graphics by tracks as shown
in Figure ??. Function Tracks has been introduced in detail in another vignette.

tracks(full = p1, reduced = p2, heights = c(4, 1)) + theme_alignment(grid = FALSE,

border = FALSE)

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

176

fu
ll

re
du

ce
d

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

We allow users to change the way to visualization introns here, it’s controlled by parameter “gap.geom”, supported
three geoms:

• arrow: with small arrow to indicate the strand direction, extra parameter existing to control the appearance
of the arrow, as shown in Figure ??. arrow.rate control how dense the arrows shows in between.

• chevron:chevron to show as introns, no strand indication. please check geom chevron.

• segment:segments to show as introns, no strand indication.

The geometric object for ranges, introns and uts are controled by parameters range.geom, gap.geom, utr.geom.
For example if you want to change the geom for gap, just change the gap.geom.

autoplot(txdb, which = aldoa.gr, gap.geom = "chevron")

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

177

Done

Constructing graphics...

uc010bzb.1(552900)

uc010veg.2(226)

uc002dwc.3(226)

uc002dwa.4(226)

uc002dvz.3(226)

uc002dvw.3(226)

uc002dvx.3(226)

uc010bzo.2(226)

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

library(grid)

autoplot(txdb, which = aldoa.gr, arrow.rate = 0.001, length = unit(0.35,

"cm"))

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

Done

Constructing graphics...

178

uc010bzb.1(552900)

uc010veg.2(226)

uc002dwc.3(226)

uc002dwa.4(226)

uc002dvz.3(226)

uc002dvw.3(226)

uc002dvx.3(226)

uc010bzo.2(226)

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

We also allow users to parse y labels from existing column in TranscriptDb object.

p <- autoplot(txdb, which = aldoa.gr, names.expr = "gene_id:::tx_name")

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

Done

Constructing graphics...

p

179

552900:::uc010bzb.1

226:::uc010veg.2

226:::uc002dwc.3

226:::uc002dwa.4

226:::uc002dvz.3

226:::uc002dvw.3

226:::uc002dvx.3

226:::uc010bzo.2

30.065 Mb 30.07 Mb 30.075 Mb 30.08 Mb

180

scale x sequnit is a add-on utility to revise the x-scale, it provides three unit

• mb: 1e6bp unit. default for autoplot,TranscriptDb.

• kb: 1e3bp unit.

• bp: 1bp unit

it’s just post-graphic modification, won’t re-load the parsing process. Figure

p + scale_x_sequnit("kb")

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

552900:::uc010bzb.1

226:::uc010veg.2

226:::uc002dwc.3

226:::uc002dwa.4

226:::uc002dvz.3

226:::uc002dvw.3

226:::uc002dvx.3

226:::uc010bzo.2

30065 kb 30070 kb 30075 kb 30080 kb

Figure 8.1: change the unit to kb.

8.2.2 geom alignment

stat gene is deprecated, and geom alignment is the lower level API which facilitate construction layer by layer.

181

p1 <- ggplot() + geom_alignment(txdb, which = aldoa.gr)

182

Chapter 9

Circular view

9.1 Introduction

Layout ”circle” is inspired by Circos

graphics and make it a general layout. Layout is generally more complex than a coordinate transformation, it’s a
combination of different components like coordinate transformation(genome and polar), and tracks-based layout,
etc. Especially, circular view is very useful to show links between different locations. Since we are following the
grammar of graphics, aesthetics mapping are fairly easy in ggbio.

In this tutorial, we will start from the raw data, if you are already familiar with how to process your data into the
right format, which here I mean GRanges,you can jump to 9.2.3 directly.

9.2 Tutorial

9.2.1 Step 1: understand the layout circle

We have discussed about the new coordinate ”genome” in vignette about Manhattan plot before, now this time,
it’s one step further compared to genome coordinate transformation. We specify ring radius radius and track
width trackWidth to help transform a linear genome coordinate system to a circular coordinate system. By using
layout circle function which we will introduce later.

Before we visualize our data, we need to have something in mind

• How many tracks we want?

• Can they be combined into the same data?

• Do I have chromosomes lengths information?

• Do I have interesting variables attached as one column?

183

9.2.2 Step 2: get your data ready to plot

Ok, let’s start to process some raw data to the format we want. The data used in this study is from this a paper1.
In this example, We are going to

1. Visualize somatic mutation as segment.

2. Visualize inter,intro-chromosome rearrangement as links.

3. Visualize mutation score as point tracks with grid-background.

4. Add scale and ticks and labels.

5. To arrange multiple plots and legend. create multiple sample comparison.

Notes: don’t put too much tracks on it.

I simply put script here to get mutation data as ‘GRanges‘ object.

crc1 <- system.file("extdata", "crc1-missense.csv", package = "biovizBase")

crc1 <- read.csv(crc1)

library(GenomicRanges)

mut.gr <- with(crc1, GRanges(Chromosome, IRanges(Start_position, End_position),

strand = Strand))

values(mut.gr) <- subset(crc1, select = -c(Start_position, End_position,

Chromosome))

data("hg19Ideogram", package = "biovizBase")

seqs <- seqlengths(hg19Ideogram)

subset_chr

chr.sub <- paste("chr", 1:22, sep = "")

levels tweak

seqlevels(mut.gr) <- c(chr.sub, "chrX")

mut.gr <- keepSeqlevels(mut.gr, chr.sub)

seqs.sub <- seqs[chr.sub]

remove wrong position

bidx <- end(mut.gr) <= seqs.sub[match(as.character(seqnames(mut.gr)), names(seqs.sub))]

mut.gr <- mut.gr[which(bidx)]

assign_seqlengths

seqlengths(mut.gr) <- seqs.sub

reanme to shorter names

new.names <- as.character(1:22)

names(new.names) <- paste("chr", new.names, sep = "")

new.names

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12

"1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"

chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22

"13" "14" "15" "16" "17" "18" "19" "20" "21" "22"

1http://www.nature.com/ng/journal/v43/n10/full/ng.936.html

184

mut.gr.new <- renameSeqlevels(mut.gr, new.names)

head(mut.gr.new)

GRanges with 6 ranges and 10 metadata columns:

seqnames ranges strand | Hugo_Symbol

<Rle> <IRanges> <Rle> | <factor>

[1] 1 [11003085, 11003085] + | TARDBP

[2] 1 [62352395, 62352395] + | INADL

[3] 1 [194960885, 194960885] + | CFH

[4] 2 [10116508, 10116508] - | CYS1

[5] 2 [33617747, 33617747] + | RASGRP3

[6] 2 [73894280, 73894280] + | C2orf78

Entrez_Gene_Id Center NCBI_Build Strand

<integer> <factor> <integer> <factor>

[1] 23435 Broad 36 +

[2] 10207 Broad 36 +

[3] 3075 Broad 36 +

[4] 192668 Broad 36 -

[5] 25780 Broad 36 +

[6] 388960 Broad 36 +

Variant_Classification Variant_Type Reference_Allele

<factor> <factor> <factor>

[1] Missense SNP G

[2] Missense SNP T

[3] Missense SNP G

[4] Missense SNP C

[5] Missense SNP C

[6] Missense SNP T

Tumor_Seq_Allele1 Tumor_Seq_Allele2

<factor> <factor>

[1] G A

[2] T G

[3] G A

[4] C T

[5] C T

[6] T C

seqlengths:

1 2 3 ... 20 21 22

249250621 243199373 198022430 ... 63025520 48129895 51304566

To get ideogram track, we need to load human hg19 ideogram data, for details please check another vignette
about getting ideogram.

hg19Ideo <- hg19Ideogram

hg19Ideo <- keepSeqlevels(hg19Ideogram, chr.sub)

hg19Ideo <- renameSeqlevels(hg19Ideo, new.names)

head(hg19Ideo)

GRanges with 6 ranges and 0 metadata columns:

185

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 1 [1, 249250621] *

[2] 2 [1, 243199373] *

[3] 3 [1, 198022430] *

[4] 4 [1, 191154276] *

[5] 5 [1, 180915260] *

[6] 6 [1, 171115067] *

seqlengths:

1 2 3 ... 20 21 22

249250621 243199373 198022430 ... 63025520 48129895 51304566

9.2.3 Step 3: low level API: layout circle

layout circle is a lower level API for creating circular plot, it accepts Granges object, and users need to specify
radius, track width, and other aesthetics, it’s very flexible. But keep in mind, you have to pay attention rules
when you make circular plots.

• For now, seqlengths, seqlevels and chromosomes names should be exactly the same, so you have to
make sure data on all tracks have this uniform information to make a comparison.

• Set arguments space.skip to the same value for all tracks, that matters for transformation, default is the
same, so you don’t have to change it, unless you want to add/remove space in between.

• direction argument should be exactly the same, either ”clockwise” or ”counterclockwise”.

• Tweak with your radius and tracks width to get best results.

Since low level API leave you as much flexibility as possible, this may looks hard to adjust, but it can produce
various types of graphics which higher levels API like autoplot hardly can, for instance, if you want to overlap
multiple tracks or fine-tune your layout.

Ok, let’s start to add tracks one by one.

First to add a ”ideo” track

Then a ”scale” track with ticks

Then a ”text” track to label chromosomes. *NOTICE*, after genome coordinate transformation, original data
will be stored in column ”.ori”, and for mapping, just use ”.ori” prefix to it. Here we use ‘.ori.seqnames‘, if you
use ‘seqnames‘, that is going to be just ”genome” character.

Then a ”rectangle” track to show somatic mutation, this will looks like vertical segments.

Next, we need to add some ”links” to show the rearrangement, of course, links can be used to map any kind of
association between two or more different locations to indicate relationships like copies or fusions.

rearr <- read.csv(system.file("extdata", "crc-rearrangment.csv", package = "biovizBase"))

start position

186

library(ggbio)

p <- ggplot() + layout_circle(hg19Ideo, geom = "ideo", fill = "gray70", radius = 30,

trackWidth = 4)

p

Figure 9.1: Adding ’ideogram’ track.

187

p <- p + layout_circle(hg19Ideo, geom = "scale", size = 2, radius = 35, trackWidth = 2)

p

0M 50
M

10
0M

15
0M

20
0M

0M

50
M

10
0M

15
0M

20
0M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M
100M

150M

0M

50M100M150M0M50M100M

0M50M

100M

0M

50M

100M

0M

50M
100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

0M

50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M

Figure 9.2: Adding a ’scale’ track.

188

p <- p + layout_circle(hg19Ideo, geom = "text", aes(label = seqnames), vjust = 0,

radius = 38, trackWidth = 7)

p

0M 50
M

10
0M

15
0M

20
0M

0M

50
M

10
0M

15
0M

20
0M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M
100M150M

0M

50M100M150M

0M50M100M

0M50M

100M

0M

50M

100M

0M

50M
100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

0M

50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M

1

2

3
4

5

6

7

89
10

11

12

13
14

15
16

17

18
19

20 21 22

Figure 9.3: Adding a ’text’ track.

189

p <- p + layout_circle(mut.gr, geom = "rect", color = "steelblue", radius = 23,

trackWidth = 6)

p

0M 50
M

10
0M

15
0M

20
0M

0M

50
M

10
0M

15
0M

20
0M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M
100M150M

0M

50M100M150M

0M50M100M

0M50M

100M

0M

50M

100M

0M

50M
100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

0M

50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M

1

2

3
4

5

6

7

89
10

11

12

13
14

15
16

17

18
19

20 21 22

Figure 9.4: Adding a segment track to show mutation.

190

gr1 <- with(rearr, GRanges(chr1, IRanges(pos1, width = 1)))

end position

gr2 <- with(rearr, GRanges(chr2, IRanges(pos2, width = 1)))

add extra column

nms <- colnames(rearr)

.extra.nms <- setdiff(nms, c("chr1", "chr2", "pos1", "pos2"))

values(gr1) <- rearr[, .extra.nms]

remove out-of-limits data

seqs <- as.character(seqnames(gr1))

.mx <- seqlengths(hg19Ideo)[seqs]

idx1 <- start(gr1) > .mx

seqs <- as.character(seqnames(gr2))

.mx <- seqlengths(hg19Ideo)[seqs]

idx2 <- start(gr2) > .mx

idx <- !idx1 & !idx2

gr1 <- gr1[idx]

seqlengths(gr1) <- seqlengths(hg19Ideo)

gr2 <- gr2[idx]

seqlengths(gr2) <- seqlengths(hg19Ideo)

To create a suitable structure to plot, please use another ‘GRanges‘ to represent the end of the links, and stored
as elementMetadata for the ”start point” ‘GRanges‘. Here we named it as ”to.gr” and will be used later.

values(gr1)$to.gr <- gr2

rename to gr

gr <- gr1

Here we show the flexibility of *ggbio*, for example, if you want to use color to indicate your links, make sure
you add extra information in the data, used for mapping later. Here in this example, we use ”intrachromosomal”
to label rearrangement within the same chromosomes and use ”interchromosomal” to label rearrangement in
different chromosomes.

values(gr)$rearrangements <- ifelse(as.character(seqnames(gr)) == as.character(seqnames((values(gr)$to.gr))),

"intrachromosomal", "interchromosomal")

Get subset of links data for only one sample ”CRC1”

gr.crc1 <- gr[values(gr)$individual == "CRC-1"]

Ok, add a ”point” track with grid background for rearrangement data and map ‘y‘ to variable ”score”, map ‘size‘
to variable ”tumreads”, rescale the size to a proper size range.

p <- p + layout_circle(gr.crc1, geom = "point", aes(y = score, size = tumreads),

color = "red", radius = 12, trackWidth = 10, grid = TRUE) + scale_size(range = c(1,

2.5))

p

191

0M 50
M

10
0M

15
0M

20
0M

0M
50

M
10

0M
15

0M

20
0M

0M

50M

100M

150M

0M

50M

100M

150M

0M

50M
100M

150M

0M
50M

100M150M0M

50M100M

150M

0M50M

100M

0M50M

100M

0M

50M
100M

0M
50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M

50M

100M
0M

50M

0M
50M

0M

50
M

0M

50
M 0M

50
M 0M

0M 50
M

1

2

3
4

5

6

7
8910

11

12
13

14
15

16
17

18
19

20 21 22

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

tumreads
●

●

●

●

5.0

7.5

10.0

12.5

Finally, let’s add links and map color to rearrangement types. Remember you need to specify ‘linked.to‘ to the
column that contain end point of the data.

9.2.4 Step 4: Complex arragnment of plots

In this step, we are going to make multiple sample comparison, this may require some knowledge about package
grid and gridExtra. We will introduce a more easy way to combine your graphics later after this.

We just want 9 single circular plots put together in one page, since we cannot keep too many tracks, we only
keep ideogram and links. Here is one sample.

grl <- split(gr, values(gr)$individual)

need 'unit', load grid

192

p <- p + layout_circle(gr.crc1, geom = "link", linked.to = "to.gr", aes(color = rearrangements),

radius = 10, trackWidth = 1)

p

0M 50
M

10
0M

15
0M

20
0M

0M
50

M
10

0M
15

0M

20
0M

0M

50M

100M

150M

0M

50M

100M

150M

0M
50M

100M
150M

0M
50M100M150M0M50M100M

150M

0M50M

100M

0M50M

100M

0M
50M

100M
0M

50M
100M

0M

50M

100M

0M

50M

100M

0M

50M

100M

0M
50M

100M
0M

50M

0M
50M

0M

50
M 0M

50
M 0M

50
M 0M 0M 50

M

1

2

3
4

5
6

7
8910

11

12
13

14
15

16
17

18
19 20 21 22

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

rearrangements

interchromosomal

intrachromosomal

tumreads
●

●

●

●

5.0

7.5

10.0

12.5

Figure 9.5: A link track is added to the circular plot.

193

cols <- RColorBrewer::brewer.pal(3, "Set2")[2:1]

names(cols) <- c("interchromosomal", "intrachromosomal")

p0 <- ggplot() + layout_circle(gr.crc1, geom = "link", linked.to = "to.gr",

aes(color = rearrangements), radius = 7.1) + layout_circle(hg19Ideo,

geom = "ideo", trackWidth = 1.5, color = "gray70", fill = "gray70") +

scale_color_manual(values = cols)

p0

rearrangements

interchromosomal

intrachromosomal

Figure 9.6: Just to show single individuals crc1.

194

library(grid)

lst <- lapply(grl, function(gr.cur) {
print(unique(as.character(values(gr.cur)$individual)))

cols <- RColorBrewer::brewer.pal(3, "Set2")[2:1]

names(cols) <- c("interchromosomal", "intrachromosomal")

p <- ggplot() + layout_circle(gr.cur, geom = "link", linked.to = "to.gr",

aes(color = rearrangements), radius = 7.1) + layout_circle(hg19Ideo,

geom = "ideo", trackWidth = 1.5, color = "gray70", fill = "gray70") +

scale_color_manual(values = cols) + labs(title = (unique(values(gr.cur)$individual))) +

theme(plot.margin = unit(rep(0, 4), "lines"))

})

[1] "CRC-1"

[1] "CRC-2"

[1] "CRC-3"

[1] "CRC-4"

[1] "CRC-5"

[1] "CRC-6"

[1] "CRC-7"

[1] "CRC-8"

[1] "CRC-9"

We wrap the function in grid level to a more user-friendly high level function, called arrangeGrobByParsingLegend.
You can pass your ggplot2 graphics to this function , specify the legend you want to keep on the right, you can
also specify the column/row numbers. Here we assume all plots we have passed follows the same color scale and
have the same legend, so we only have to keep one legend on the right.

arrangeGrobByParsingLegend(lst, widths = c(4, 1), legend.idx = 1, ncol = 2)

195

CRC−1 CRC−2

CRC−3 CRC−4

CRC−5 CRC−6

CRC−7 CRC−8

CRC−9

rearrangements

interchromosomal

intrachromosomal

NULL

196

Chapter 10

Manhattan plot

10.1 Introduction

In this tutorial, we introduce a new coordinate system called ”genome” for genomic data. This transformation is
to put all chromosomes on the same genome coordinates following specified orders and adding buffers in between.
One may think about facet ability based on seqnames, it can produce something similar to Manhattan plot1,
but the view will not be compact. What’s more, genome transformation is previous step to form a circular
view. In this tutorial, we will simulate some SNP data and use this special coordinate and a specialized function
plotGrandLinear to make a Manhattan plot.

Manhattan plot is just a special use design with this coordinate system.

10.2 Understand the new coordinate

Let’s load some packages and data first

library(ggbio)

data(hg19IdeogramCyto, package = "biovizBase")

data(hg19Ideogram, package = "biovizBase")

library(GenomicRanges)

Make a minimal example ‘GRanges‘, and see what the default coordiante looks like, pay attention that, by default,
the graphics are faceted by ‘seqnames‘ as shown in Figure 10.1

What if we specify the coordinate system to be ”genome” in autoplot function, there is no faceting anymore,
the two plots are merged into one single genome space, and properly labeled as shown in Figure 10.2

The internal transformation are implemented into the function transformToGenome. And there is some simple
way to test if a GRanges object is transformed to coordinate ”genome” or not

1http://en.wikipedia.org/wiki/Manhattan

197

library(biovizBase)

gr <- GRanges(rep(c("chr1", "chr2"), each = 5), IRanges(start = rep(seq(1,

100, length = 5), times = 2), width = 50))

autoplot(gr, aes(fill = seqnames))

Object of class "ggbio"

chr1 chr2

0 50 100 150 0 50 100 150

seqnames

chr1

chr2

NULL

Figure 10.1: Default grahpics is faceted by seqnames

198

autoplot(gr, coord = "genome", aes(fill = seqnames))

using coord:genome to parse x scale

Object of class "ggbio"

chr1 chr2

chr1 chr2 chr1 chr2

seqnames

chr1

chr2

NULL

Figure 10.2: Coordinate genome

199

gr.t <- transformToGenome(gr)

head(gr.t)

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand | .start .end

<Rle> <IRanges> <Rle> | <numeric> <numeric>

[1] chr1 [1, 50] * | 1 50

[2] chr1 [25, 74] * | 25 74

[3] chr1 [50, 99] * | 50 99

[4] chr1 [75, 124] * | 75 124

[5] chr1 [100, 149] * | 100 149

[6] chr2 [1, 50] * | 180 229

seqlengths:

chr1 chr2

NA NA

is_coord_genome(gr.t)

[1] TRUE

metadata(gr.t)$coord

[1] "genome"

10.3 Step 2: Simulate a SNP data set

Let’s use the real human genome space to simulate a SNP data set.

chrs <- as.character(levels(seqnames(hg19IdeogramCyto)))

seqlths <- seqlengths(hg19Ideogram)[chrs]

set.seed(1)

nchr <- length(chrs)

nsnps <- 100

gr.snp <- GRanges(rep(chrs, each = nsnps), IRanges(start = do.call(c, lapply(chrs,

function(chr) {
N <- seqlths[chr]

runif(nsnps, 1, N)

})), width = 1), SNP = sapply(1:(nchr * nsnps), function(x) paste("rs",

x, sep = "")), pvalue = -log10(runif(nchr * nsnps)), group = sample(c("Normal",

"Tumor"), size = nchr * nsnps, replace = TRUE))

genome(gr.snp) <- "hg19"

gr.snp

GRanges with 2400 ranges and 3 metadata columns:

200

seqnames ranges strand | SNP

<Rle> <IRanges> <Rle> | <character>

[1] chr1 [66178199, 66178199] * | rs1

[2] chr1 [92752113, 92752113] * | rs2

[3] chr1 [142784056, 142784056] * | rs3

[4] chr1 [226371355, 226371355] * | rs4

[5] chr1 [50269347, 50269347] * | rs5

[6] chr1 [223924186, 223924186] * | rs6

[7] chr1 [235460897, 235460897] * | rs7

[8] chr1 [164704260, 164704260] * | rs8

[9] chr1 [156807066, 156807066] * | rs9

...

[2392] chrY [36501485, 36501485] * | rs2392

[2393] chrY [30054272, 30054272] * | rs2393

[2394] chrY [20065602, 20065602] * | rs2394

[2395] chrY [19541601, 19541601] * | rs2395

[2396] chrY [34038689, 34038689] * | rs2396

[2397] chrY [3010837, 3010837] * | rs2397

[2398] chrY [23806602, 23806602] * | rs2398

[2399] chrY [15474595, 15474595] * | rs2399

[2400] chrY [10016302, 10016302] * | rs2400

pvalue group

<numeric> <character>

[1] 1.22380 Normal

[2] 1.27916 Normal

[3] 0.01199 Tumor

[4] 0.09985 Normal

[5] 1.49938 Tumor

[6] 0.26497 Tumor

[7] 1.75456 Tumor

[8] 0.10976 Tumor

[9] 0.12073 Tumor

...

[2392] 0.93515 Normal

[2393] 0.08353 Tumor

[2394] 0.05148 Normal

[2395] 0.01483 Normal

[2396] 0.17601 Normal

[2397] 0.78685 Tumor

[2398] 0.48952 Normal

[2399] 0.60000 Normal

[2400] 0.03967 Normal

seqlengths:

chr1 chr10 chr11 chr12 chr13 chr14 ... chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA

We use the some trick to make a shorter names.

201

seqlengths(gr.snp)

chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2

NA NA NA NA NA NA NA NA NA NA NA NA

chr20 chr21 chr22 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA NA NA NA NA NA NA

nms <- seqnames(seqinfo(gr.snp))

nms.new <- gsub("chr", "", nms)

names(nms.new) <- nms

gr.snp <- renameSeqlevels(gr.snp, nms.new)

seqlengths(gr.snp)

1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3 4 5 6 7 8 9 X Y

NA

10.4 Step 3: Start to make Manhattan plot by using autoplot

wrapped basic functions into autoplot, you can specify the coordinate. Figure 10.3 shows what the unordered
object looks like.

That’s probably not what you want, if you want to change to specific order, just sort them by hand and use
‘keepSeqlevels‘. Figure 10.4 shows a sorted plot.

NOTICE: the data now doesn’t have information about lengths of each chromosomes, this is allowed to be
plotted, but it’s misleading sometimes, without chromosomes lengths information, ggbio use data space to make
estimated lengths for you, this is not accurate! So let’s just assign seqlengths to the object. Then you will find
the data space now is distributed proportional to real space as shown in Figure 10.5.

In autoplot, argument coord is just used to transform the data, after that, you can use it as common GRanges,
all other geom/stat works for it. Here just show a simple example for another geom ”line” as shown in Figure
10.6

10.5 Convenient plotGrandLinear function

In ggbio, sometimes we develop specialized function for certain types of plots, it’s basically a wrapper over lower
level API and autoplot, but more convenient to use. Here for Manhattan plot, we have a function called
plotGrandLinear used for it. aes(y =) is required to indicate the y value, e.g. p-value. Figure 10.7 shows a
defalut graphic.

Color mapping is automatically figured out by *ggbio* following the rules

• if color present in aes(), like aes(color = seqnames), it will assume it’s mapping to data column called
’seqnames’.

• if color is not wrapped in aes(), then this function will recylcle them to all chromosomes.

202

autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)

using coord:genome to parse x scale

Object of class "ggbio"

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●●
●●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

0

1

2

3

1 10 11 12 13 141516171819 2 202122 3 4 5 6 7 8 9 X Y

pv
al

ue

NULL

Figure 10.3: Unordred Manhattan plot

203

gr.snp <- keepSeqlevels(gr.snp, c(1:22, "X", "Y"))

autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)

using coord:genome to parse x scale

Object of class "ggbio"

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●●
●●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

NULL

Figure 10.4: Sorted data for Manhattan plot

204

names(seqlths) <- gsub("chr", "", names(seqlths))

seqlengths(gr.snp) <- seqlths[names(seqlengths(gr.snp))]

autoplot(gr.snp, coord = "genome", geom = "point", aes(y = pvalue), space.skip = 0.01)

using coord:genome to parse x scale

Object of class "ggbio"

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●●
●●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

NULL

Figure 10.5: Manhattan plot after setting seqlengths to the data, the data space now is distributed propor-
tional to real chromosome space.

205

autoplot(gr.snp, coord = "genome", geom = "line", aes(y = pvalue, group = seqnames,

color = seqnames))

using coord:genome to parse x scale

Object of class "ggbio"

0

1

2

3

1 2 3 4 5 6 7 8 9 10111213141516171819202122 X Y

pv
al

ue

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

NULL

Figure 10.6: Use line to represent the data in typical Manhattan plot.

206

plotGrandLinear(gr.snp, aes(y = pvalue))

using coord:genome to parse x scale

Object of class "ggbio"

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●●
●●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

NULL

Figure 10.7: Default Manhattan plot by calling plotGrandLinear function

207

• if color is single character representing color, then just use one arbitrary color.

Let’s test some examples for controling colors.

plotGrandLinear(gr.snp, aes(y = pvalue, color = seqnames))

using coord:genome to parse x scale

Object of class "ggbio"

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●●
●●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

NULL

Figure 10.8: Color mapped to chromosome names.

You can also add cutoff line as shown in Figure 10.12.

This is equivalent to ggplot2 ’s API.

plotGrandLinear(gr.snp, aes(y = pvalue)) + geom_hline(yintercept = 3, color = "blue",

size = 4)

Sometimes the names of chromosomes maybe very long, you may want to rotate them, let’s make a longer name
first

208

plotGrandLinear(gr.snp, aes(y = pvalue), color = c("green", "deepskyblue"))

using coord:genome to parse x scale

Object of class "ggbio"

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●●
●●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

NULL

Figure 10.9: Color follow ’green’ and ’deepskyblue’ order for all chromosome space.

209

plotGrandLinear(gr.snp, aes(y = pvalue), color = c("green", "deepskyblue",

"red"))

using coord:genome to parse x scale

Object of class "ggbio"

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●●
●●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

NULL

Figure 10.10: Color follow three colors pattern: ’green’,’deepskyblue’, ’red’

210

plotGrandLinear(gr.snp, aes(y = pvalue), color = "red")

using coord:genome to parse x scale

Object of class "ggbio"

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●●
●●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

NULL

Figure 10.11: Unique color for all.

211

plotGrandLinear(gr.snp, aes(y = pvalue), cutoff = 3, cutoff.color = "blue",

cutoff.size = 4)

using coord:genome to parse x scale

Object of class "ggbio"

●

●

●

●

●

●

●

●●
●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●
●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●●

●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●
●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●

●●

●

●

●

●
●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●●
●●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●

●
●

●

●

●
●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 141516171819202122 X Y

pv
al

ue

NULL

Figure 10.12: Set cutoff on the Manhattan plot. The ’blue’ line shows cutoff at value 3.

212

let's make a long name

nms <- seqnames(seqinfo(gr.snp))

nms.new <- paste("chr00000", nms, sep = "")

names(nms.new) <- nms

gr.snp <- renameSeqlevels(gr.snp, nms.new)

seqlengths(gr.snp)

chr000001 chr000002 chr000003 chr000004 chr000005 chr000006

249250621 243199373 198022430 191154276 180915260 171115067

chr000007 chr000008 chr000009 chr0000010 chr0000011 chr0000012

159138663 146364022 141213431 135534747 135006516 133851895

chr0000013 chr0000014 chr0000015 chr0000016 chr0000017 chr0000018

115169878 107349540 102531392 90354753 81195210 78077248

chr0000019 chr0000020 chr0000021 chr0000022 chr00000X chr00000Y

59128983 63025520 48129895 51304566 155270560 59373566

Then rotate it!

As you can tell from above examples, all utilities works for ggplot2 will work for ggbio too.

213

plotGrandLinear(gr.snp, aes(y = pvalue)) + theme(axis.text.x = theme_text(angle = -90,

hjust = 0))

using coord:genome to parse x scale

theme text is deprecated. Use ’element text’ instead. (Deprecated; last used in

version 0.9.1)

Object of class "ggbio"

●
●

●

●

●

●

●

●●
●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●●
●
●

●

●●

●

●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●
●
●
●
●●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●
●
●

●

●
●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●
●
●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●●

●

●

●
●

●

●●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●
●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●●

●

●●

●

●●

●●

●

●

●

●

●●●
●●

●●
●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●

●

●

●

●●●
●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●
●●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●●
●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●●

●

●●●

●

●

●●
●

●

●●●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●
●
●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●
●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●

●

●

●●●
●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●

●
●
●
●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●
●
●

●

●

●

●

●
●
●
●

●

●

●

●

●
●

●

●

●
●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●●
●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●
●

●

●●●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●●

●
●●
●●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●●
●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●●
●●

●

●

●●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●●●
●

●●

●

●

●

●
●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●
●
●●

●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●
●

●

●

●

●
●
●

●

●

●

●●●

●
●

●
●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●

●
●
●

●●

●

●

●

●

●
●

●

●

●●
●●

●
●
●

●

●

●

●

●

●●

●●

●
●

●

●●●

●●

●

●

●●

●

●

●
●
●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

0

1

2

3

chr000001

chr000002

chr000003

chr000004

chr000005

chr000006

chr000007

chr000008

chr000009

chr0000010

chr0000011

chr0000012
chr0000013
chr0000014
chr0000015
chr0000016
chr0000017
chr0000018
chr0000019
chr0000020
chr0000021
chr0000022
chr00000X
chr00000Y

pv
al

ue

NULL

Figure 10.13: Rotate the x lable to save space.

214

Chapter 11

Karyogram overview

11.1 Introduction

A karyotype is the number and appearance of chromosomes in the nucleus of a eukaryotic cell1. It’s one overview
option when we want to show distribution of certain events on the genome, for example, binding sites for one
protein. Particular pattern might be easier to observe from graphics, such as

• Clusterred events.

• Large missing chunk of data on particular chromosome.

GRanges object is also an ideal container for storing data needed for karyogram plot. Here is the strategy we used
for generating ideogram templates.

• seqlengths is not required, but highly recommended for plotting karyogram. If a GRanges object contains
seqlengths, we know exactly how long each chromosome is, and will use this information to plot genome
space, particularly we plot all levels included in it, not just DATA space.

• If a GRanges has no seqlengths, we will issue a warning and try to estimate the chromosome lengths from
data included. This is NOT accurate most time, so please pay attention to what you are going to visualize
and make sure set seqlengths before hand.

11.2 Usage

11.2.1 autoplot

Let’s first introduce how to use autoplot to generate karyogram graphic. To understand why we call it kayogram,
let’s first visualize some cytoband. We use layout argument to specify this special layout ”karyogram”. And
under this layout, cytoband argument is acceptable, default is FALSE, if set to TRUE, we assume your have
additional information associated with the data, stored in column gieStain, it will try to fill colors based on

1http://en.wikipedia.org/wiki/Karyotype

215

this variable according to a pre-set staining colors. You may notice, this data set doesn’t contain seqlengths
information, but the data space actually cover the real space, so it’s not going to be a problem.

library(ggbio)

data(hg19IdeogramCyto, package = "biovizBase")

head(hg19IdeogramCyto)

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand | name gieStain

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] chr1 [0, 2300000] * | p36.33 gneg

[2] chr1 [2300000, 5400000] * | p36.32 gpos25

[3] chr1 [5400000, 7200000] * | p36.31 gneg

[4] chr1 [7200000, 9200000] * | p36.23 gpos25

[5] chr1 [9200000, 12700000] * | p36.22 gneg

[6] chr1 [12700000, 16200000] * | p36.21 gpos50

seqlengths:

chr1 chr10 chr11 chr12 chr13 chr14 ... chr7 chr8 chr9 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA

default pre-set color stored in

getOption("biovizBase")$cytobandColor

gneg stalk acen gpos gvar gpos1 gpos2

"grey100" "brown3" "brown4" "grey0" "grey0" "#FFFFFF" "#FCFCFC"

gpos3 gpos4 gpos5 gpos6 gpos7 gpos8 gpos9

"#F9F9F9" "#F7F7F7" "#F4F4F4" "#F2F2F2" "#EFEFEF" "#ECECEC" "#EAEAEA"

gpos10 gpos11 gpos12 gpos13 gpos14 gpos15 gpos16

"#E7E7E7" "#E5E5E5" "#E2E2E2" "#E0E0E0" "#DDDDDD" "#DADADA" "#D8D8D8"

gpos17 gpos18 gpos19 gpos20 gpos21 gpos22 gpos23

"#D5D5D5" "#D3D3D3" "#D0D0D0" "#CECECE" "#CBCBCB" "#C8C8C8" "#C6C6C6"

gpos24 gpos25 gpos26 gpos27 gpos28 gpos29 gpos30

"#C3C3C3" "#C1C1C1" "#BEBEBE" "#BCBCBC" "#B9B9B9" "#B6B6B6" "#B4B4B4"

gpos31 gpos32 gpos33 gpos34 gpos35 gpos36 gpos37

"#B1B1B1" "#AFAFAF" "#ACACAC" "#AAAAAA" "#A7A7A7" "#A4A4A4" "#A2A2A2"

gpos38 gpos39 gpos40 gpos41 gpos42 gpos43 gpos44

"#9F9F9F" "#9D9D9D" "#9A9A9A" "#979797" "#959595" "#929292" "#909090"

gpos45 gpos46 gpos47 gpos48 gpos49 gpos50 gpos51

"#8D8D8D" "#8B8B8B" "#888888" "#858585" "#838383" "#808080" "#7E7E7E"

gpos52 gpos53 gpos54 gpos55 gpos56 gpos57 gpos58

"#7B7B7B" "#797979" "#767676" "#737373" "#717171" "#6E6E6E" "#6C6C6C"

gpos59 gpos60 gpos61 gpos62 gpos63 gpos64 gpos65

"#696969" "#676767" "#646464" "#616161" "#5F5F5F" "#5C5C5C" "#5A5A5A"

gpos66 gpos67 gpos68 gpos69 gpos70 gpos71 gpos72

"#575757" "#545454" "#525252" "#4F4F4F" "#4D4D4D" "#4A4A4A" "#484848"

gpos73 gpos74 gpos75 gpos76 gpos77 gpos78 gpos79

"#454545" "#424242" "#404040" "#3D3D3D" "#3B3B3B" "#383838" "#363636"

gpos80 gpos81 gpos82 gpos83 gpos84 gpos85 gpos86

"#333333" "#303030" "#2E2E2E" "#2B2B2B" "#292929" "#262626" "#242424"

216

gpos87 gpos88 gpos89 gpos90 gpos91 gpos92 gpos93

"#212121" "#1E1E1E" "#1C1C1C" "#191919" "#171717" "#141414" "#121212"

gpos94 gpos95 gpos96 gpos97 gpos98 gpos99 gpos100

"#0F0F0F" "#0C0C0C" "#0A0A0A" "#070707" "#050505" "#020202" "#000000"

gpos33 gpos66

"grey80" "grey60"

autoplot(hg19IdeogramCyto, layout = "karyogram", cytoband = TRUE)

Object of class "ggbio"

chr1

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr2

chr20

chr21

chr22

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chrX

chrY

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

gieStain

acen

gneg

gpos100

gpos25

gpos50

gpos75

gvar

stalk

217

NULL

You may want to change the order of chromosomes, keepSeqlevels are convenient for this purpose, it’s defined
in package GenomicRanges.

This GRanges object is special, it’s a ’ideogram’ we expected, in this case, cytoband argument could set to TRUE,
and we draw special ideogram not just rectangles but show centromere as possible.

If we set it to FALSE, we treat it as a normal GRanges, nothing special as ideogram. So to show the cytoband, we
need to specify which color column variable to fill as cytoband, function aes use an unevaluated expression like
fill = gieStain, gieStain is column name which store cytoband color, notice that we don’t use quotes around
it, this means it’s not something defined globally, but some column name defined in the data. The system will
usually automatically assign categorical colors to represent this variable. But instead, cytoband already have some
pre-defined colors which mimic the color you observed under microscope. Function scale fill giemsa did this
trick to correct the color. If it’s first time you observe usage by +, it’s a very popular API in package ggplot22,
which could add graphics layer by layer or revise a existing graphic.

Let’s try a different data set which is not an ’ideogram’, but a normal GRanges object that most people will have,
extra data such as statistical values or categorical levels are stored in element data columns used for aesthetics
mapping.

We use a default data in package biovizBase, which is a subset of RNA editing set in human. The data involved
in this GRanges is sparse, so we cannot simply use it to make karyogram, otherwise, the estimated chromosome
lengths will be very rough and inaccurate. So what we need to do is:

1. Adding seqlegnths to this GRanges object. If you adding seqlengths to object, we have two ways to show
chromosome space as karyogram.
autoplot(object, layout = ’karyogram’) or
autoplot(seqinfo(object)).

2. Changing the order of chromosomes.

3. Visualize it and map variable to different aesthetics.

Then we take one step further, the power of ggplot2 or ggbio is the flexible multivariate data mapping ability
in graphics, make data exploration much more convenient. In the following example, we are trying to map a
categorical variable ’exReg’ to color, this variable is included in the data, and have three levels, ’3’ indicate 3’
utr, ’5’ means 5’ utr and ’C’ means coding region. We have some missing values indicated as NA, in default,
it’s going to be shown in gray color, and keep in mind, since the basic geom(geometric object) is rectangle, and
genome space is very large, so change both color/fill color of the rectangle to specify both border and filled color
is necessary to get the data shown as different color, otherwise if the region is too small, border color is going to
override the fill color.

Or you can set the missing value to particular color you want.

A test could be performed to demonstrate why ’seqlengths’ of object GRanges is important. Let’s assume we set
wrong chromosome lengths by accident, lengths are all equal to chromosome 1. We arbitrarily set it to the same
number so that every chromosome are of equal length. From Figure 11.6, it’s clear that this will affect what we
see. So please make sure

• You get data space cover exactly the same chromosome space for each chromosome. or

2http://had.co.nz/ggplot2/

218

library(GenomicRanges)

hg19 <- keepSeqlevels(hg19IdeogramCyto, paste0("chr", c(1:22, "X", "Y")))

head(hg19)

GRanges with 6 ranges and 2 metadata columns:

seqnames ranges strand | name gieStain

<Rle> <IRanges> <Rle> | <factor> <factor>

[1] chr1 [0, 2300000] * | p36.33 gneg

[2] chr1 [2300000, 5400000] * | p36.32 gpos25

[3] chr1 [5400000, 7200000] * | p36.31 gneg

[4] chr1 [7200000, 9200000] * | p36.23 gpos25

[5] chr1 [9200000, 12700000] * | p36.22 gneg

[6] chr1 [12700000, 16200000] * | p36.21 gpos50

seqlengths:

chr1 chr2 chr3 chr4 chr5 chr6 ... chr20 chr21 chr22 chrX chrY

NA NA NA NA NA NA ... NA NA NA NA NA

autoplot(hg19, layout = "karyogram", cytoband = TRUE)

Object of class "ggbio"

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

chrY

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

gieStain

acen

gneg

gpos100

gpos25

gpos50

gpos75

gvar

stalk

NULL

Figure 11.1: Cytoband on karyogram layout after re-ordering the chromosome names.

219

library(GenomicRanges)

it's a 'ideogram'
biovizBase::isIdeogram(hg19)

[1] TRUE

set to FALSE

autoplot(hg19, layout = "karyogram", cytoband = FALSE, aes(fill = gieStain)) +

scale_fill_giemsa()

Warning: geom(ideogram) need valid seqlengths information for accurate mapping,

now use reduced information as ideogram...

Warning: geom(ideogram) need valid seqlengths information for accurate mapping,

now use reduced information as ideogram...

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

Object of class "ggbio"

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

chrY

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

gieStain

acen

gneg

gpos100

gpos25

gpos50

gpos75

gvar

stalk

NULL

Figure 11.2: Cytoband on karyogram layout. We treat it as normal GRanges data set, so we fill with gieStain
color, and use scale fill giemsa to use customized color. Notice the difference if it’s not a ’ideogram’
object. we don’t draw centromere particularly.

220

data(darned_hg19_subset500, package = "biovizBase")

dn <- darned_hg19_subset500

head(dn)

GRanges with 6 ranges and 10 metadata columns:

seqnames ranges strand | inchr inrna

<Rle> <IRanges> <Rle> | <character> <character>

[1] chr5 [86618225, 86618225] - | A I

[2] chr7 [99792382, 99792382] - | A I

[3] chr12 [110929076, 110929076] - | A I

[4] chr20 [25818128, 25818128] - | A I

[5] chr3 [132397992, 132397992] + | A I

[6] chr19 [59078471, 59078471] - | A I

snp gene seqReg exReg

<character> <character> <character> <character>

[1] <NA> <NA> O <NA>

[2] <NA> <NA> O <NA>

[3] <NA> <NA> O <NA>

[4] <NA> <NA> O <NA>

[5] <NA> <NA> O <NA>

[6] <NA> MZF1 I <NA>

source ests esta author

<character> <integer> <integer> <character>

[1] amygdala 0 0 15342557

[2] <NA> 0 0 15342557

[3] salivary gland 0 0 15342557

[4] brain, hippocampus 0 0 15342557

[5] small intestine 0 0 15342557

[6] <NA> 0 0 15258596

seqlengths:

chr1 chr10 chr11 chr12 chr13 chr14 ... chr6 chr7 chr8 chr9 chrX

NA NA NA NA NA NA ... NA NA NA NA NA

add seqlengths we have seqlegnths information in another data set

data(hg19Ideogram, package = "biovizBase")

seqlengths(dn) <- seqlengths(hg19Ideogram)[names(seqlengths(dn))]

now we have seqlengths

head(dn)

GRanges with 6 ranges and 10 metadata columns:

seqnames ranges strand | inchr inrna

<Rle> <IRanges> <Rle> | <character> <character>

[1] chr5 [86618225, 86618225] - | A I

[2] chr7 [99792382, 99792382] - | A I

[3] chr12 [110929076, 110929076] - | A I

[4] chr20 [25818128, 25818128] - | A I

[5] chr3 [132397992, 132397992] + | A I

[6] chr19 [59078471, 59078471] - | A I

snp gene seqReg exReg

<character> <character> <character> <character>

[1] <NA> <NA> O <NA>

[2] <NA> <NA> O <NA>

[3] <NA> <NA> O <NA>

[4] <NA> <NA> O <NA>

[5] <NA> <NA> O <NA>

[6] <NA> MZF1 I <NA>

source ests esta author

<character> <integer> <integer> <character>

[1] amygdala 0 0 15342557

[2] <NA> 0 0 15342557

[3] salivary gland 0 0 15342557

[4] brain, hippocampus 0 0 15342557

[5] small intestine 0 0 15342557

[6] <NA> 0 0 15258596

seqlengths:

chr1 chr10 chr11 ... chr8 chr9 chrX

249250621 135534747 135006516 ... 146364022 141213431 155270560

then we change order

dn <- keepSeqlevels(dn, paste0("chr", c(1:22, "X")))

autoplot(dn, layout = "karyogram")

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

Object of class "ggbio"

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

NULL

this equivalent to autoplot(seqinfo(dn))

Figure 11.3: Default karyogram for non-ideogram GRanges object, in this example, it’s a subset of human
RNA-editing sites, default is to use seqlengths information or esitmated seqlengths information to plot a
white background, then plot actual data(interval or single position) as rectangle or segment. Default color
is just black.

221

since default is geom rectangle, even though it's looks like segment

we still use both fill/color to map colors

autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg))

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

Object of class "ggbio"

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

exReg

3

5

C

NULL

Figure 11.4: Karyogram for RNA-editing sites, and map color to exReg column, which means exon region.
’3’ indicate 3’ utr, ’5’ means 5’ utr and ’C’ means coding region, NA indicate missing value(or not in other
three levels) shown as gray color.

222

since default is geom rectangle, even though it's looks like segment

we still use both fill/color to map colors

autoplot(dn, layout = "karyogram", aes(color = exReg, fill = exReg)) + scale_color_discrete(na.value = "brown")

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

Object of class "ggbio"

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

exReg

3

5

C

NULL

Figure 11.5: Karyogram for RNA-editing sites, and map color to exReg column, which means exon region.
’3’ indicate 3’ utr, ’5’ means 5’ utr and ’C’ means coding region, we force the missing value(NA) shown as
brown color.

223

• You set the seqlengths to the right number.

Otherwise you will see weird pattern from your results, so actually it’s a good way to test your raw data too, if
you raw data have something beyond chromosome space, you need to dig into it to see what happened.

11.2.2 plotKaryogram

plotKaryogram (or plotStackedOverview) are specialized function to draw karyogram graphics. It’s actually
what function autoplot calls inside. API is a littler simpler because layout ’karyogram’ is default in these two
functions. So equivalent usage is like

plotKaryogram(dn)

plotKaryogram(dn, aes(color = exReg, fill = exReg))

11.2.3 layout karyogram

In this section, a lower level function layout karyogram is going to be introduced. This is convenient API for
constructing karyogram plot and adding more data layer by layer. Function ggplot is just to create blank object
to add layer on.

You need to pay attention to

• when you add plots layer by layer, seqnames of different data must be the same to make sure the data are
mapped to the same chromosome. For example, if you name chromosome following schema like chr1 and
use just number 1 to name other data, they will be treated as different chromosomes.

• cannot use the same aesthetics mapping multiple time for different data. For example, if you have used
aes(color =), for one data, you cannot use aes(color =) anymore for mapping variables from other add-on
data, this is currently not allowed in ggplot2 , even though you expect multiple color legend shows up, this
is going to confuse people which is which. HOWEVER, color or fill without aes() wrap around, is
allowed for any track, it’s set single arbitrary color. This is shown in Figure 11.8

• Default rectangle y range is [0, 10], so when you add on more data layer by layer on existing graphics, you
can use ylim to control how to normalize your data and plot it relative to chromosome space. For example,
with default, chromosome space is plotted between y [0, 10], if you use ylim = c(10 , 20), you will stack
data right above each chromosomes and with equal width. For geom like ’point’, which you need to specify
’y’ value in aes(), we will add 5% margin on top and at bottom of that track.

Then we construct another multiple layer graphics for multiple data using different geom, suppose we want to
show RNA-editing sites on chromosome space as rectangle(looks like segment in graphic) and stack a line for
another track above.

224

dn2 <- dn

seqlengths(dn2) <- rep(max(seqlengths(dn2)), length(seqlengths(dn2)))

autoplot(dn2, layout = "karyogram", aes(color = exReg, fill = exReg))

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

Object of class "ggbio"

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb

exReg

3

5

C

NULL

Figure 11.6: Karyogram for RNA-editing sites, and map color to exReg column, which means exon region.
’3’ indicate 3’ utr, ’5’ means 5’ utr and ’C’ means coding region, we force the missing value(NA) shown as
brown color.

225

plot ideogram

p <- ggplot(hg19) + layout_karyogram(cytoband = TRUE)

p

Object of class "ggbio"

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

chrY

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb
x

gieStain

acen

gneg

gpos100

gpos25

gpos50

gpos75

gvar

stalk

NULL

eqevelant autoplot(hg19, layout = 'karyogram', cytoband = TRUE)

Figure 11.7: Ideogram overview by using the function layout karyogram

226

p <- p + layout_karyogram(dn, geom = "rect", ylim = c(11, 21), color = "red")

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

commented line below won't work the cytoband fill color has been

used already. p <- p + layout_karyogram(dn, aes(fill = exReg, color

= exReg), geom = 'rect')
p

Object of class "ggbio"

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

chrY

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb
x

gieStain

acen

gneg

gpos100

gpos25

gpos50

gpos75

gvar

stalk

NULL

Figure 11.8: We layout another track(data) which is RNA-editing sites on top of ideogram. Notice since
legend fill and color is used, we cannot specify that in RNA-editing track, we could only set it to arbitrary
color.

227

plot chromosome space

p <- autoplot(seqinfo(dn))

make sure you pass rect as geom otherwise you just get background

p <- p + layout_karyogram(dn, aes(fill = exReg, color = exReg), geom = "rect")

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

values(dn)$pvalue <- rnorm(length(dn))

p + layout_karyogram(dn, aes(x = start, y = pvalue), ylim = c(10, 30), geom = "line",

color = "red")

Scale for ’x’ is already present. Adding another scale for ’x’, which will replace

the existing scale.

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb
start

exReg

3

5

C

p

chr1

chr2

chr3

chr4

chr5

chr6

chr7

chr8

chr9

chr10

chr11

chr12

chr13

chr14

chr15

chr16

chr17

chr18

chr19

chr20

chr21

chr22

chrX

0 Mb 50 Mb 100 Mb 150 Mb 200 Mb 250 Mb
start

exReg

3

5

C

Figure 11.9: Using Seqinfo to generate a white chromosome space, then adding RNA-editing site and then
use a fake value to shown as lines.

228

Chapter 12

Ranges-link-to-data plot

12.1 Introduction

Ranges linked data is similar to parallel coordinate plots, could be used to transform information from sparse
or uneven space to uniformed space, then observe multivariate data change patterns by linking the value within
group. This view is inspired by a view in package DEXseq. Here we generalize it first to GRanges then later other
more convenient object.

Suppose we have a matrix storing expression levels for each exons, each row indicate the interval, each column
indicate the sample. we can store these values into elementMetadata of GRanges object.

First we simulated a data like this, suppose we have two samples, named ’sample1’ and ’sample2’, then we create
a column to indicate they are significant or not, named ’significant’ filled with value TRUE/FALSE or 1/0.

library(TxDb.Hsapiens.UCSC.hg19.knownGene)

library(ggbio)

data(genesymbol, package = "biovizBase")

txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

model <- exonsBy(txdb, by = "tx")

model17 <- subsetByOverlaps(model, genesymbol["RBM17"])

exons <- exons(txdb)

exon17 <- subsetByOverlaps(exons, genesymbol["RBM17"])

reduce to make sure there is no overlap just for example

exon.new <- reduce(exon17)

suppose

set.seed(1)

values(exon.new)$sample1 <- rnorm(length(exon.new), 10, 3)

values(exon.new)$sample2 <- rnorm(length(exon.new), 10, 10)

values(exon.new)$significant <- c(TRUE, rep(FALSE, length(exon.new) - 1))

head(exon.new)

GRanges with 6 ranges and 3 metadata columns:

seqnames ranges strand | sample1

<Rle> <IRanges> <Rle> | <numeric>

229

[1] chr10 [6130949, 6131156] + | 8.120638567773

[2] chr10 [6131309, 6131934] + | 10.5509299726662

[3] chr10 [6139011, 6139151] + | 7.49311416276986

[4] chr10 [6143234, 6143350] + | 14.7858424064134

[5] chr10 [6146894, 6147060] + | 10.9885233154461

[6] chr10 [6148104, 6148201] + | 7.53859484764595

sample2 significant

<numeric> <logical>

[1] -12.146998871775 1

[2] 21.2493091814311 0

[3] 9.55066390984769 0

[4] 9.83809736901054 0

[5] 19.438362106853 0

[6] 18.2122119509809 0

seqlengths:

chr1 chr2 ... chrUn_gl000249

249250621 243199373 ... 38502

stat.col accept column names or column index in *element meta data*, so 1 doesn’t mean ’seqnames’.

plotRangesLinkedToData(exon.new, stat.col = 1:2)

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

230

−10

0

10

20

va
lu

e

group

sample1

sample2

6130000 6140000 6150000 6160000

equivilent to plotRangesLinkedToData(exon.new, stat.col =

c('sample1', 'sample2'))

we can specify line size and type.

plotRangesLinkedToData(exon.new, stat.col = 1:2, size = 3, linetype = 4)

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

231

−10

0

10

20

va
lu

e

group

sample1

sample2

6130000 6140000 6150000 6160000

And use argument sig to indicate the column name which stored the significance bool value, and sig.col

indicate the insignificant color and significant color.

plotRangesLinkedToData(exon.new, stat.col = 1:2, size = 3, linetype = 4,

sig = "significant", sig.col = c("gray70", "red"))

Scale for ’y’ is already present. Adding another scale for ’y’, which will replace the

existing scale.

232

−10

0

10

20

va
lu

e

group

sample1

sample2

6130000 6140000 6150000 6160000

233

Chapter 13

Case studies

13.1 Chip-seq

13.1.1 Introduction

In this tutorial, we are going to use chipseq package to analyze some example ChIP-seq data and explore them
by visualization of ggbio

Example data we used in this tutorial, is called cstest, which is a data set in package chipseq. This is a small
subset of data downloaded fro SRA data base includes two lanes representing CTCF and GFP pull-down in mouse.
More information about this data could be found in the manual of package chipseq.

13.1.2 Usage

Processing and fragment estimation

Firstly, we mainly follow workflow described in vignette of package chipseq, except we remove unused seq-
names(chromosome names) in the data, from the data we could see that only chromosome 10, 11, 12 involved,
the reason we removed too many unused seq levels from the data is that, in ggbio, most time, it will plot every
chromosomes in the data even there is no data at all, this will take too much space for visualization.

library(chipseq)

Loading required package: ShortRead

Loading required package: lattice

Loading required package: latticeExtra

Loading required package: RColorBrewer

##

Attaching package: ’latticeExtra’

234

The following object(s) are masked from ’package:ggplot2’:

##

layer

##

Attaching package: ’ShortRead’

The following object(s) are masked from ’package:VariantAnnotation’:

##

compose, name, stats

library(GenomicFeatures)

data(cstest)

unique(seqnames(cstest))

CompressedCharacterList of length 2

[["ctcf"]] chr10 chr11 chr12

[["gfp"]] chr10 chr11 chr12

subset

chrs <- c("chr10", "chr11", "chr12")

cstest <- keepSeqlevels(cstest, chrs)

estimate fragment length

fraglen <- estimate.mean.fraglen(cstest$ctcf)

fraglen[!is.na(fraglen)]

chr10 chr11 chr12

179.7 172.5 181.7

that's around 200 cstest.gr <- stack(cstest) head(cstest.gr)

cstest.ext <- resize(cstest.gr, width = 200) extending them

ctcf.ext <- resize(cstest$ctcf, width = 200)

cov.ctcf <- coverage(ctcf.ext)

gfp.ext <- resize(cstest$gfp, width = 200)

cov.gfp <- coverage(gfp.ext)

estimate peak cutoff

peakCutoff(cov.ctcf, fdr = 1e-04)

[1] 6.96

we can use 8

To understand why we are extending reads to estimated fragment lengths, we first find two peaks that from
negative/positive strands separately which close to each other. Then we simply visualize that region and compare
it to what it is after extending.

235

c.p <- cstest$ctcf[seqnames(cstest$ctcf) == "chr10" & strand(cstest$ctcf) ==

"+",]

c.n <- cstest$ctcf[seqnames(cstest$ctcf) == "chr10" & strand(cstest$ctcf) ==

"-",]

cov.p <- coverage(c.p)

cov.n <- coverage(c.n)

v1 <- viewWhichMaxs(slice(cov.p, lower = 8))$chr10

v2 <- viewWhichMaxs(slice(cov.n, lower = 8))$chr10

res <- expand.grid(v1, v2)

wh <- as.numeric(res[order(abs(res[, 1] - res[, 2]))[1],])

gr.wh <- GRanges("chr10", IRanges(wh[1], wh[2]))

gr.wh <- resize(gr.wh, width(gr.wh) + 200, fix = "center")

Then we use ggbio to visualize those short reads first, notice they are shorter(width:24) than esitmated fragment
lengths(200). That may make one single peak looks like two peaks. Here we use autoplot for object GRanges.
To tell different reads from different strand, we facet and filled the rectangles by strands. Figure 13.1 shows the
effect of resizing.

Keep in mind, you don’t want to viualize all the short reads at once, that’s going to be crazily slow for NGS data,
and it’s not useful for exploration. In this example, we subset the reads by small region, that will give you quick
response. For genome-wide visualization, you should try from autoplot for Rle or RleList method, which is
lots faster and meaningful, we will introduce this method soon in this tutorial.

236

library(ggbio)

ctcf.sub <- subsetByOverlaps(cstest$ctcf, gr.wh)

p1 <- autoplot(ctcf.sub, aes(fill = strand), facets = strand ~ .)

ctcf.ext.sub <- subsetByOverlaps(ctcf.ext, gr.wh)

p2 <- autoplot(ctcf.ext.sub, aes(fill = strand), facets = strand ~ .)

tracks(original = p1, extending = p2, heights = c(3, 5))

or
ig

in
al

+
−

strand

+

−

ex
te

nd
in

g

+
−

strand

+

−

76298400 76298500 76298600 76298700 76298800

Figure 13.1: A small region on chromosome 10, each track are faceted by strand. Top track shows short
reads of around width 24, and bottom track shows the same data with extending width to 200. The order
of short reads are randomly assigned at different levels, so hard to match each reads at exactly the same
position.

237

Maybe reads are not quite easy to perceive the effect of resizing, we use statistical transformation “coverage”
to make better illustration. In Figure 13.2, you can clearly see why we need to extending reads to get a better
estimation of peaks. In this plot, two peaks are about to merge together to one single peak. That means most
possible, there are only one binding site.

238

ctcf.sub <- subsetByOverlaps(cstest$ctcf, gr.wh)

p1 <- autoplot(ctcf.sub, aes(fill = strand), facets = strand ~ ., stat = "coverage",

geom = "area")

ctcf.ext.sub <- subsetByOverlaps(ctcf.ext, gr.wh)

p2 <- autoplot(ctcf.ext.sub, aes(fill = strand), facets = strand ~ ., stat = "coverage",

geom = "area")

tracks(original = p1, extending = p2)

or
ig

in
al 0

2

4

6

8

0

2

4

6

8

+
−

C
ov

er
ag

e strand

+

−

ex
te

nd
in

g

0

10

20

30

0

10

20

30

+
−

C
ov

er
ag

e strand

+

−

76.2984 Mb 76.2985 Mb 76.2986 Mb 76.2987 Mb 76.2988 Mb

Figure 13.2: A small region on chromosome 10, each track are faceted by strand. Top track shows coverage
of short reads of around width 24, and bottom track shows the same data with extending width to 200.
Clearly two peaks are tend to merge to one single peak after resizing.

239

Finding islands and genome-wide visualization

As mentioned before, to visualize genonme-wide information, short-reads visualization is absolutely not recom-
mended, a summary is way much better. We can compuate coveage as Rle (Run Length Encode), so we can
perform efficient summary transformation like finding islands over certain cutoff, or bin them and show summary
value as heatmap or bar chart.

In the following examples, we tried different visualization method.

There are three statistical transformation for object Rle and Rle:

• bin:(default). Bin the object and compute summary based on summary types mentioned below. nbin

controls how many bins you want. geom heatmap and bar(default) supported.

• slice: slice the object based on certain cutoffs to generate islands, use specified summary method to generate
values. geom rect, bar, heatmap to many other geoms such as point, line, area are supported.

• identity: raw sequence. Be careful if this object is too long to be visualized!

There are four types of summary method for statistical transformation bin and slice

• ViewSums: Sums for each sliced island or bins.

• ViewMaxs: Maxs for each sliced island or bins.

• ViewMeans: Means for each sliced island or bins.

• ViewMins: Mins for each sliced island or bins.

Figure 13.3 shows a default track.

240

library(ggbio)

p1 <- autoplot(cov.ctcf)

Default use binwidth: range/30

p2 <- autoplot(cov.gfp)

Default use binwidth: range/30

tracks(ctcf = p1, gfp = p2)

ct
cf

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

chr10
chr11

chr12

y

gf
p

0
300000
600000
900000

1200000

0
300000
600000
900000

1200000

0
300000
600000
900000

1200000

chr10
chr11

chr12

y

0e+00 5e+07 1e+08

Figure 13.3: Use default statistical transformation ”bin” and geom ”bar” to represent default smumary
ViewSums.

241

We may notice it’s hard to compare the summary if limits on y are different, we have two ways to make them on
the same scale. Because tracks by default keep original plots’ y scale while change and align their x-scale.

• Aggregate all data into one single data and facet by samples.

• use “+” method to change overall y limits as shown in Figure 13.4.

242

library(ggbio)

p1 <- autoplot(cov.ctcf)

Default use binwidth: range/30

p2 <- autoplot(cov.gfp)

Default use binwidth: range/30

doesn't work?

tracks(ctcf = p1, gfp = p2) + coord_cartesian(ylim = c(0, 2e+06))

ct
cf

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

chr10
chr11

chr12

y

gf
p

0
300000
600000
900000

1200000

0
300000
600000
900000

1200000

0
300000
600000
900000

1200000

chr10
chr11

chr12

y

0e+00 5e+07 1e+08

work with ylim

tracks(ctcf = p1, gfp = p2) + ylim(0, 2e+06)

Warning: Removed 2 rows containing missing values (position stack).

Warning: Removed 2 rows containing missing values (position stack).

ct
cf

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

chr10
chr11

chr12

y

gf
p

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

chr10
chr11

chr12

y

0e+00 5e+07 1e+08

Figure 13.4: Use default statistical transformation ”bin” and geom ”bar” to represent default smumary
ViewSums, and keep y limits on the same scale.

243

Let’s view maxs instead of sums as shown in Figure 13.5.

244

p1 <- autoplot(cov.ctcf, type = "viewMaxs")

Default use binwidth: range/30

p2 <- autoplot(cov.gfp, type = "viewMaxs")

Default use binwidth: range/30

tracks(ctcf = p1, gfp = p2) + ylim(c(0, 2e+06))

Warning: Removed 2 rows containing missing values (position stack).

Warning: Removed 2 rows containing missing values (position stack).

ct
cf

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

chr10
chr11

chr12

y

gf
p

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

0
500000

1000000
1500000
2000000

chr10
chr11

chr12

y

0e+00 5e+07 1e+08

Figure 13.5: Use default statistical transformation ”bin” and geom ”bar” to represent summary ViewMaxs,
and keep y limits on the same scale.

245

We can change bin numbers as shown in Figure 13.6

p1 <- autoplot(cov.ctcf, type = "viewMaxs", nbin = 100)

Default use binwidth: range/100

p2 <- autoplot(cov.gfp, type = "viewMaxs", nbin = 100)

Default use binwidth: range/100

tracks(ctcf = p1, gfp = p2) + ylim(0, 1e+06)

ct
cf

0
250000
500000
750000

1000000

0
250000
500000
750000

1000000

0
250000
500000
750000

1000000

chr10
chr11

chr12

y

gf
p

0
250000
500000
750000

1000000

0
250000
500000
750000

1000000

0
250000
500000
750000

1000000

chr10
chr11

chr12

y

0e+00 5e+07 1e+08

Figure 13.6: Use default statistical transformation ”bin” and geom ”bar” to represent summary ViewMaxs,
with bin number changed to 100, and keep y limits on the same scale.

246

Try heatmap as shown in Figure 13.7, When you use tracks function to bind plots, please pay attention that, the
color scale might be different which is critical for your judge. So in the following code, I add some add-on control
to make sure it’s on the same scale.

247

p1 <- autoplot(cov.ctcf, type = "viewMeans", nbin = 100, geom = "heatmap")

Default use binwidth: range/100

p2 <- autoplot(cov.gfp, type = "viewMeans", nbin = 100, geom = "heatmap")

Default use binwidth: range/100

tracks(ctcf = p1, gfp = p2) + scale_fill_continuous(limits = c(0, 8e+05)) +

scale_color_continuous(limits = c(0, 8e+05))

ct
cf

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

chr10
chr11

chr12

y

0e+00

2e+05

4e+05

6e+05

8e+05
y

gf
p

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

chr10
chr11

chr12

y

0e+00

2e+05

4e+05

6e+05

8e+05
y

0e+00 5e+07 1e+08

Figure 13.7: Use default statistical transformation ”bin” and geom ”heatmap” to represent summary View-
Maxs, with bin number changed to 100

248

Try statistical transformation “slice” as shown in Figure 13.8, we use an estimated cutoff 8 to define islands.

p1 <- autoplot(cov.ctcf, type = "viewMaxs", stat = "slice", lower = 8)

p2 <- autoplot(cov.gfp, type = "viewMaxs", stat = "slice", lower = 8)

tracks(ctcf = p1, gfp = p2) + ylim(0, 15000)

Warning: Removed 2 rows containing missing values (geom segment).

Warning: Removed 2 rows containing missing values (geom segment).

ct
cf

0

5000

10000

15000

0

5000

10000

15000

0

5000

10000

15000

chr10
chr11

chr12

y

gf
p 0

5000

10000

15000

0

5000

10000

15000

chr10
chr11

y

0e+00 5e+07 1e+08

Figure 13.8: Use default statistical transformation ”slice” and geom vertical ”segment” to represent summary
ViewMaxs, with lower cutoff 8

249

Notice in Figure 13.8, chromosome with no data are dropped automatically, if you want to keep the chromosomes
based on chromosome levels you passed, you can use argument drop to control this as shown in Figure 13.9

p1 <- autoplot(cov.ctcf, type = "viewMaxs", stat = "slice", lower = 8)

p2 <- autoplot(cov.gfp, type = "viewMaxs", stat = "slice", lower = 8, drop = FALSE)

tracks(ctcf = p1, gfp = p2) + ylim(0, 15000)

Warning: Removed 2 rows containing missing values (geom segment).

Warning: Removed 2 rows containing missing values (geom segment).

ct
cf

0

5000

10000

15000

0

5000

10000

15000

0

5000

10000

15000

chr10
chr11

chr12

y

gf
p

0

5000

10000

15000

0

5000

10000

15000

0

5000

10000

15000

chr10
chr11

chr12

y

0e+00 5e+07 1e+08

Figure 13.9: Use default statistical transformation ”slice” and geom vertical ”segment” to represent summary
ViewMaxs, with lower cutoff 8

250

We can use geom “rect” to just see the region of island as shown in Figure 13.10

p1 <- autoplot(cov.ctcf, stat = "slice", lower = 5, geom = "rect")

p2 <- autoplot(cov.gfp, stat = "slice", lower = 5, geom = "rect")

tracks(ctcf = p1, gfp = p2)

ct
cf

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

chr10
chr11

chr12

y

gf
p

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

chr10
chr11

chr12

y

0e+00 5e+07 1e+08

Figure 13.10: Use default statistical transformation ”slice” and geom vertical ”rect” to represent island
region. Wider rectangle means wider island.

251

Finally, let’s try geom “heatmap”.

13.10

p1 <- autoplot(cov.ctcf, type = "viewMaxs", stat = "slice", lower = 8, geom = "heatmap")

p2 <- autoplot(cov.gfp, type = "viewMaxs", stat = "slice", lower = 8, geom = "heatmap",

drop = FALSE)

tracks(ctcf = p1, gfp = p2) + scale_fill_continuous(limits = c(1000, 6000)) +

scale_color_continuous(limits = c(1000, 6000))

ct
cf

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

chr10
chr11

chr12

y

1000

2000

3000

4000

5000

6000
y

gf
p

0
1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

chr10
chr11

chr12

y

1000

2000

3000

4000

5000

6000
y

0e+00 5e+07 1e+08

Figure 13.11: Use default statistical transformation ”slice” and geom vertical ”rect” to represent island
region. Wider rectangle means wider island.

252

Constructing tracks with ideogram and genomic features

Most time, we only want to visualize a small region on the genome with annotation data to help us understand
the biological significance or form hypothesis.

In this section, we try to find a region that ...,

peaks.ctcf <- slice(cov.ctcf, lower = 8)

peaks.gfp <- slice(cov.gfp, lower = 8)

this function is from vignette of chipseq

peakSummary <- diffPeakSummary(peaks.gfp, peaks.ctcf)

peakSummary <- within(peakSummary, {
diffs <- asinh(sums2) - asinh(sums1)

resids <- (diffs - median(diffs))/mad(diffs)

up <- resids > 2

down <- resids < -2

change <- ifelse(up, "up", ifelse(down, "down", "flat"))

})
ps.down <- peakSummary[peakSummary$change == "down" & peakSummary$space ==

"chr11",]

pk.down <- ps.down[order(ps.down$diffs),]

pk.down

RangedData with 22 rows and 10 value columns across 3 spaces

space ranges | comb.max sums1 sums2

<factor> <IRanges> | <integer> <integer> <integer>

1 chr11 [3082329, 3082373] | 9 360 11

2 chr11 [3096046, 3096092] | 9 376 47

3 chr11 [3078056, 3078070] | 9 120 15

4 chr11 [3074248, 3074257] | 9 80 10

5 chr11 [3060223, 3060234] | 10 96 17

6 chr11 [3064802, 3064843] | 10 336 71

7 chr11 [3078072, 3078123] | 11 436 98

8 chr11 [3053546, 3053565] | 10 160 40

9 chr11 [3054994, 3054997] | 10 32 8

...

14 chr11 [3043396, 3043497] | 14 867 299

15 chr11 [3053477, 3053510] | 12 282 102

16 chr11 [3077140, 3077157] | 11 144 54

17 chr11 [3042270, 3042278] | 11 72 27

18 chr11 [3077516, 3077671] | 14 1422 540

19 chr11 [3082415, 3082505] | 14 804 326

20 chr11 [3092597, 3092611] | 12 120 51

21 chr11 [3079874, 3079905] | 12 256 115

22 chr11 [3064758, 3064781] | 12 192 87

maxs1 maxs2 change diffs down resids

<integer> <integer> <character> <numeric> <logical> <numeric>

1 8 1 down -3.486 TRUE -2.779

2 8 1 down -2.079 TRUE -2.386

3 8 1 down -2.078 TRUE -2.386

4 8 1 down -2.077 TRUE -2.385

253

5 8 2 down -1.730 TRUE -2.288

6 8 2 down -1.554 TRUE -2.239

7 9 3 down -1.493 TRUE -2.222

8 8 2 down -1.386 TRUE -2.192

9 8 2 down -1.383 TRUE -2.191

...

14 10 4 down -1.0646 TRUE -2.102

15 9 3 down -1.0169 TRUE -2.089

16 8 3 down -0.9808 TRUE -2.079

17 8 3 down -0.9805 TRUE -2.079

18 11 5 down -0.9682 TRUE -2.076

19 9 5 down -0.9027 TRUE -2.057

20 8 4 down -0.8556 TRUE -2.044

21 8 4 down -0.8002 TRUE -2.029

22 8 4 down -0.7916 TRUE -2.026

up

<logical>

1 FALSE

2 FALSE

3 FALSE

4 FALSE

5 FALSE

6 FALSE

7 FALSE

8 FALSE

9 FALSE

... ...

14 FALSE

15 FALSE

16 FALSE

17 FALSE

18 FALSE

19 FALSE

20 FALSE

21 FALSE

22 FALSE

##

library(TxDb.Mmusculus.UCSC.mm9.knownGene)

txdb <- TxDb.Mmusculus.UCSC.mm9.knownGene

tx <- transcripts(txdb)

gn <- transcriptsBy(txdb, by = "gene")

fu <- fiveUTRsByTranscript(txdb)

idx <- which(countOverlaps(as(pk.down, "GRanges"), flank(fu, width = 100)) ==

1)

wh.p <- as(pk.down[idx[2],], "GRanges")

wh.pw <- resize(wh.p, width = 30000, fix = "center")

Since mouse ideogram is not default data in ggbio, you need to get that information from UCSC, there is another

254

vignette talking about how to create ideogram.

We create this ideogram with zoomed region.

library(biovizBase)

mm9 <- getIdeogram("mm9")

Loading...

Done

cyto.def <- getOption("biovizBase")$cytobandColor

cyto.new <- c(cyto.def, c(gpos33 = "grey80", gpos66 = "grey60"))

p.ideo <- plotIdeogram(mm9, "chr10", zoom = c(start(wh.pw), end(wh.pw))) +

scale_fill_manual(values = cyto.new)

print(p.ideo)

chr10

chr10

ch
r1

0

Figure 13.12: Ideogram for mouse chromosome 10

255

p.gene <- autoplot(txdb, which = wh.pw)

Aggregating TranscriptDb...

Parsing exons...

Parsing cds...

Parsing transcripts...

Aggregating...

Done

Constructing graphics...

13.2 Mismatch summary

13.2.1 Introduction

stat mismatch is lower level API to read in a bam file and show mismatch summary for certain region, counts at
each position are summarized, those reads which are identical as reference will be either shown as gray background
or removed, it’s controled by argument ‘show.coverage‘, mismatched part will be shown as color-coded bar or
segment.

Objects supported:

• Bamfile

• GRanges. this will pass interval checking which make sure the GRanges has required columns.

13.2.2 Usage

Low level API: stat mismatch

Load packages

library(ggbio)

library(BSgenome.Hsapiens.UCSC.hg19)

data("genesymbol", package = "biovizBase")

Load example bam file

bamfile <- system.file("extdata", "SRR027894subRBM17.bam", package = "biovizBase")

library(Rsamtools)

bf <- BamFile(bamfile)

256

coverage

cstest.s <- stack(cstest)

cstest.s <- resize(cstest.s, width = 200)

cstest.sub <- subsetByOverlaps(cstest.s, wh.pw)

p.cov <- autoplot(cstest.sub, stat = "coverage", facets = sample ~ ., geom = "area")

ideogram

tracks(p.ideo, coverage = p.cov, gene = p.gene, xlim = as(wh.pw, "GRanges"),

heights = c(1, 5, 5))

chr10

chr10

co
ve

ra
ge

0
10
20
30
40

0
10
20
30
40

ctcf
gfp

C
ov

er
ag

e

ge
ne

uc007hsb.1(78887)

uc007hsa.1(78887)

uc007hrx.1(78887)

uc007hru.1(78887)

uc007hrt.1(78887)

3.065 Mb 3.07 Mb 3.075 Mb 3.08 Mb 3.085 Mb 3.09 Mb

Figure 13.13: Tracks showing one strong peak in cfcf.

257

If the object is BamFile, a BSgenome object is required to compute the mismatch summary. in the following
code, coord cartesian function is a ggplot2 function which zoom in/out, function theme bw is a customized
theme in ggplot2 which will give you a grid and white background.

Sometimes bam file and BSgenome object might have a different naming schema for chromosomes, currently,
stat mismatch is not smart enough to deal with complicated cases, in this way, you may want to get mismatch
summary as GRanges yourself and correct the names, with keepSeqlevels or renamesSeqleves functions in
package GenomicRanges. Following examples doesn’t show you how to manipulate seqnames, but just show you
how to compute mismatch summary.

library(biovizBase)

pgr <- pileupAsGRanges(bamfile, region = genesymbol["RBM17"])

pgr.match <- pileupGRangesAsVariantTable(pgr, genome = Hsapiens)

And directly plot the mismatch GRanges object, at the same time hide coverage background.

Then we compare geom ’bar’ and ’segment’, ’bar’ is useful when zoomed in to a small region.

autoplot

autoplot for object Bamfile have a statistical transformation called mismatch, this is a wrapper over lower level
function stat mismatch.

258

ggplot(bf) + stat_mismatch(which = genesymbol["RBM17"], bsgenome = Hsapiens,

show.coverage = TRUE) + coord_cartesian(xlim = c(6134000, 6135000)) +

theme_bw()

Object of class "ggbio"

0

50

100

150

6134000 6134250 6134500 6134750 6135000
Genomic Coordinates

C
ou

nt
s

read

A

C

G

T

NULL

Figure 13.14: Mismatch summary for gene RBM17. Background is coverage shown as gray color, and only
mismatched reads are shown with different color.

259

ggplot() + stat_mismatch(pgr.match)

0

50

100

150

6132500 6135000 6137500
Genomic Coordinates

C
ou

nt
s

read

A

C

G

T

Figure 13.15: Mismatch summary without coverage

260

p1 <- ggplot() + stat_mismatch(pgr.match, show.coverage = FALSE, geom = "bar") +

xlim(6132060, 6132120) + ylim(0, 10)

p2 <- ggplot() + stat_mismatch(pgr.match, geom = "segment") + xlim(6132060,

6132120) + ylim(0, 10)

tracks(segment = p2, bar = p1) + scale_x_sequnit("Mb")

Warning: Removed 1 rows containing missing values (geom segment).

Warning: Removed 2 rows containing missing values (geom segment).

Warning: Removed 2 rows containing missing values (geom segment).

Warning: Removed 1 rows containing missing values (geom segment).

Warning: Removed 2 rows containing missing values (geom segment).

Warning: Removed 2 rows containing missing values (geom segment).

se
gm

en
t

0.0

2.5

5.0

7.5

10.0

C
ou

nt
s

read

A

C

G

T

ba
r

0.0

2.5

5.0

7.5

10.0

C
ou

nt
s

read

A

C

G

T

6.13206 Mb 6.13208 Mb 6.1321 Mb 6.13212 Mb

Figure 13.16: Mismatch summary without coverage

261

autoplot(bf, which = genesymbol["RBM17"], bsgenome = Hsapiens, show.coverage = TRUE,

stat = "mismatch", geom = "bar") + xlim(6132060, 6132120) + ylim(0, 10)

0.0

2.5

5.0

7.5

10.0

6132060 6132070 6132080 6132090 6132100 6132110 6132120

C
ou

nt
s

read

A

C

G

T

Figure 13.17: autoplot API to show the same plot

262

Chapter 14

Reference

263

Chapter 15

Appendix

15.1 Session Information

sessionInfo()

R version 2.15.2 (2012-10-26)

Platform: x86_64-unknown-linux-gnu (64-bit)

##

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

##

attached base packages:

[1] grid stats graphics grDevices utils datasets

[7] methods base

##

other attached packages:

[1] TxDb.Mmusculus.UCSC.mm9.knownGene_2.8.0

[2] chipseq_1.8.0

[3] ShortRead_1.16.3

[4] latticeExtra_0.6-24

[5] RColorBrewer_1.0-5

[6] lattice_0.20-13

[7] biovizBase_1.6.2

[8] BSgenome.Hsapiens.UCSC.hg19_1.3.19

[9] BSgenome_1.26.1

[10] VariantAnnotation_1.4.6

[11] genefilter_1.40.0

[12] vsn_3.26.0

264

[13] Rsamtools_1.10.2

[14] Biostrings_2.26.2

[15] TxDb.Hsapiens.UCSC.hg19.knownGene_2.8.0

[16] GenomicFeatures_1.10.1

[17] AnnotationDbi_1.20.3

[18] Biobase_2.18.0

[19] rtracklayer_1.18.2

[20] GenomicRanges_1.10.6

[21] IRanges_1.16.4

[22] BiocGenerics_0.4.0

[23] ggbio_1.6.6

[24] ggplot2_0.9.3

[25] codetools_0.2-8

[26] knitr_1.0

##

loaded via a namespace (and not attached):

[1] BiocInstaller_1.8.3 DBI_0.2-5 Hmisc_3.10-1

[4] MASS_7.3-23 RCurl_1.95-3 RSQLite_0.11.2

[7] XML_3.95-0.1 affy_1.36.0 affyio_1.26.0

[10] annotate_1.36.0 biomaRt_2.14.0 bitops_1.0-5

[13] cluster_1.14.3 colorspace_1.2-0 dichromat_1.2-4

[16] digest_0.6.0 evaluate_0.4.3 formatR_0.7

[19] gridExtra_0.9.1 gtable_0.1.2 hwriter_1.3

[22] labeling_0.1 limma_3.14.4 munsell_0.4

[25] parallel_2.15.2 plyr_1.8 preprocessCore_1.20.0

[28] proto_0.3-10 reshape2_1.2.2 scales_0.2.3

[31] splines_2.15.2 stats4_2.15.2 stringr_0.6.2

[34] survival_2.37-2 tools_2.15.2 xtable_1.7-0

[37] zlibbioc_1.4.0

265

	An Introduction to ggbio
	Introduction
	Documentation
	Support
	Installation
	Citation

	Quick start
	Tracks: bind and align plots
	Objective
	Motivation
	Usage
	A minimal example for ggplot2 graphics
	Labeling and naming a track
	Arith method +
	Modification
	Customized themes for plots and tracks
	Zoom in/out
	Backup/restore utilities
	Reset and backup

	Discussion

	mold method
	ggplot generic method and low level utilities
	Objective
	ggplot
	Components

	Autoplot method
	API
	Usage
	autoplot,GRanges
	autoplot,Seqinfo
	autoplot,IRanges
	autoplot,GRangesList
	autoplot,Rle
	autoplot,RleList
	autoplot,TranscriptDb
	autoplot,GappedAlignment
	autoplot,BamFile
	autoplot,character
	autoplot,matrix
	autoplot, Views
	autoplot, ExpressionSet
	autoplot, SummarizedExperiment
	autoplot,VCF
	autoplot,BSgenome

	Ideogram
	Introduction
	Usage
	Visualization of ideogram for single chromosome
	Get ideogram or customize the colors
	Plot ideogram directly from Seqinfo

	Visualize genomic features
	Introduction
	Usage
	autoplot
	geom_alignment

	Circular view
	Introduction
	Tutorial
	Step 1: understand the layout circle
	Step 2: get your data ready to plot
	Step 3: low level API: layout_circle
	Step 4: Complex arragnment of plots

	Manhattan plot
	Introduction
	Understand the new coordinate
	Step 2: Simulate a SNP data set
	Step 3: Start to make Manhattan plot by using autoplot
	Convenient plotGrandLinear function

	Karyogram overview
	Introduction
	Usage
	autoplot
	plotKaryogram
	layout_karyogram

	Ranges-link-to-data plot
	Introduction

	Case studies
	Chip-seq
	Introduction
	Usage

	Mismatch summary
	Introduction
	Usage

	Reference
	Appendix
	Session Information

