
baySeq: Empirical Bayesian analysis of patterns

of differential expression in count data

Thomas J. Hardcastle

October 1, 2012

1 Introduction

This vignette is intended to give a rapid introduction to the commands used in
implementing two methods of evaluating differential expression in Solexa-type,
or count data by means of the baySeq R package. For fuller details on the
methods being used, consult Hardcastle & Kelly [1]. The major improvement
made in this release is the option to include region length in evaluating differ-
ential expression between genomic regions (e.g. genes). See Section ?? for more
details.

We assume that we have discrete data from a set of sequencing or other high-
throughput experiments, arranged in a matrix such that each column describes a
sample and each row describes some entity for which counts exist. For example,
the rows may correspond to the different sequences observed in a sequencing
experiment. The data then consists of the number of times each sequence is
observed in each sample. We wish to determine which, if any, rows of the data
correspond to some patterns of differential expression across the samples. This
problem has been addressed for pairwise differential expression by the edgeR [3]
package.

However, baySeq takes an alternative approach to analysis that allows more
complicated patterns of differential expression than simple pairwise comparison,
and thus is able to cope with more complex experimental designs. We also
observe that the methods implemented in baySeq perform at least as well, and
in some circumstances considerably better than those implemented in edgeR [1].

baySeq uses empirical Bayesian methods to estimate the posterior likelihoods
of each of a set of models that define patterns of differential expression for each
row. This approach begins by considering a distribution for the row defined
by a set of underlying parameters for which some prior distribution exists. By
estimating this prior distribution from the data, we are able to assess, for a given
model about the relatedness of our underlying parameters for multiple libraries,
the posterior likelihood of the model.

In forming a set of models upon the data, we consider which patterns are
biologically likely to occur in the data. For example, suppose we have count
data from some organism in condition A and condition B. Suppose further that
we have two biological replicates for each condition, and hence four libraries
A1, A2, B1, B2, where A1, A2 and B1, B2 are the replicates. It is reasonable to
suppose that at least some of the rows may be unaffected by our experimental
conditions A and B, and the count data for each sample in these rows will

1

be equivalent. These data need not in general be identical across each sample
due to random effects and different library sizes, but they will share the same
underlying parameters. However, some of the rows may be influenced by the
different experimental conditions A and B. The count data for the samples
A1 and A2 will then be equivalent, as will the count data for the samples B1

and B2. However, the count data between samples A1, A2, B1, B2 will not be
equivalent. For such a row, the data from samples A1 and A2 will then share
the same set of underlying parameters, the data from samples B1 and B2 will
share the same set of underlying parameters, but, crucially, the two sets will not
be identical.

Our task is thus to determine the posterior likelihood of each model for each
row of the data.

2 Preparation

We begin by loading the baySeq package.

> library(baySeq)

Note that because the experiments that baySeq is designed to analyse are
usually massive, we should use (if possible) parallel processing as implemented
by the snow package. We therefore need to load the snow package (if it exists),
define a cluster and load the baySeq library onto each member of the cluster.

> library(snow)

> cl <- makeCluster(4, "SOCK")

If snow is not present, we can proceed anyway with a NULL cluster. Results
may be slightly different depending on whether or not a cluster is used owing
to the non-deterministic elements of the method.

> cl <- NULL

Here we have (if the snow package is installed) defined a cluster of four
processors on sockets; that is to say, on the local machine. If the local machine
has multiple processors this may be a valid method of accelerating baySeq, but if
very large data sets are being analysed we may wish to consider some other form
of parallelisation (e.g. LAM/MPI) that allows processors on multiple nodes to
be used. See the snow documentation for details on how to achieve this.

We load a simulated data set consisting of count data on one thousand
counts.

> data(simData)

> simData[1:10,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 4 1 5 2 3 0 1 1 1 0

[2,] 1 0 9 6 5 0 1 0 0 1

[3,] 9 2 5 5 14 2 3 1 0 4

[4,] 7 3 8 2 2 0 1 0 1 0

[5,] 2 2 4 7 0 0 0 0 0 1

2

[6,] 2 1 0 1 0 4 3 5 5 3

[7,] 9 8 8 8 9 1 2 1 0 0

[8,] 9 5 7 8 7 1 2 0 1 2

[9,] 6 2 2 3 0 0 0 0 0 0

[10,] 1 0 2 0 1 3 17 2 2 10

The data are simulated such that the first hundred counts show differential
expression between the first five libraries and the second five libraries. Our
replicate structure, used to estimate the prior distributions on the data, can
thus be defined as

> replicates <- c("simA", "simA", "simA", "simA", "simA",

+ "simB", "simB", "simB", "simB", "simB")

We can also establish two group structures for the data.
Each member (vector) contained within the ’groups’ list corresponds to

one model upon the data. In this setting, a model describes the patterns of
data we expect to see at least some of the tags correspond to. In this sim-
ple example, we expect that some of the tags will be equivalently expressed
between all ten libraries. This corresponds to the ’NDE’ model, or vector
c(1,1,1,1,1,1,1,1,1,1) - all libraries belong to the same group for these
tags.

We also expect that some tags will show differential expression between the
first five libraries and the second five libraries. For these tags, the two sets of
libraries belong to different groups, and so we have the model ’DE’, or vector
c(1,1,1,1,1,2,2,2,2,2) - the first five libraries belong to group 1 and the
second five libraries to group 2. We thus have the following group structure

> groups <- list(NDE = c(1,1,1,1,1,1,1,1,1,1),

+ DE = c(1,1,1,1,1,2,2,2,2,2))

In a more complex experimental design (Section ??) we might have several
additional models. The key to constructing vectors corresponding to a model is
to see for which groups of libraries we expect equivalent expression of tags.

We note that the group for DE corresponds to the replicate structure. This
will often be the case, but need not be in more complex experimental designs.

The ultimate aim of the baySeq package is to evaluate posterior likelihoods
of each model for each row of the data.

We begin by combining the count data and user-defined groups into a countData
object.

> CD <- new("countData", data = simData, replicates = replicates, groups = groups)

Library sizes can be inferred from the data if the user is not able to supply
them.

> libsizes(CD) <- getLibsizes(CD)

We can then plot the data in the form of an MA-plot, suitable modified
to plot those data where the data are uniformly zero (and hence the log-ratio
is infinite) (Figure 1). Truly differentially expressed data can be identified in
the plot by coloring these data red, while non-differentially expressed data are
colored black.

3

> plotMA.CD(CD, samplesA = "simA", samplesB = "simB",

+ col = c(rep("red", 100), rep("black", 900)))

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

● ●
●

●●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●●
●●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

● ●

●

●

●
●

●

●

● ●
●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

● ●
●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

● ●

●

●

●●

●

●

●

●●
●

●

●

●
● ●

●

●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

● ●

● ●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●● ●

●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

A

M

−2 0 2 4 6 8 10

−
In

f
−

5
0

5
In

f

Figure 1: ’MA’-plot for count data. Where the log-ratio would be infinite (be-
cause the data in one of the sample groups consists entirely of zeros, we plot
instead the log-values of the other group. Truly differentially expressed data are
colored red, and non-differentially expressed data black.

We can also optionally add annotation details into the @annotation slot of
the countData object.

> CD@annotation <- data.frame(name = paste("count", 1:1000, sep = "_"))

3 Negative-Binomial Approach

We first estimate an empirical distribution on the parameters of the Negative
Binomial distribution by bootstrapping from the data, taking individual counts
and finding the quasi-likelihood parameters for a Negative Binomial distribution.
By taking a sufficiently large sample, an empirical distribution on the parameters
is estimated. A sample size of around 10000 iterations is suggested, depending
on the data being used), but 1000 is used here to rapidly generate the plots and
tables.

> CD <- getPriors.NB(CD, samplesize = 1000, estimation = "QL", cl = cl)

4

The calculated priors are stored in the @priors slot of the countData object
produced as before. For the negative-binomial method, we are unable to form
a conjugate prior distribution. Instead, we build an empirical prior distribution
which we record in the list object $priors of the slot @priors. Each member
of this list object corresponds to one of the models defined by the group slot
of the countData object and contains the estimated parameters for each of the
individual counts selected under the models. The vector $sampled contained
in the slot @priors describes which rows were sampled to create these sets of
parameters.

We then acquire posterior likelihoods, estimating the proportions of differ-
entially expressed counts.

> CD <- getLikelihoods.NB(CD, pET = 'BIC', cl = cl)

.

> CD@estProps

[1] 0.8765202 0.1234798

> CD@posteriors[1:10,]

NDE DE

[1,] -0.6379573 -0.751561830

[2,] -0.9002858 -0.521639691

[3,] -0.7711396 -0.620799949

[4,] -2.2055580 -0.116746225

[5,] -0.6307673 -0.759678681

[6,] -1.1445501 -0.383264073

[7,] -5.5615869 -0.003850076

[8,] -3.8695783 -0.021087963

[9,] -0.8983994 -0.522933531

[10,] -1.6797002 -0.206323140

> CD@posteriors[101:110,]

NDE DE

[1,] -6.066791e-02 -2.832521

[2,] -7.991582e-05 -9.434577

[3,] -4.640167e-02 -3.093531

[4,] -1.701222e-02 -4.082318

[5,] -4.290052e-03 -5.453601

[6,] -5.109052e-02 -2.999593

[7,] -7.850153e-02 -2.583631

[8,] -4.885146e-02 -3.043297

[9,] -6.376703e-02 -2.784233

[10,] -8.884361e-03 -4.727902

Here the assumption of a Negative Binomial distribution with priors esti-
mated by maximum likelihood gives an estimate of

[1] 0.1234798

as the proportion of differential expressed counts in the simulated data, where
in fact the proportion is known to be 0.1.

5

4 Results

We can ask for the top candidates for differential expression using the topCounts
function.

> topCounts(CD, group = "DE")

name simA.1 simA.2 simA.3 simA.4 simA.5 simB.1 simB.2 simB.3 simB.4 simB.5

1 count_80 1 1 0 1 1 13 21 8 6 20

2 count_78 1 1 0 1 1 8 13 7 9 10

3 count_66 0 0 0 0 0 15 10 4 4 10

4 count_21 2 0 1 1 0 15 15 6 5 11

5 count_7 9 8 8 8 9 1 2 1 0 0

6 count_26 13 4 11 5 7 1 1 1 0 0

7 count_72 0 0 1 0 0 7 6 4 3 8

8 count_64 6 6 8 11 9 1 1 0 0 1

9 count_83 14 6 9 2 9 1 0 0 1 1

10 count_27 5 3 6 4 7 0 0 0 1 0

Likelihood FDR

1 0.9988118 0.001188193

2 0.9985328 0.001327718

3 0.9977532 0.001634062

4 0.9968802 0.002005505

5 0.9961573 0.002372939

6 0.9949830 0.002813616

7 0.9938530 0.003289813

8 0.9918470 0.003897714

9 0.9891786 0.004667009

10 0.9861448 0.005585832

We can plot the posterior likelihoods against the log-ratios of the two sets
of samples using the plotPosteriors function, coloring the truly differentially
expressed data red and the non-differentially expressed data black (Figure 2).

> plotPosteriors(CD, group = "DE", col = c(rep("red", 100), rep("black", 900)))

Finally, we shut down the cluster (assuming it was started to begin with).

> if(!is.null(cl))

+ stopCluster(cl)

6

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●
●●

●

●●●
●

●●
●

●

●
●

●
●● ●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●
●●●

●

●
●

●
●●
●

●

●

●

●●
●

●

●

●

●

●●

●

●
●● ●●●

●

●

● ●●●
●

●

● ●

●
●

●

●

●

●●●

● ●

●
●

●

●

●
●

●

●

●

●

●●●
●●

●

●
●
●

●
●

●

● ●

●●●

●

●●
●

●
●

●

●●
●

●

●

●

●

●

●● ●

●
●

●
●

●

● ●● ●
●

●●●

●●

●
● ● ●

●

●

●
●

●
●●

●

●
●●

●●
●

●

●
●

●●

●

●

● ●●●
●●●

●

● ●●

●

●

●

●

●
●●

●
●

●

●

●

●●●
●●

●

●●

●

●
●

●

●

●●●
● ●

●
●

●

●

●● ●●

●

●
●
●●●

●

●

●●●●
●

●
●

●
●●

●

●●
●
●●●

●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

● ●●●●●
●●

●

●

●

●
●

●

●

●
●

●

● ●●

●

●
●

●

●

●

●●

●

●
●●

●

●

●●
●●● ●
●

●

●

● ●
●

●
●

●

●

●

●●●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●●
●
●
●

●●

●

●
● ●

●●

● ●
●●

●●
●

●
●●

●

●●

●●
●

●

●

●
●●●
●

●●● ●

●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●

●

●●

●●
●

●● ●●
●

● ●●
●

●

●
● ●

●●●
●

●
●

●
●

●

●●
●
●

●

●

●

●

●

●

●
● ●

●
●

●

●●
●● ●

●
●

●
●

●
●●●

●

●
●

●

● ●●
●●
●

●

●
●

●
●

●

●

●
● ●●

●

●
●

●

●●

● ●

●

● ●● ●

●

●
●●●●

●●

●
●

●
●

●
● ●●

●

●●

●

●

●

●

●
●

●●●
●

●●●
●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●●●● ●

●
●●
●

●
●

●

●

●●

●

●
●

●

●●
●

● ●

●
●

●●

●

●●
●

●

●

●
●

●
●

● ●

●

●

●
●

●

●●

●
●●

●

●

●●● ●

●

●
●

● ●

●

●
●● ●●

●
●

●

●

●

●●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●

●

●
●

●

●●

●

●
●

●●

●

●

●

●

●
●

●
●
●

●

●● ●
●

●● ●●

●

●

●

●

●

●●

●

●

●
●
●

●
● ●●●●

●
●●

●

●
●

●●
●

●●●● ●●
●

●●

●
●

●

●

●

●●
●

● ●●

●

●
●●

●

●

●

●
●

●●

●

●

●

●
●

●

●
● ●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
● ●

●

●●

●

●

●

●
●

●

●

●

●
●●●●

●
● ●

●
●

●

●●

●

●

●
●

●

●

●

●

●●
●

●
●●

●

●
●●

●

●●
●

●●
●

●
●

●●●

●

● ●
●

●
●

●

●

●●
●

●

●

●
●● ●●

●
●

●●
●

●

●●
●●

●●

●

●

●

●

●

●●●
●●
●
●

●●

●

● ●●
●●

●●●● ●
● ●●

●

●
●

●

●

●

●
●●●

●
●●

●

●
●

●●

●●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

P
os

te
rio

r
lik

el
ih

oo
d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

4 −1 −Inf −2 0 2 Inf −1 4

log B log ratio log A

Figure 2: Posterior likelihoods of differential expression against log-ratio (where
this would be non-infinite) or log values (where all data in the other sample
group consists of zeros). Truly differentially expressed data are colored red, and
non-differentially expressed data black.

7

5 Paired Data Analysis

There now exists functionality to analyse paired data through a similar process,
using the beta-binomial distribution. The process for analysing paired data
follows approximately the same steps as for analysing unpaired data. However,
two different types of differential expression can exist within paired data. Firstly,
we can find differential expression between replicate groups, as before. However,
we can also find (consistent) differential expression between pairs; this would
occur when for a single row of data, the first member of each pair differs from the
second member of each pair. baySeq can identify both these types of differential
expression simultaneously, and we implement this proceedure below.

We begin by loading a simulated dataset containing counts for four paired
datasets.

> data(pairData)

The first four columns in these data are paired with the second four columns.
We construct a pairedData in a similar fashion to the countData object.

> pairCD <- new("pairedData", data = pairData[,1:4], pairData = pairData[,5:8],

+ replicates = c(1,1,2,2),

+ groups = list(NDE = c(1,1,1,1), DE = c(1,1,2,2)))

We can find the library sizes for the data with the getLibsizes function.

> libsizes(pairCD) <- getLibsizes(pairCD)

We estimate an empirical distribution on the parameters of a beta-binomial
distribution by bootstrapping from the data, taking individual counts and find-
ing the maximum likelihood parameters for a beta-binomial distribution. By
taking a sufficiently large sample, an empirical distribution on the parameters
is estimated. A sample size of around 10000 iterations is suggested, depending
on the data being used), but 1000 is used here to rapidly generate the plots and
tables.

> pairCD <- getPriors.BB(pairCD, samplesize = 1000, cl = cl)

We then acquire posterior likelihoods as before. The ‘nullProps’ parameter
indicates that the proportion of counts observed in the first member of a non-
differentially expressed pair is 0.5.

> pairCD <- getLikelihoods.BB(pairCD, pET = 'BIC', nullProps = 0.5, cl = cl)

.

We can ask for the top candidates for differential expression between replicate
groups using the topCounts function as before.

> topCounts(pairCD, group = 2)

rowID X1.1 X1.2 X2.1 X2.2 Likelihood FDR

1 row_5 159:73 44:24 0:49 0:68 0.9975207 0.002479339

2 row_53 709:0 895:0 373:191 124:60 0.9942650 0.004107194

3 row_35 53:12 19:7 0:77 0:6 0.9935244 0.004896654

8

4 row_96 25:0 73:0 8:3 36:13 0.9913705 0.005829873

5 row_65 80:0 48:0 36:50 12:3 0.9864768 0.007368533

6 row_24 63:0 21:0 47:80 6:13 0.9811678 0.009279149

7 row_90 268:0 39:0 74:107 98:36 0.9786982 0.010996675

8 row_71 8:0 15:0 21:16 2:1 0.9587300 0.014780844

9 row_68 123:63 38:36 1198:179 350:18 0.9535254 0.018302370

10 row_28 196:1 55:1 56:52 27:16 0.9529789 0.021174243

However, we can also look for consistent differential expression between the
pairs. Since we set the ‘nullProps’ variable to 0.5, the first grouping model
describes pairs which show no differential expression between replicate groups,
but does show deviation from a one-to-one ratio of data between pairs.

> topCounts(pairCD, group = 1)

rowID X1.1 X1.2 X2.1 X2.2 Likelihood FDR

1 row_116 17:70 1:40 9:117 3:45 0.9785444 0.02145562

2 row_166 1027:27 835:8 1155:29 138:0 0.9693996 0.02602800

3 row_146 1:38 0:68 0:28 0:26 0.9597737 0.03076076

4 row_123 1:4 1:11 0:5 1:14 0.9510090 0.03531832

5 row_193 69:1 10:1 119:17 53:5 0.9437790 0.03949886

6 row_180 1:2 1:16 2:41 0:2 0.9423653 0.04252150

7 row_101 0:30 0:5 0:60 0:24 0.9372627 0.04540947

8 row_138 0:12 0:4 0:4 0:13 0.9351786 0.04783596

9 row_144 0:4 0:21 0:2 0:12 0.9342545 0.04982591

10 row_127 0:3 0:12 0:15 0:4 0.9330513 0.05153819

6 Case Study: Analysis of sRNA-Seq Data

6.1 Introduction

We will look at data sequenced from small RNAs acquired from six samples
of root stock from Arabidopsis thaliana in a grafting experiment [2]. Three
different biological conditions exist within these data; one in which a Dicer 2,3,4
triple mutant shoot is grafted onto a Dicer 2,3,4 triple mutant root (SL236 &
SL260), one in which a wild-type shoot is grafted onto a wild-type root (SL239
& SL240), and one in which a wild-type shoot is grafted onto a Dicer 2,3,4 triple
mutant root (SL237 & SL238). Dicer 2,3,4 is required for the production of
22nt and 24nt small RNAs, as well as some 21nt ones. Consequently, if we
detect differentially expressed sRNA loci in the root stock of the grafts, we can
make inferences about the mobility of small RNAs.

6.2 Reading in data

The data and annotation are stored in two text files. We can read them in using
R’s standard functions.

> data(mobData)

> data(mobAnnotation)

9

6.3 Making a countData object

We can create a countData object containing all the information we need for a
first attempt at a differential expression analysis.

6.3.1 Including lengths

If two genes are expressed at the same level, but one is twice the length of the
other, then (on average) we will sequence twice as many reads from the longer
gene. The same is true for sRNA loci, and so in these analyses it is often useful
to include the lengths of each feature. The lengths can be derived from the
annotation of each feature, but we need to explicitly declare them within the
‘countData’ object.

> seglens <- mobAnnotation$end - mobAnnotation$start + 1

> cD <- new("countData", data = mobData, seglens = seglens, annotation = mobAnnotation)

Determining the best library scaling factor to use is a non-trivial task. The
simplest approach would be to use the total number of sequenced reads aligning
to the genome. However, this approach meas that a few sequences that appear
at very high levels can drastically skew the size of the scaling factor. Bullard
et al suggest that good results can be obtained by taking the sum of the reads
below the nth percentile of the data.

> libsizes(cD) <- getLibsizes(cD, estimationType = "quantile")

6.4 Pairwise Differential Expression

We start by looking at a pairwise differential expression analysis between two of
the sample types. The analysis between samples ‘SL236’, ‘SL260’ and ‘SL237’,
‘SL238’ should be a first step in discovering sRNA loci associated with mobility.

We begin by selecting a subset of the available data:

> cDPair <- cD[,1:4]

We then need to define the replicate structure of the countData object. We
do this by creating a vector that defines the replicate group that each sample
belongs to.

> replicates(cDPair) <- as.factor(c("D3/D3", "D3/D3", "WT/D3", "WT/D3"))

We next need to define each of the models applicable to the data. In the first
case, it is reasonable to suppose that at least some of the loci will be unaffected
by the different experimental conditions prevailing in our replicate groups, and
so we create one model of no differential expression.

We do this by defining a vector NDE.

> NDE <- c(1,1,1,1)

Each member of the NDE vector represents one sample in our experiment. By
giving each item in the NDE vector the same number, we indicate that, under
the hypothesis of no differential expression, all the samples belong to the same
group.

We may also conjecture that some of the loci will be affected depending on
whether the shoot is a Dicer mutant or a wild-type Arabidopsis sample.

10

> mobile <- c("non-mobile","non-mobile","mobile","mobile")

This vector indicates that the third and fourth samples, which consist of the
wild-type shoot samples, are in a separate expression group to the first and
second samples, corresponding to the Dicer 2,3,4 mutant shoot.

We can now add these models to the locus data by modfiying the @groups

slot

> groups(cDPair) <- list(NDE = NDE, mobile = mobile)

Now that we have defined our models, we need to establish prior distributions
for the data. We do this using the getPriors.NB function.

> cDPair <- getPriors.NB(cDPair, samplesize = 1e4, cl = NULL)

The accuracy of the distribution is determined by the number of data points
used to estimate the distribution; the ‘samplesize’. Here we’ve used a small
sample size to reduce the computational effort required, but higher values will
give more accurate results (the default is 1e5).

Having found prior distributions for the data, we can identify posterior like-
lihoods for the data using the getLikelihoods function. Before we do this,
however, it is worth considering the possibility that some loci will not be ex-
pressed at all in our data.

6.4.1 Null Data

We first examine the priors to see if any ‘null’ data, consisting of un-expressed
sRNA loci, are present. If the distribution of priors for the non-differentially
expressed group is bimodal, it is likely that some of the loci are expressed at
substantially lower levels than others.

> plotPriors(cDPair, group = "NDE")

We can use the nullData = TRUE option in the getLikelihoods.NB func-
tion to allow for the possibility that some of the loci are miscalled in our locus
map, and should properly be identified as nulls.

> cDPair <- getLikelihoods.NB(cDPair, nullData = TRUE, cl = NULL)

If we now look at the cDPair object, we can see that we have acquired
posterior likelihoods for the data

> cDPair

An object of class "countData"

3000 rows and 4 columns

Slot "replicates"

[1] D3/D3 D3/D3 WT/D3 WT/D3

Levels: D3/D3 WT/D3

Slot "libsizes"

SL236 SL260 SL237 SL238

7648 14708 10194 8372

11

−16 −14 −12 −10 −8 −6 −4

0.
0

0.
1

0.
2

0.
3

0.
4

Log prior means for group: 1

N = 3000 Bandwidth = 0.1758

D
en

si
ty

Figure 3: Distribution of µij estimated as priors. Bimodality suggests the pres-
ence of ‘null’, or un-expressed, data.

Slot "groups":

$NDE

[1] 1 1 1 1

Levels: 1

$mobile

[1] non-mobile non-mobile mobile mobile

Levels: mobile non-mobile

Slot "data":

SL236 SL260 SL237 SL238

[1,] 21 52 4 4

[2,] 18 21 1 5

[3,] 1 2 2 3

[4,] 68 87 270 184

[5,] 68 87 270 183

2995 more rows...

Slot "annotation":

12

chr start end

1 1 789 869

2 1 8641 8700

3 1 10578 10599

4 1 17041 17098

5 1 17275 17318

2995 more rows...

Slot "posteriors":

NDE mobile

[1,] 0.01554777 0.9844522

[2,] 0.13419341 0.8658066

[3,] 0.80158762 0.1983238

[4,] 0.29583616 0.7041638

[5,] 0.39458980 0.6054102

2995 more rows...

Slot "estProps":

[1] 0.5100932 0.3723167

The estimated posterior likelihoods for each model are stored in the natural
logarithmic scale in the @posteriors slot of the countDataPosterior object.
The nth column of the posterior likelihoods matrix corresponds to the nth model
as listed in the group slot of CDPair. In general, what we would like to do
with this information is form a ranked list in which the loci most likely to be
differentially expressed are at the top of the list.

Try looking at the proportions of data belonging to each group. Note that
these no longer sum to 1, as some data are now classified as ‘null’.

> cDPair@estProps

[1] 0.5100932 0.3723167

The value contained in the @estProps slot is a best-guess figure for the
proportion of data belonging to each model defined by the @groups slot. In this
case, it is is estimated that approximately 65% of the loci are not differentially
expressed, while 35% are differentially expressed. These estimates should not
be relied upon absolutely, but are a useful indicator of the global structure of
the data.

We can ask for the rows most likely to be differentially expressed under our
different models using the topCounts function. If we look at the second model,
or grouping structure, we see the top candidates for differential expression.

> topCounts(cDPair, group = 2)

chr start end SL236 SL260 SL237 SL238 Likelihood FDR

1 1 11212437 11212516 1 2 397 299 0.9999682 3.176699e-05

2 1 447231 447298 0 0 174 146 0.9999283 5.175523e-05

3 1 13075806 13075879 2 6 145 114 0.9998582 8.177468e-05

4 1 13544660 13544713 114 227 5 4 0.9998098 1.088831e-04

5 1 13463357 13463459 12 20 165 140 0.9995180 1.835158e-04

6 1 10314530 10314578 4 3 91 71 0.9995124 2.342019e-04

13

7 1 8287590 8287674 0 0 107 83 0.9994666 2.769376e-04

8 1 9174281 9174537 24 43 351 245 0.9994328 3.132215e-04

9 1 5056092 5056161 65 184 1 0 0.9991752 3.700645e-04

10 1 8766946 8767133 171 487 12 8 0.9990798 4.250771e-04

Looking at the data in this way can be misleading. Because the library sizes of
the different libraries differ, it can be unclear as to why some loci are identified
as differentially expressed.

Try viewing the normalised results.

> topCounts(cDPair, group = 2, normaliseData = TRUE)

chr start end SL236 SL260 SL237 SL238 Likelihood FDR

1 1 11212437 11212516 1 1 385 354 0.9999682 3.176699e-05

2 1 447231 447298 0 0 169 173 0.9999283 5.175523e-05

3 1 13075806 13075879 3 4 141 135 0.9998582 8.177468e-05

4 1 13544660 13544713 148 153 5 5 0.9998098 1.088831e-04

5 1 13463357 13463459 16 13 160 166 0.9995180 1.835158e-04

6 1 10314530 10314578 5 2 88 84 0.9995124 2.342019e-04

7 1 8287590 8287674 0 0 104 98 0.9994666 2.769376e-04

8 1 9174281 9174537 31 29 341 290 0.9994328 3.132215e-04

9 1 5056092 5056161 84 124 1 0 0.9991752 3.700645e-04

10 1 8766946 8767133 221 328 12 9 0.9990798 4.250771e-04

Observe how the data change in the normalised results; the effect is particularly
noticable in the SL236 and SL260 datasets, in which the normalised data is
much less variable between these two samples.

We can also use topCounts to examine the data identified as ‘null’.

> topCounts(cDPair, group = NULL, number = 500)

We can visualise the data in a number of ways. We can first examine the
posterior likelihoods against log-ratio values.

> plotPosteriors(cDPair, group = 2, samplesA = 1:2, samplesB = 3:4)

Also informative is the MA-plot. We can color the data by the posterior
likelihoods of differential expression.

> plotMA.CD(cDPair, samplesA = c(1,2), samplesB = c(3,4),

+ col = rgb(red = exp(cDPair@posteriors[,2]), green = 0, blue = 0))

6.5 Multiple Group Comparisons

We next examine all three experimental conditions simultaneously. We first
need to define the replicate structure of the data.

> cD@replicates <- as.factor(c("D3/D3", "D3/D3", "WT/D3", "WT/D3", "WT/WT", "WT/WT"))

As before, we begin by supposing that at least some of the loci will be
unaffected by the different experimental conditions prevailing in our replicate
groups, and so we create one model of no differential expression.

We do this by defining a vector NDE.

14

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●●●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●
●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●●

●

●

●●

●

●

●

P
os

te
rio

r
lik

el
ih

oo
d

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

8 −2 −3 0 3 Inf 8

log B log ratio log A

Figure 4: Posterior likelihoods of differential expression against log-ratios of the
data. Where the data in one of the sample groups consists entirely of zeros,
the log-ratio would be infinite. In this case, we plot instead the log-values of
the non-zero group. Note the skew in the data; there are many more loci with
a high-likelihood of differential expression over-expressed in the WT/D3 graft
compared to the D3/D3 graft than vice versa.

> NDE <- factor(c(1,1,1,1,1,1))

Each member of the NDE vector represents one sample in our experiment. By
giving each item in the NDE vector the same number, we indicate that, under
the hypothesis of no differential expression, all the samples belong to the same
group.

We may also conjecture that some of the loci that are present in the wild-
type root will not be present in the Dicer 2,3,4 mutant roots. We represent this
conjecture with the vector

> d3dep <- c("wtRoot","wtRoot","wtRoot","wtRoot","dicerRoot","dicerRoot")

This vector indicates that the fifth and sixth samples, which consist of the wild-
type root samples, are in a separate expression group to the other samples,
corresponding to the Dicer 2,3,4 mutant.

Finally, we hypothesise that some of the small RNAs generated in the wild-
type shoot will move to the root. We represent this hypothesis with the vector

> mobile <- c("dicerShoot","dicerShoot","wtShoot","wtShoot","wtShoot","wtShoot")

15

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●●
●

●

●
●

●
● ●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

● ●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●●●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●

●

● ●

● ●

●

●
●

●

●

●

●
● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●● ●●
●

●

●

●●

●●

●

●

● ●●

●●

●
●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●●

●

●
●

●

●
●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●●

●●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●

● ● ●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●● ●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●● ●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●● ●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●●●

●

●

●
●●

●

●

●

●

●●
●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

● ●

●
● ●

● ●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●●

●

●

●

●

● ●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

● ●

●

●
● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

● ●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

● ●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

● ●

●
●

●

●

●

●

●●

● ●

●

● ●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●●

● ●

●

●

●

●

●●

●
●

● ●
●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ●●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●● ●

●

●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●●

●

●
●

● ●

●

●

●
●●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

● ●
●●
●
●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●● ●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●
●● ●

●

●

●

A

M

−5 0 5

−
In

f
−

5
0

5
In

f

Figure 5: ‘MA’-plot for count data. Where the data in one of the sample groups
consists entirely of zeros, the log-ratio would be infinite. In this case, we plot
instead the log-values of the non-zero group. Differentially expressed data are
colored red, and non-differentially expressed data black.

This vector shows that all samples with a wild-type shoot are distinct from those
samples with a Dicer 2,3,4 shoot.

We can now add these models to the locus data by modfiying the @groups

slot

> groups(cD) <- list(NDE = NDE, d3dep = d3dep, mobile = mobile)

Note that in this case the replicate structure does not correspond to any
biologically plausible model; we do not expect that any loci will be different
between all three experimental groups.

We can now find the priors and likelihoods for this analysis as before.

> cD <- getPriors.NB(cD, cl = NULL)

> cD <- getLikelihoods.NB(cD, nullData = TRUE, cl = NULL)

We can see if there are any potential candidates for mobile sRNA loci by
using the ‘topCounts’ function.

> topCounts(cD, group = "mobile", normaliseData = TRUE)

chr start end SL236 SL260 SL237 SL238 SL239 SL240 Likelihood FDR

1 1 447231 447298 0 0 202 206 163 151 0.9999994 6.347174e-07

16

2 1 14188044 14188079 2 0 54 47 48 40 0.9999970 1.817495e-06

3 1 10314530 10314578 6 2 105 100 117 132 0.9999948 2.931728e-06

4 1 8287590 8287674 0 0 124 117 73 107 0.9999946 3.551614e-06

5 1 6127755 6127808 0 0 94 59 78 47 0.9999843 5.973534e-06

6 1 6880517 6880553 0 0 48 37 31 31 0.9999822 7.946428e-06

7 1 12548300 12548396 0 1 65 51 53 45 0.9999731 1.065995e-05

8 1 11212437 11212516 2 2 460 422 233 223 0.9999719 1.284326e-05

9 1 13042720 13042777 3 3 53 44 42 46 0.9999552 1.638972e-05

10 1 13463357 13463459 19 16 191 198 305 258 0.9999437 2.038478e-05

We can also identify dicer-dependent root specific small RNA loci by exam-
ining our alternative model for differential expression.

> topCounts(cD, group = "d3dep", normaliseData = TRUE)

chr start end SL236 SL260 SL237 SL238 SL239 SL240 Likelihood FDR

1 1 3980795 3980853 2 4 1 3 215 213 0.9999958 4.182288e-06

2 1 9013965 9014013 5 5 5 8 35 34 0.9986507 6.767171e-04

3 1 12726934 12726976 5 4 5 8 35 34 0.9986385 9.049651e-04

4 1 14154618 14154660 20 28 14 17 163 207 0.9984781 1.059196e-03

5 1 8741412 8741466 6 4 1 0 40 48 0.9980139 1.244585e-03

6 1 13689324 13689396 9 7 7 10 42 34 0.9977336 1.414879e-03

7 1 6173399 6173503 0 0 2 1 27 18 0.9929428 2.220922e-03

8 1 14206419 14206455 25 23 34 24 6 9 0.9925952 2.868910e-03

9 1 12824336 12824400 0 1 0 0 9 6 0.9921380 3.423702e-03

10 1 8238064 8238106 6 4 7 4 24 18 0.9881460 4.266736e-03

By including more experimental conditions in our analyses, increasingly com-
plex patterns of expression can be detected from sequencing data.

References

[1] Thomas J. Hardcastle and Krystyna A. Kelly. baySeq: Empirical Bayesian
Methods For Identifying Differential Expression In Sequence Count Data.
BMC Bioinformatics (2010).

[2] Attila Molnar and Charles W. Bassett and Thomas J. Hardcastle and Ruth
Dunn and David C. Bauclombe Small silencing RNAs in plants are mobile
and direct epigenetic modification in recipient cells. Science (2010).

[3] Mark Robinson edgeR:’ Methods for differential expression in digital gene
expression datasets. Bioconductor.

17

