
Analysis of Bead-summary Data using beadarray

Mark Dunning

October 8, 2012

Introduction

The BeadArray technology involves randomly arranged arrays of beads, with beads having the same
probe sequence attached colloquially known as a bead-type. BeadArrays are combined in parallel on
either a rectangular chip (BeadChip) or a matrix of 8 by 12 hexagonal arrays (Sentrix Array Matrix
or SAM). The BeadChip is further divided into strips on the surface known as sections, with each
section giving rise to a different image when scanned by BeadScan. These images, and associated text
files, comprise the raw data for a beadarray analysis. However, for BeadChips, the number of sections
assigned to each biological sample may vary from 1 on HumanHT12 chips, 2 on HumanWG6 chips or
sometimes ten or more for SNP chips with large numbers of SNPs being investigated.

This vignette demonstrates the analysis of bead summary data using beadarray. The recommended
approach to obtain these data is to start with bead-level data and follow the steps illustrated in the
vignette beadlevel.pdf distributed with beadarray. If bead-level data are not available, the output of
Illumina’s BeadStudio or GenomeStudio can be read by beadarray. Example code to do this is provided
at the end of this vignette. However, the same object types are produced from either of these routes
and the same functionality is available.

To make the most use of the code in this vignette, you will need to install the beadarrayExampleData
and illuminaHumanv3.db packages from Bioconductor.

> source("http://www.bioconductor.org/biocLite.R")

> biocLite(c("beadarrayExampleData", "illuminaHumanv3.db"))

The code used to produce these example data is given in the vignette of beadarrayExampleData,
which follow similar steps to those described in the beadlevel.pdf vignette of beadarray. The following
commands give a basic description of the data.

> library("beadarray")

> require(beadarrayExampleData)

> data(exampleSummaryData)

> exampleSummaryData

ExpressionSetIllumina (storageMode: list)

assayData: 49576 features, 12 samples

element names: exprs, se.exprs, nObservations

protocolData: none

phenoData

rowNames: 4613710017_B 4613710052_B ... 4616494005_A (12 total)

varLabels: sampleID SampleFac

varMetadata: labelDescription

featureData

featureNames: ILMN_1802380 ILMN_1893287 ... ILMN_1846115 (49576

1

total)

fvarLabels: ArrayAddressID IlluminaID Status

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: Humanv3

QC Information

Available Slots:

QC Items: Date, Matrix, ..., SampleGroup, numBeads

sampleNames: 4613710017_B, 4613710052_B, ..., 4616443136_A, 4616494005_A

Summarized data are stored in an object of type ExpressionSetIllumina which is an extension of the
ExpressionSet class developed by the Bioconductor team as a container for data from high-throughput
assays. Objects of this type use a series of slots to store the data. For consistency with the definition
of other ExpressionSet objects, we refer to the expression values as the exprs matrix (this stores the
probe-specific average intensities) which can be accessed using exprs and subset in the usual manner.
The se.exprs matrix, which stores the probe-specific variability can be accessed using se.exprs. You
may notice that the expression values have already been transformed to the log2 scale, which is an
option in the summarize function in beadarray. Data exported from BeadStudio or GenomeStudio will
usually be un-transformed and on the scale 0 to 216.

> exprs(exampleSummaryData)[1:5, 1:5]

G:4613710017_B G:4613710052_B G:4613710054_B G:4616443079_B

ILMN_1802380 8.454468 8.616796 8.523001 8.420796

ILMN_1893287 5.388161 5.419345 5.162849 5.133287

ILMN_1736104 5.268626 5.457679 5.012766 4.988511

ILMN_1792389 6.767519 7.183788 6.947624 7.168571

ILMN_1854015 5.556947 5.721614 5.595413 5.520391

G:4616443093_B

ILMN_1802380 8.527748

ILMN_1893287 5.221987

ILMN_1736104 5.284026

ILMN_1792389 7.386435

ILMN_1854015 5.558717

> se.exprs(exampleSummaryData)[1:5, 1:5]

G:4613710017_B G:4613710052_B G:4613710054_B G:4616443079_B

ILMN_1802380 0.2833023 0.3367157 0.2750020 0.4141796

ILMN_1893287 0.3963681 0.3882834 0.5516421 0.6761106

ILMN_1736104 0.4704854 0.4951260 0.4031143 0.5276266

ILMN_1792389 0.4038533 0.4728013 0.5032908 0.3447242

ILMN_1854015 0.5663066 0.3783570 0.5511991 0.5358812

G:4616443093_B

ILMN_1802380 0.3581862

ILMN_1893287 0.4448673

ILMN_1736104 0.4864355

ILMN_1792389 0.3951935

ILMN_1854015 0.6748219

2

feature and pheno data

The fData and pData functions are useful shortcuts to find more information about the features (rows)
and samples (columns) in the summary object. These annotations are created automatically whenever
a bead-level data is summarized (see beadlevel.pdf) or read from a BeadStudio file. The fData will
be added to later, but initially contains information on whether each probe is a control or not. In this
example the phenoData denotes the sample group for each array; either Brain or UHRR (Universal
Human Reference RNA).

> head(fData(exampleSummaryData))

ArrayAddressID IlluminaID Status

ILMN_1802380 10008 ILMN_1802380 regular

ILMN_1893287 10010 ILMN_1893287 regular

ILMN_1736104 10017 ILMN_1736104 regular

ILMN_1792389 10019 ILMN_1792389 regular

ILMN_1854015 10020 ILMN_1854015 regular

ILMN_1904757 10021 ILMN_1904757 regular

> table(fData(exampleSummaryData)[, "Status"])

biotin cy3_hyb

2 2

cy3_hyb,low_stringency_hyb housekeeping

4 7

labeling low_stringency_hyb

2 4

negative regular

759 48796

> pData(exampleSummaryData)

sampleID SampleFac

4613710017_B 4613710017_B UHRR

4613710052_B 4613710052_B UHRR

4613710054_B 4613710054_B UHRR

4616443079_B 4616443079_B UHRR

4616443093_B 4616443093_B UHRR

4616443115_B 4616443115_B UHRR

4616443081_B 4616443081_B Brain

4616443081_H 4616443081_H Brain

4616443092_B 4616443092_B Brain

4616443107_A 4616443107_A Brain

4616443136_A 4616443136_A Brain

4616494005_A 4616494005_A Brain

Subsetting the data

There are various way to subset an ExpressionSetIllumina object, each of which returns an Expression-
SetIllumina with the same slots, but different dimensions. When bead-level data are summarized by
beadarray there is an option to apply different transformation options, and save the results as different
channels in the resultant object. For instance, if summarizing two-colour data one might be interested

3

in summarizing the red and green channels, or some combination of the two, separately. Both log2 and
un-logged data are stored in the exampleSummaryData object and can be accessed by using the channel
function. Both the rows and columns in the resultant ExpressionSetIllumina object are kept in the
same order.

> channelNames(exampleSummaryData)

[1] "G" "G.ul"

> exampleSummaryData.log2 <- channel(exampleSummaryData, "G")

> exampleSummaryData.unlogged <- channel(exampleSummaryData, "G.ul")

> sampleNames(exampleSummaryData.log2)

[1] "4613710017_B" "4613710052_B" "4613710054_B" "4616443079_B" "4616443093_B"

[6] "4616443115_B" "4616443081_B" "4616443081_H" "4616443092_B" "4616443107_A"

[11] "4616443136_A" "4616494005_A"

> sampleNames(exampleSummaryData.unlogged)

[1] "4613710017_B" "4613710052_B" "4613710054_B" "4616443079_B" "4616443093_B"

[6] "4616443115_B" "4616443081_B" "4616443081_H" "4616443092_B" "4616443107_A"

[11] "4616443136_A" "4616494005_A"

> exprs(exampleSummaryData.log2)[1:10, 1:3]

4613710017_B 4613710052_B 4613710054_B

ILMN_1802380 8.454468 8.616796 8.523001

ILMN_1893287 5.388161 5.419345 5.162849

ILMN_1736104 5.268626 5.457679 5.012766

ILMN_1792389 6.767519 7.183788 6.947624

ILMN_1854015 5.556947 5.721614 5.595413

ILMN_1904757 5.421553 5.320500 5.522316

ILMN_1740305 5.417821 5.623998 5.720007

ILMN_1665168 5.321087 5.155455 4.967601

ILMN_2375156 5.894207 6.076418 5.638877

ILMN_1705423 5.426463 4.806624 5.357688

> exprs(exampleSummaryData.unlogged)[1:10, 1:3]

4613710017_B 4613710052_B 4613710054_B

ILMN_1802380 356.88235 396.46875 367.81481

ILMN_1893287 40.85000 44.29167 38.42105

ILMN_1736104 40.53333 46.50000 33.46154

ILMN_1792389 112.90909 153.17647 122.65000

ILMN_1854015 50.47059 53.26087 51.57143

ILMN_1904757 41.45833 42.10000 49.92593

ILMN_1740305 38.45455 51.50000 46.21429

ILMN_1665168 42.38889 37.95000 30.46154

ILMN_2375156 61.47368 72.73913 52.46154

ILMN_1705423 42.38889 28.14286 38.62500

As we have seen, the expression matrix of the ExpressionSetIllumina object can be subset by
column or row, In fact, the same subset operations can be performed on the ExpressionSetIllumina

object itself. In the following code, notice how the number of samples and features changes in the
output.

4

> exampleSummaryData.log2[, 1:4]

ExpressionSetIllumina (storageMode: list)

assayData: 49576 features, 4 samples

element names: exprs, se.exprs, nObservations

protocolData: none

phenoData

rowNames: 4613710017_B 4613710052_B 4613710054_B 4616443079_B

varLabels: sampleID SampleFac

varMetadata: labelDescription

featureData

featureNames: ILMN_1802380 ILMN_1893287 ... ILMN_1846115 (49576

total)

fvarLabels: ArrayAddressID IlluminaID Status

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: Humanv3

QC Information

Available Slots:

QC Items: Date, Matrix, ..., SampleGroup, numBeads

sampleNames: 4613710017_B, 4613710052_B, 4613710054_B, 4616443079_B

> exampleSummaryData.log2[1:10,]

ExpressionSetIllumina (storageMode: list)

assayData: 10 features, 12 samples

element names: exprs, se.exprs, nObservations

protocolData: none

phenoData

rowNames: 4613710017_B 4613710052_B ... 4616494005_A (12 total)

varLabels: sampleID SampleFac

varMetadata: labelDescription

featureData

featureNames: ILMN_1802380 ILMN_1893287 ... ILMN_1705423 (10 total)

fvarLabels: ArrayAddressID IlluminaID Status

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: Humanv3

QC Information

Available Slots:

QC Items: Date, Matrix, ..., SampleGroup, numBeads

sampleNames: 4613710017_B, 4613710052_B, ..., 4616443136_A, 4616494005_A

The object can also be subset by a vector of characters which must correspond to the names of
features (i.e. row names). Currently, no analogous functions is available to subset by sample.

> randIDs <- sample(featureNames(exampleSummaryData), 1000)

> exampleSummaryData[randIDs,]

ExpressionSetIllumina (storageMode: list)

assayData: 1000 features, 12 samples

element names: exprs, se.exprs, nObservations

5

protocolData: none

phenoData

rowNames: 4613710017_B 4613710052_B ... 4616494005_A (12 total)

varLabels: sampleID SampleFac

varMetadata: labelDescription

featureData

featureNames: ILMN_1863261 ILMN_1754580 ... ILMN_2307656 (1000 total)

fvarLabels: ArrayAddressID IlluminaID Status

fvarMetadata: labelDescription

experimentData: use 'experimentData(object)'
Annotation: Humanv3

QC Information

Available Slots:

QC Items: Date, Matrix, ..., SampleGroup, numBeads

sampleNames: 4613710017_B, 4613710052_B, ..., 4616443136_A, 4616494005_A

Exploratory analysis using boxplots

Boxplots of intensity levels and the number of beads are useful for quality assessment purposes. beadarray
includes a modified version of the boxplot function that can take any valid ExpressionSetIllumina
object and plot the expression matrix by default. For these examples we plot just a subset of the
original exampleSummaryData object using random row IDs.

> boxplot(exampleSummaryData.log2[randIDs,])

5.0

7.5

10.0

12.5

15.0

4613710017_B4613710052_B4613710054_B4616443079_B4616443081_B4616443081_H4616443092_B4616443093_B4616443107_A4616443115_B4616443136_A4616494005_A
factor(Var2)

va
lu

e

factor(Var2)

4613710017_B

4613710052_B

4613710054_B

4616443079_B

4616443081_B

4616443081_H

4616443092_B

4616443093_B

4616443107_A

4616443115_B

4616443136_A

4616494005_A

The function can also plot other assayData items, such as the number of observations.

> boxplot(exampleSummaryData.log2[randIDs,], what = "nObservations")

6

0

20

40

60

4613710017_B4613710052_B4613710054_B4616443079_B4616443081_B4616443081_H4616443092_B4616443093_B4616443107_A4616443115_B4616443136_A4616494005_A
factor(Var2)

va
lu

e

factor(Var2)

4613710017_B

4613710052_B

4613710054_B

4616443079_B

4616443081_B

4616443081_H

4616443092_B

4616443093_B

4616443107_A

4616443115_B

4616443136_A

4616494005_A

The default boxplot plots a separate box for each array, but often it is beneficial for compare
expression levels between different sample groups. If this information is stored in the phenoData slot it
can be incorporated into the plot. The following compares the overall expression level between UHRR
and Brain samples.

> boxplot(exampleSummaryData.log2[randIDs,], sampleFactor = "SampleFac")

5.0

7.5

10.0

12.5

15.0

Brain UHRR
factor(sampleFactor)

va
lu

e

factor(sampleFactor)

Brain

UHRR

In a similar manner, we may wish to visualize the differences between sample groups for particular
probe groups. As a simple example, we look at the difference between negative controls and regular
probes for each array. You should notice that the negative controls as consistently lower (as expected)
with the exception of array 4616443081_B.

> boxplot(exampleSummaryData.log2[randIDs,], probeFactor = "Status")

7

4613710017_B 4613710052_B 4613710054_B 4616443079_B

4616443081_B 4616443081_H 4616443092_B 4616443093_B

4616443107_A 4616443115_B 4616443136_A 4616494005_A

5.0
7.5

10.0
12.5
15.0

5.0
7.5

10.0
12.5
15.0

5.0
7.5

10.0
12.5
15.0

low_stringency_hybnegativeregularlow_stringency_hybnegativeregularlow_stringency_hybnegativeregularlow_stringency_hybnegativeregular
factor(probeFactor)

va
lu

e

factor(probeFactor)

low_stringency_hyb

negative

regular

Extra feature annotation is available from annotation packages in Bioconductor, and beadarray
includes functionality to extract these data from the annotation packages. The annotation of the
object must be set in order that the correct annotation package can be loaded. For example, the
exampleSummaryData object was generated from Humanv3 data so the illuminaHumanv3.db package must
be present. The addFeatureData function annotates all features of an ExpressionSetIllumina object
using particular mappings from the illuminaHumanv3.db package. To see which mappings are available
you can use the illuminaHumanv3() function, or equivalent from other packages.

> annotation(exampleSummaryData)

[1] "Humanv3"

> exampleSummaryData.log2 <- addFeatureData(exampleSummaryData.log2,

+ toAdd = c("SYMBOL", "PROBEQUALITY", "CODINGZONE", "PROBESEQUENCE",

+ "GENOMICLOCATION"))

> head(fData(exampleSummaryData.log2))

Row.names ArrayAddressID IlluminaID Status SYMBOL

ILMN_1802380 ILMN_1802380 10008 ILMN_1802380 regular RERE

ILMN_1893287 ILMN_1893287 10010 ILMN_1893287 regular <NA>

ILMN_1736104 ILMN_1736104 10017 ILMN_1736104 regular <NA>

ILMN_1792389 ILMN_1792389 10019 ILMN_1792389 regular RNF165

ILMN_1854015 ILMN_1854015 10020 ILMN_1854015 regular <NA>

ILMN_1904757 ILMN_1904757 10021 ILMN_1904757 regular <NA>

PROBEQUALITY CODINGZONE

ILMN_1802380 Perfect Transcriptomic

ILMN_1893287 Bad Transcriptomic?

ILMN_1736104 Bad Intergenic

ILMN_1792389 Perfect Transcriptomic

ILMN_1854015 Bad Intergenic

ILMN_1904757 Perfect*** Transcriptomic?

PROBESEQUENCE

ILMN_1802380 GCCCTGACCTTCATGGTGTCTTTGAAGCCCAACCACTCGGTTTCCTTCGG

ILMN_1893287 GGATTTCCTACACTCTCCACTTCTGAATGCTTGGAAACACTTGCCATGCT

ILMN_1736104 TGCCATCTTTGCTCCACTGTGAGAGGCTGCTCACACCACCCCCTACATGC

ILMN_1792389 CTGTAGCAACGTCTGTCAGGCCCCCTTGTGTTTCATCTCCTGCGCGCGTA

ILMN_1854015 GCAGAAAACCATGAGCTGAAATCTCTACAGGAACCAGTGCTGGGGTAGGG

8

ILMN_1904757 AGCTGTACCGTGGGGAGGCTTGGTCCTCTTGCCCCATTTGTGTGATGTCT

GENOMICLOCATION

ILMN_1802380 chr1:8412758:8412807:-

ILMN_1893287 chr9:42489407:42489456:+

ILMN_1736104 chr3:134572184:134572223:-

ILMN_1792389 chr18:44040244:44040293:+

ILMN_1854015 chr3:160827837:160827885:+

ILMN_1904757 chr3:197872267:197872316:+

> illuminaHumanv3()

####Mappings based on RefSeqID####

Quality control information for illuminaHumanv3:

This package has the following mappings:

illuminaHumanv3ACCNUM has 31857 mapped keys (of 49576 keys)

illuminaHumanv3ALIAS2PROBE has 60149 mapped keys (of 94889 keys)

illuminaHumanv3CHR has 29867 mapped keys (of 49576 keys)

illuminaHumanv3CHRLENGTHS has 93 mapped keys (of 93 keys)

illuminaHumanv3CHRLOC has 29299 mapped keys (of 49576 keys)

illuminaHumanv3CHRLOCEND has 29299 mapped keys (of 49576 keys)

illuminaHumanv3ENSEMBL has 29041 mapped keys (of 49576 keys)

illuminaHumanv3ENSEMBL2PROBE has 20831 mapped keys (of 25527 keys)

illuminaHumanv3ENTREZID has 29868 mapped keys (of 49576 keys)

illuminaHumanv3ENZYME has 3521 mapped keys (of 49576 keys)

illuminaHumanv3ENZYME2PROBE has 967 mapped keys (of 975 keys)

illuminaHumanv3GENENAME has 29868 mapped keys (of 49576 keys)

illuminaHumanv3GO has 26277 mapped keys (of 49576 keys)

illuminaHumanv3GO2ALLPROBES has 16472 mapped keys (of 16527 keys)

illuminaHumanv3GO2PROBE has 12743 mapped keys (of 12818 keys)

illuminaHumanv3MAP has 29559 mapped keys (of 49576 keys)

illuminaHumanv3OMIM has 20993 mapped keys (of 49576 keys)

illuminaHumanv3PATH has 9174 mapped keys (of 49576 keys)

illuminaHumanv3PATH2PROBE has 229 mapped keys (of 229 keys)

illuminaHumanv3PFAM has 27593 mapped keys (of 49576 keys)

illuminaHumanv3PMID has 29400 mapped keys (of 49576 keys)

illuminaHumanv3PMID2PROBE has 344773 mapped keys (of 354292 keys)

illuminaHumanv3PROSITE has 27593 mapped keys (of 49576 keys)

illuminaHumanv3REFSEQ has 29868 mapped keys (of 49576 keys)

illuminaHumanv3SYMBOL has 29868 mapped keys (of 49576 keys)

illuminaHumanv3UNIGENE has 29527 mapped keys (of 49576 keys)

illuminaHumanv3UNIPROT has 27646 mapped keys (of 49576 keys)

Additional Information about this package:

DB schema: HUMANCHIP_DB

DB schema version: 2.1

9

Organism: Homo sapiens

Date for NCBI data: 2012-Sep4

Date for GO data: 20120901

Date for KEGG data: 2011-Mar15

Date for Golden Path data: 2010-Mar22

Date for Ensembl data: 2012-Jul31

####Custom Mappings based on probe sequence####

illuminaHumanv3ARRAYADDRESS()

illuminaHumanv3NUID()

illuminaHumanv3PROBEQUALITY()

illuminaHumanv3CODINGZONE()

illuminaHumanv3PROBESEQUENCE()

illuminaHumanv3SECONDMATCHES()

illuminaHumanv3OTHERGENOMICMATCHES()

illuminaHumanv3REPEATMASK()

illuminaHumanv3OVERLAPPINGSNP()

illuminaHumanv3ENTREZREANNOTATED()

illuminaHumanv3GENOMICLOCATION()

illuminaHumanv3SYMBOLREANNOTATED()

illuminaHumanv3REPORTERGROUPNAME()

illuminaHumanv3REPORTERGROUPID()

If we suspect that a particular gene may be differentially expressed between conditions, we can subset
the ExpressionSetIllumina object to just include probes that target the gene, and plot the response of
these probes against the sample groups. Furthermore, the different probes can be distinguished using
the probeFactor parameter.

> ids <- which(fData(exampleSummaryData.log2)[, "SYMBOL"] == "ALB")

> boxplot(exampleSummaryData.log2[ids,], sampleFactor = "SampleFac",

+ probeFactor = "IlluminaID")

Brain UHRR

5.0

7.5

10.0

12.5

ILMN_1682763 ILMN_1782939 ILMN_1682763 ILMN_1782939
factor(probeFactor)

va
lu

e

factor(probeFactor)

ILMN_1682763

ILMN_1782939

10

A note about ggplot2

The boxplot function in beadarray creates graphics using the ggplot2 package rather than the R base
graphics system. Therefore, the standard way of manipulating graphics using par and mfrow etc will
not work with the output of boxplot. However, the ggplot2 package has equivalent functionality and is
a more powerful and flexible system. There are numerous tutorials on how to use the ggplot2 package,
which is beyond the scope of this vignette. In the below code, we assign the results of boxplot to
objects that we combine using viewports (a concept from the grid graphics system). The code also
demonstrates how aspects of the plot can be altered programatically.

> require("gridExtra")

> bp1 <- boxplot(exampleSummaryData.log2[ids,], sampleFactor = "SampleFac",

+ probeFactor = "IlluminaID") + labs(title = "ALB expression level comparison") +

+ xlab("Illumina Probe") + ylab("Log2 Intensity")

> bp2 <- boxplot(exampleSummaryData.log2[randIDs,], probeFactor = "Status") +

+ labs(title = "Control Probe Comparison")

> print(bp1, vp = viewport(width = 0.5, height = 1, x = 0.25, y = 0.5))

> print(bp2, vp = viewport(width = 0.5, height = 1, x = 0.75, y = 0.5))

Other exploratory analysis

Replicate samples can also be compared using the plotMAXY.

> plotMAXY(exprs(exampleSummaryData), arrays = 1:3, pch = 16, log = FALSE)

0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

G:4613710017_B

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

6 8 10 12 14

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

6 8 10 12 14

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●●

●●●
●●

●

●

●

●●●●●●

4
6

8
10

12
14

0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Index

0 G:4613710052_B

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

6 8 10 12 14 16

4
6

8
10

12
14

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

6 8 10 12 14 16 0.6 0.8 1.0 1.2 1.4

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0 G:4613710054_B

In the top right corner we see the MA plots for all pairwise comparisons involving the 3 arrays. On
an MA plot, for each probe we plot the average of the log2 -intensities from the two arrays on the x-axis
and the difference in intensities (log -ratios) on the y-axis. For replicate arrays we would expect all
probes to be unchanged between the two samples and hence most points on the plot should lie along

11

the line y=0. In the lower left corner of the MAXY plot we see the XY plot and for replicate arrays
we would expect to see most points along the diagonal y = x. From this MAXY plot it is obvious that
the second array is systematically different to the other replicates and may benefit from normalisation.
Both XY and MA plots are available separately for a particular comparison of arrays using plotXY and
plotMA.

Normalisation

To correct for differences in expression level across a chip and between chips we need to normalise
the signal to make the arrays comparable. The normalisation methods available in the affy package, or
variance-stabilising transformation from the lumi package may be applied using the normaliseIllumina
function. Below we quantile normalise the log2 transformed data.

> exampleSummaryData.norm <- normaliseIllumina(exampleSummaryData.log2,

+ method = "quantile", transform = "none")

An alternative approach is to combine normal-exponential background correction with quantile
normalisation as suggested in the limma package. However, this requires data that have not been
log-transformed. Note that the control probes are removed from the output object

> exampleSummaryData.norm2 <- normaliseIllumina(channel(exampleSummaryData,

+ "G.ul"), method = "neqc", transform = "none")

Filtering

Filtering non-responding probes from further analysis can improve the power to detect differential
expression. One way of achieving this is to remove probes whose probe sequence has undesirable
properties. Four basic annotation quality categories (‘Perfect’, ‘Good’, ‘Bad’ and ‘No match’) are
defined and have been shown to correlate with expression level and measures of differential expression.
We recommend removing probes assigned a ‘Bad’ or ‘No match’ quality score after normalization. This
approach is similar to the common practice of removing lowly-expressed probes, but with the additional
benefit of discarding probes with a high expression level caused by non-specific hybridization. You can
verify the relationship between probe quality and intensity by using the boxplot function.

> library(illuminaHumanv3.db)

> ids <- as.character(featureNames(exampleSummaryData.norm))

> qual <- unlist(mget(ids, illuminaHumanv3PROBEQUALITY, ifnotfound = NA))

> table(qual)

qual

Bad Good Good*** Good**** No match Perfect

13472 924 148 358 1739 24654

Perfect*** Perfect****

6269 1974

> rem <- qual == "No match" | qual == "Bad" | is.na(qual)

> exampleSummaryData.filt <- exampleSummaryData.norm[!rem,]

> dim(exampleSummaryData.filt)

Features Samples Channels

34327 12 1

12

> boxplot(exampleSummaryData.norm, probeFactor = "PROBEQUALITY",

+ sampleFactor = "SampleFac") + opts(axis.text.x = theme_text(angle = 45,

+ hjust = 1)) + xlab("Probe Quality") + ylab("Log2 Intensity")

Brain UHRR

5.0

7.5

10.0

12.5

15.0

Bad
Goo

d

Goo
d*

**

Goo
d*

No
m

at
ch

Per
fec

t

Per
fec

t**
*

Per
fec

t**
** NA

Bad
Goo

d

Goo
d*

**

Goo
d*

No
m

at
ch

Per
fec

t

Per
fec

t**
*

Per
fec

t**
** NA

Probe Quality

Lo
g2

 In
te

ns
ity

factor(probeFactor)

Bad

Good

Good***

Good****

No match

Perfect

Perfect***

Perfect****

Differential expression

The differential expression methods available in the limma package can be used to identify differentially
expressed genes. The functions lmFit and eBayes can be applied to the normalised data. In the exam-
ple below, we set up a design matrix for the example experiment and fit a linear model to summaries
the data from the UHRR and Brain replicates to give one value per condition. We then define contrasts
comparing the Brain sample to the UHRR and calculate moderated t-statistics with empirical Bayes
shrinkage of the sample variances. In this particular experiment, the Brain and UHRR samples are very
different and we would expect to see many differentially expressed genes.

Empirical array quality weights can be used to measure the relative reliability of each array. A
variance is estimated for each array by the arrayWeights function which measures how well the expres-
sion values from each array follow the linear model. These variances are converted to relative weights
which can then be used in the linear model to down-weight observations from less reliable arrays which
improves power to detect differential expression. You should notice that some arrays have very low
weight consistent with their poor QC.

13

We then define a contrast comparing UHRR to Brain Reference and calculate moderated t-statistics
with empirical Bayes’ shrinkage of the sample variances.

> library(limma)

> rna <- factor(pData(exampleSummaryData)[, "SampleFac"])

> design <- model.matrix(~0 + rna)

> colnames(design) <- levels(rna)

> aw <- arrayWeights(exprs(exampleSummaryData.filt), design)

> aw

1 2 3 4 5 6 7

2.08980504 2.52705232 1.45341722 1.77516015 2.13370848 1.85736443 0.01232656

8 9 10 11 12

0.11157875 2.45025440 2.04457347 2.08860721 1.28684347

> fit <- lmFit(exprs(exampleSummaryData.filt), design, weights = aw)

> contrasts <- makeContrasts(UHRR - Brain, levels = design)

> contr.fit <- eBayes(contrasts.fit(fit, contrasts))

> topTable(contr.fit, coef = 1)

ID logFC AveExpr t P.Value adj.P.Val

22033 ILMN_1651358 7.344616 9.202611 87.76608 5.232909e-34 1.638191e-29

2043 ILMN_1796678 7.320723 9.608215 85.77754 9.544621e-34 1.638191e-29

31831 ILMN_1713458 6.418935 8.954098 78.21252 1.073627e-32 1.196177e-28

33986 ILMN_1783832 5.972720 8.323385 77.43724 1.393862e-32 1.196177e-28

3174 ILMN_1782939 6.822236 9.310045 76.20004 2.125596e-32 1.459307e-28

28936 ILMN_1688543 6.708263 9.032077 73.23584 6.009507e-32 3.074085e-28

3879 ILMN_1795679 -7.150692 9.069547 -73.11785 6.268709e-32 3.074085e-28

17887 ILMN_2084825 7.980276 9.899318 72.68451 7.324581e-32 3.142886e-28

9196 ILMN_1782204 6.275295 8.666149 69.87509 2.055919e-31 7.841505e-28

10390 ILMN_1665994 6.693550 8.725046 67.50368 5.075224e-31 1.742172e-27

B

22033 67.03462

2043 66.50542

31831 64.33905

33986 64.10221

3174 63.71812

28936 62.76583

3879 62.72696

17887 62.58353

9196 61.62786

10390 60.78467

Annotation of results

The topTable function displays the results of the empirical Bayes analysis alongside the annotation as-
signed by Illumina to each probe in the linear model fit. Often this will not provide sufficient information
to infer biological meaning from the results. Within Bioconductor, annotation packages are available
for each of the major Illumina expression array platforms that map the probe sequences designed by
Illumina to functional information useful for downstream analysis. As before, the illuminaHumanv3.db
package can be used for the arrays in this example dataset.

14

> ids2 <- featureNames(exampleSummaryData.filt)

> chr <- mget(ids2, illuminaHumanv3CHR, ifnotfound = NA)

> cytoband <- mget(ids2, illuminaHumanv3MAP, ifnotfound = NA)

> refseq <- mget(ids2, illuminaHumanv3REFSEQ, ifnotfound = NA)

> entrezid <- mget(ids2, illuminaHumanv3ENTREZID, ifnotfound = NA)

> symbol <- mget(ids2, illuminaHumanv3SYMBOL, ifnotfound = NA)

> genename <- mget(ids2, illuminaHumanv3GENENAME, ifnotfound = NA)

> anno <- data.frame(Ill_ID = ids2, Chr = as.character(chr), Cytoband = as.character(cytoband),

+ RefSeq = as.character(refseq), EntrezID = as.numeric(entrezid),

+ Symbol = as.character(symbol), Name = as.character(genename))

> contr.fit$genes <- anno

> topTable(contr.fit)

Ill_ID Chr Cytoband

22033 ILMN_1651358 11 11p15.5

2043 ILMN_1796678 11 11p15.5

31831 ILMN_1713458 16 16p13.3

33986 ILMN_1783832 X Xp11.4-p11.2

3174 ILMN_1782939 4 4q13.3

28936 ILMN_1688543 1 1q21-q23

3879 ILMN_1795679 8 8q21.13

17887 ILMN_2084825 11 11p15.5

9196 ILMN_1782204 4 4q13.3

10390 ILMN_1665994 12 12q13-q14

RefSeq

22033 c("NM_005330", "NP_005321")

2043 c("NM_000559", "NP_000550")

31831 c("NM_005332", "NP_005323")

33986 c("NM_001476", "NP_001467")

3174 c("NM_000477", "NP_000468")

28936 c("NM_001643", "NP_001634")

3879 c("NM_001199214", "NM_007029", "NP_001186143", "NP_008960")

17887 c("NM_000184", "NP_000175")

9196 c("NM_001134", "NP_001125")

10390 c("NM_001200053", "NM_001200054", "NM_006928", "NP_001186982", "NP_001186983", "NP_008859")

EntrezID Symbol Name logFC AveExpr t

22033 3046 HBE1 hemoglobin, epsilon 1 7.344616 9.202611 87.76608

2043 3047 HBG1 hemoglobin, gamma A 7.320723 9.608215 85.77754

31831 3050 HBZ hemoglobin, zeta 6.418935 8.954098 78.21252

33986 2578 GAGE6 G antigen 6 5.972720 8.323385 77.43724

3174 213 ALB albumin 6.822236 9.310045 76.20004

28936 336 APOA2 apolipoprotein A-II 6.708263 9.032077 73.23584

3879 11075 STMN2 stathmin-like 2 -7.150692 9.069547 -73.11785

17887 3048 HBG2 hemoglobin, gamma G 7.980276 9.899318 72.68451

9196 174 AFP alpha-fetoprotein 6.275295 8.666149 69.87509

10390 6490 PMEL premelanosome protein 6.693550 8.725046 67.50368

P.Value adj.P.Val B

22033 5.232909e-34 1.638191e-29 67.03462

2043 9.544621e-34 1.638191e-29 66.50542

31831 1.073627e-32 1.196177e-28 64.33905

33986 1.393862e-32 1.196177e-28 64.10221

15

3174 2.125596e-32 1.459307e-28 63.71812

28936 6.009507e-32 3.074085e-28 62.76583

3879 6.268709e-32 3.074085e-28 62.72696

17887 7.324581e-32 3.142886e-28 62.58353

9196 2.055919e-31 7.841505e-28 61.62786

10390 5.075224e-31 1.742172e-27 60.78467

Reading bead summary data into beadarray

BeadStudio/GenomeStudio is Illumina’s proprietary software for analyzing data output by the scanning
system (BeadScan/iScan). It contains different modules for analyzing data from different platforms.
For further information on the software and how to export summarized data, refer to the user’s manual.
In this section we consider how to read in and analyze output from the gene expression module of
BeadStudio/GenomeStudio.

The example dataset used in this section consists of an experiment with one Human WG-6 version
2 BeadChip. These arrays were hybridized with the control RNA samples used in the MAQC project
(3 replicates of UHRR and 3 replicates of Brain Reference RNA).

The non-normalized data for regular and control probes was output by BeadStudio/GenomeStudio.
The example BeadStudio output used in this section is available in the file

AsuragenMAQC_BeadStudioOutput.zip which can be downloaded from
tt http://www.switchtoi.com/datasets.ilmn.

You will need to download and unzip the contents of this file to the current R working directory.
Inside this zip file you will find several files including summarized, non-normalized data and a file
containing control information. We give a more detailed description of each of the particular files we
will make use of below.

• Sample probe profile (AsuragenMAQC-probe-raw.txt) (required) - text file which contains the non-
normalized summary values as output by BeadStudio. Inside the file is a data matrix with some
48,000 rows. In newer versions of the software, these data are preceded by several lines of header
information. Each row is a different probe in the experiment and the columns give different mea-
surements for the gene. For each array, we record the summarized expression level (AVG Signal),
standard error of the bead replicates (BEAD STDERR), number of beads (Avg NBEADS) and a
detection p-value (Detection Pval) which estimates the probability of a gene being detected above
the background level. When exporting this file from BeadStudio, the user is able to choose which
columns to export.

• Control probe profile (AsuragenMAQC-controls.txt) (recommended) - text file which contains the
summarized data for each of the controls on each array, which may be useful for diagnostic and
calibration purposes. Refer to the Illumina documentation for information on what each control
measures.

• targets file (optional) - text file created by the user specifying which sample is hybridized to
each array. No such file is provided for this dataset, however we can extract sample annotation
information from the column headings in the sample probe profile.

Files with normalized intensities (those with avg in the name), as well as files with one intensity
value per gene (files with gene in the name) instead of separate intensities for different probes targeting
the same transcript, are also available in this download. We recommend users work with the non-
normalized probe-specific data in their analysis where possible. Illumina’s background correction step,
which subtracts the intensities of the negative control probes from the intensities of the regular probes,
should also be avoided.

16

> library(beadarray)

> dataFile = "AsuragenMAQC-probe-raw.txt"

> qcFile = "AsuragenMAQC-controls.txt"

> BSData = readBeadSummaryData(dataFile = dataFile, qcFile = qcFile,

+ controlID = "ProbeID", skip = 0, qc.skip = 0, qc.columns = list(exprs = "AVG_Signal",

+ Detection = "Detection Pval"))

The arguments of readBeadSummaryData can be modified to suit data from versions 1, 2 or 3 of
BeadStudio. The current default settings should work for version 3 output. Users may need to change
the argument sep, which specifies if the dataFile is comma or tab delimited and the skip argument
which specifies the number of lines of header information at the top of the file. Possible skip argu-
ments of 0, 7 and 8 have been observed, depending on the version of BeadStudio or way in which the
data was exported. The columns argument is used to specify which column headings to read from
dataFile and store in various matrices. Note that the naming of the columns containing the standard
errors changed between versions of BeadStudio (earlier versions used BEAD STDEV in place of BEAD
STDERR - be sure to check that the columns argument is appropriate for your data). Equivalent
arguments (qc.sep, qc.skip and qc.columns) are used to read the data from qcFile. See the help page
(?readBeadSummaryData) for a complete description of each argument to the function.

Citing beadarray

If you use beadarray for the analysis or pre-processing of BeadArray data please cite:
Dunning MJ, Smith ML, Ritchie ME, Tavaré S, beadarray: R classes and methods for Illumina

bead-based data, Bioinformatics, 23(16):2183-2184

1 Asking for help on beadarray

Wherever possible, questions about beadarray should be sent to the Bioconductor mailing list1. This
way, all problems and solutions will be kept in a searchable archive. When posting to this mailing list,
please first consult the posting guide. In particular, state the version of beadarray and R that you are
using2, and try to provide a reproducible example of your problem. This will help us to diagnose the
problem.

This vignette was built with the following versions of R and

> sessionInfo()

R version 2.15.1 (2012-06-22)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

1http://www.bioconductor.org
2This can be done by pasting the output of running the function sessionInfo().

17

[1] grid stats graphics grDevices utils datasets methods

[8] base

other attached packages:

[1] limma_3.14.0 gridExtra_0.9.1

[3] illuminaHumanv3.db_1.16.0 org.Hs.eg.db_2.8.0

[5] RSQLite_0.11.2 DBI_0.2-5

[7] AnnotationDbi_1.20.0 beadarrayExampleData_1.0.5

[9] beadarray_2.8.1 ggplot2_0.9.2.1

[11] Biobase_2.18.0 BiocGenerics_0.4.0

loaded via a namespace (and not attached):

[1] AnnotationForge_1.0.0 BeadDataPackR_1.10.0 IRanges_1.16.2

[4] KernSmooth_2.23-8 MASS_7.3-22 RColorBrewer_1.0-5

[7] colorspace_1.1-1 dichromat_1.2-4 digest_0.5.2

[10] gtable_0.1.1 labeling_0.1 memoise_0.1

[13] munsell_0.4 parallel_2.15.1 plyr_1.7.1

[16] proto_0.3-9.2 reshape2_1.2.1 scales_0.2.2

[19] stats4_2.15.1 stringr_0.6.1 tools_2.15.1

18

