
Making and Utilizing TranscriptDb Objects

Marc Carlson Patrick Aboyoun Hervé Pagès
Seth Falcon Martin Morgan

February 25, 2013

1 Introduction

The GenomicFeatures package retrieves and manages transcript-related fea-
tures from the UCSC Genome Bioinformatics1 and BioMart2 data resources.
The package is useful for ChIP-chip, ChIP-seq, and RNA-seq analyses.

> library("GenomicFeatures")

2 TranscriptDb Objects

The GenomicFeatures package uses TranscriptDb objects to store transcript
metadata. This class maps the 5’ and 3’ untranslated regions (UTRs), pro-
tein coding sequences (CDSs) and exons for a set of mRNA transcripts to
their associated genome. TranscriptDb objects have numerous accessors
functions to allow such features to be retrieved individually or grouped to-
gether in a way that reflects the underlying biology.

All TranscriptDb objects are backed by a SQLite database that manages
genomic locations and the relationships between pre-processed mRNA tran-
scripts, exons, protein coding sequences, and their related gene identifiers.

3 Retrieving Data from TranscriptDb objects

3.1 Loading Transcript Data

There are two ways that users can load pre-existing data to generate a
TranscriptDb object. One method is to use the loadDb method to load the
object directly from an appropriate .sqlite database file.

1http://genome.ucsc.edu/
2http://www.biomart.org/

1

Here we are loading a previously created TranscriptDb object based on
UCSC known gene data. This database only contains a small subset of the
possible annotations for human and is only included to demonstrate and test
the functionality of the GenomicFeatures packageas a demonstration.

> samplefile <- system.file("extdata", "UCSC_knownGene_sample.sqlite",

+ package="GenomicFeatures")

> txdb <- loadDb(samplefile)

> txdb

TranscriptDb object:

| Db type: TranscriptDb

| Supporting package: GenomicFeatures

| Data source: UCSC

| Genome: hg18

| Genus and Species: Homo sapiens

| UCSC Table: knownGene

| Resource URL: http://genome.ucsc.edu/

| Type of Gene ID: Entrez Gene ID

| Full dataset: no

| miRBase build ID: NA

| transcript_nrow: 135

| exon_nrow: 544

| cds_nrow: 324

| Db created by: GenomicFeatures package from Bioconductor

| Creation time: 2012-04-13 14:47:54 -0700 (Fri, 13 Apr 2012)

| GenomicFeatures version at creation time: 1.9.4

| RSQLite version at creation time: 0.11.1

| DBSCHEMAVERSION: 1.0

In this case, the TranscriptDb object has been returned by the loadDb

method.
More commonly however, we expect that users will just load a Tran-

scriptDb annotation package like this:

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene #shorthand (for convenience)

> txdb

TranscriptDb object:

| Db type: TranscriptDb

2

| Supporting package: GenomicFeatures

| Data source: UCSC

| Genome: hg19

| Genus and Species: Homo sapiens

| UCSC Table: knownGene

| Resource URL: http://genome.ucsc.edu/

| Type of Gene ID: Entrez Gene ID

| Full dataset: yes

| miRBase build ID: GRCh37

| transcript_nrow: 80922

| exon_nrow: 286852

| cds_nrow: 235842

| Db created by: GenomicFeatures package from Bioconductor

| Creation time: 2012-09-10 12:56:25 -0700 (Mon, 10 Sep 2012)

| GenomicFeatures version at creation time: 1.9.39

| RSQLite version at creation time: 0.11.1

| DBSCHEMAVERSION: 1.0

Loading the package like this will also create a TranscriptDb object, and
by default that object will have the same name as the package itself.

3.2 Pre-filtering data based on Chromosomes

It is possible to filter the data that is returned from a TranscriptDb object
based on it’s chromosome. This can be a useful way to limit the things that
are returned if you are only interested in studying a handful of chromosomes.

To determine which chromosomes are currently active, use the isAc-

tiveSeq method. For example:

> head(isActiveSeq(txdb))

chr1 chr2 chr3 chr4 chr5 chr6

TRUE TRUE TRUE TRUE TRUE TRUE

Will tell you all the chromosomes that are active for the TxDb.Hsapiens.UCSC.hg19.knownGene
TranscriptDb object (by default it will be all of them).

If you then wanted to only set Chromosome 1 to be active you could do
it like this:

> isActiveSeq(txdb)[seqlevels(txdb)] <- FALSE

> isActiveSeq(txdb) <- c("chr1"=TRUE)

3

So if you ran this, then from this point on in your R session only chro-
mosome 1 would be consulted when you call the various retrieval methods..

Exercise 1
Use isActiveSeq to set only chromsome 15 to be active. BTW, the rest of
this vignette will assume you have succeeded at this.

Solution:

> isActiveSeq(txdb)[seqlevels(txdb)] <- FALSE

> isActiveSeq(txdb) <- c("chr15"=TRUE)

3.3 Retrieving data using the select method

The TranscriptDb objects inherit from AnnotationDb objects (just as the
ChipDb and OrgDb objects do). One of the implications of this relationship
is that these object ought to be used in similar ways to each other. Therefore
we have written supporting cols, keytypes, keys and select methods for
TranscriptDb objects.

These methods can be a useful way of extracting data from a Tran-
scriptDb object. And they are used in the same way that they would be
used to extract information about a ChipDb or an OrgDb object. Here is a
simple example of how to find the UCSC transcript names that match with
a set of gene IDs.

> keys <- c("100033416", "100033417", "100033420")

> cols(txdb)

[1] "CDSID" "CDSNAME" "CDSCHROM" "CDSSTRAND" "CDSSTART"

[6] "CDSEND" "EXONID" "EXONNAME" "EXONCHROM" "EXONSTRAND"

[11] "EXONSTART" "EXONEND" "GENEID" "TXID" "EXONRANK"

[16] "TXNAME" "TXCHROM" "TXSTRAND" "TXSTART" "TXEND"

> keytypes(txdb)

[1] "GENEID" "TXID" "TXNAME" "EXONID" "EXONNAME" "CDSID" "CDSNAME"

> select(txdb, keys = keys, cols="TXNAME", keytype="GENEID")

4

GENEID TXNAME

1 100033416 uc001yxl.4

2 100033417 uc001yxo.3

3 100033417 uc001yxq.3

4 100033420 uc001yxr.3

Exercise 2
For the genes in the example above, find the chromosome and strand infor-
mation that will go with each of the transcript names.

Solution:

> cols(txdb)

[1] "CDSID" "CDSNAME" "CDSCHROM" "CDSSTRAND" "CDSSTART"

[6] "CDSEND" "EXONID" "EXONNAME" "EXONCHROM" "EXONSTRAND"

[11] "EXONSTART" "EXONEND" "GENEID" "TXID" "EXONRANK"

[16] "TXNAME" "TXCHROM" "TXSTRAND" "TXSTART" "TXEND"

> cols <- c("TXNAME", "TXSTRAND", "TXCHROM")

> select(txdb, keys=keys, cols=cols, keytype="GENEID")

GENEID TXNAME TXCHROM TXSTRAND

1 100033416 uc001yxl.4 chr15 +

2 100033417 uc001yxo.3 chr15 +

3 100033417 uc001yxq.3 chr15 +

4 100033420 uc001yxr.3 chr15 +

3.4 Methods for returning GRanges objects

Retrieving data with select is useful, but sometimes it is more convenient to
extract the result as GRanges objects. This is often the case when you are
doing counting or specialized overlap operations downstream. For these use
cases there is another family of methods available.

Perhaps the most common operations for a TranscriptDb object is to
retrieve the genomic coordinates or ranges for exons, transcripts or coding
sequences. The functions transcripts, exons, and cds return the coordi-
nate information as a GRanges object.

As an example, all transcripts present in a TranscriptDb object can be
obtained as follows:

5

> GR <- transcripts(txdb)

> GR[1:3]

GRanges with 3 ranges and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr15 [20362688, 20364420] + | 52237 uc001yte.1

[2] chr15 [20487997, 20496811] + | 52238 uc001ytf.1

[3] chr15 [20723929, 20727150] + | 52239 uc001ytj.3

seqlengths:

chr15

102531392

The transcripts function returns a GRanges class object. You can
learn a lot more about the manipulation of these objects by reading the
GenomicRanges introductory vignette. The show method for a GRanges
object will display the ranges, seqnames (a chromosome or a contig), and
strand on the left side and then present related metadata on the right side.
At the bottom, the seqlengths display all the possible seqnames along with
the length of each sequence.

In addition, the transcripts function can also be used to retrieve a sub-
set of the transcripts available such as those on the +-strand of chromosome
1.

> GR <- transcripts(txdb, vals <- list(tx_chrom = "chr15", tx_strand = "+"))

> length(GR)

[1] 1718

> unique(strand(GR))

[1] +

Levels: + - *

The exons and cds functions can also be used in a similar fashion to
retrive genomic coordinates for exons and coding sequences.

Exercise 3
Use exons to retrieve all the exons from chromosome 15. How does the
length of this compare to the value returned by transcripts?

6

Solution:

> EX <- exons(txdb)

> EX[1:4]

GRanges with 4 ranges and 1 metadata column:

seqnames ranges strand | exon_id

<Rle> <IRanges> <Rle> | <integer>

[1] chr15 [20362688, 20362858] + | 190706

[2] chr15 [20362943, 20363123] + | 190707

[3] chr15 [20364397, 20364420] + | 190708

[4] chr15 [20487997, 20488227] + | 190709

seqlengths:

chr15

102531392

> length(EX)

[1] 10658

> length(GR)

[1] 1718

3.5 Working with Grouped Features

Often one is interested in how particular genomic features relate to each
other, and not just their location. For example, it might be of interest to
group transcripts by gene or to group exons by transcript. Such groupings
are supported by the transcriptsBy, exonsBy, and cdsBy functions.

The following call can be used to group transcripts by genes:

> GRList <- transcriptsBy(txdb, by = "gene")

> length(GRList)

[1] 782

> names(GRList)[10:13]

[1] "100033424" "100033425" "100033426" "100033427"

7

> GRList[11:12]

GRangesList of length 2:

$100033425

GRanges with 1 range and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr15 [25324204, 25324297] + | 52324 uc001yxw.3

$100033426

GRanges with 1 range and 2 metadata columns:

seqnames ranges strand | tx_id tx_name

[1] chr15 [25325288, 25325381] + | 52325 uc001yxx.3

seqlengths:

chr15

102531392

The transcriptsBy function returns a GRangesList class object. As
with GRanges objects, you can learn more about these objects by reading the
GenomicRanges introductory vignette. The show method for a GRangesList
object will display as a list of GRanges objects. And, at the bottom the
seqlengths will be displayed once for the entire list.

For each of these three functions, there is a limited set of options that can
be passed into the by argument to allow grouping. For the transcriptsBy

function, you can group by gene, exon or cds, whereas for the exonsBy and
cdsBy functions can only be grouped by transcript (tx) or gene.

So as a further example, to extract all the exons for each transcript you
can call:

> GRList <- exonsBy(txdb, by = "tx")

> length(GRList)

[1] 3281

> names(GRList)[10:13]

[1] "52246" "52247" "52248" "52249"

> GRList[[12]]

8

GRanges with 1 range and 3 metadata columns:

seqnames ranges strand | exon_id exon_name exon_rank

<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr15 [22043463, 22043502] + | 190748 <NA> 1

seqlengths:

chr15

102531392

As you can see, the GRangesList objects returned from each function
contain locations and identifiers grouped into a list like object according to
the type of feature specified in the by argument. The object returned can
then be used by functions like findOverlaps to contextualize alignments
from high-throughput sequencing.

The identifiers used to label the GRanges objects depend upon the data
source used to create the TranscriptDb object. So the list identifiers will not
always be Entrez Gene IDs, as they were in the first example. Furthermore,
some data sources do not provide a unique identifier for all features. In this
situation, the group label will be a synthetic ID created by GenomicFeatures
to keep the relations between features consistent in the database this was
the case in the 2nd example. Even though the results will sometimes have to
come back to you as synthetic IDs, you can still always retrieve the original
IDs.

Exercise 4
Starting with the tx ids that are the names of the GRList object we just
made, use select to retrieve that matching transcript names. Remember
that the list used a by argument = ”tx”, so the list is grouped by transcript
IDs.

Solution:

> GRList <- exonsBy(txdb, by = "tx")

> tx_ids <- names(GRList)

> head(select(txdb, keys=tx_ids, cols="TXNAME", keytype="TXID"))

TXID TXNAME

1 52237 uc001yte.1

2 52238 uc001ytf.1

3 52239 uc001ytj.3

4 52240 uc021sex.1

9

5 52241 uc010tzb.1

6 52242 uc021sey.1

Finally, the order of the results in a GRangesList object can vary with
the way in which things were grouped. In most cases the grouped elements of
the GRangesList object will be listed in the order that they occurred along
the chromosome. However, when exons or CDS are grouped by transcript,
they will instead be grouped according to their position along the transcript
itself. This is important because alternative splicing can mean that the order
along the transcript can be different from that along the chromosome.

3.6 Predefined grouping functions

The intronsByTranscript, fiveUTRsByTranscript and threeUTRsByTran-

script are convenience functions that provide behavior equivalent to the
grouping functions, but in prespecified form. These functions return a
GRangesList object grouped by transcript for introns, 5’ UTR’s, and 3’
UTR’s, respectively. Below are examples of how you can call these meth-
ods.

> length(intronsByTranscript(txdb))

[1] 3281

> length(fiveUTRsByTranscript(txdb))

[1] 1770

> length(threeUTRsByTranscript(txdb))

[1] 1748

3.7 Getting the actual sequence data

The GenomicFeatures package also provides provides functions for con-
verting from ranges to actual sequence (when paired with an appropriate
BSgenome package).

> library(BSgenome.Hsapiens.UCSC.hg19)

> tx_seqs1 <- extractTranscriptsFromGenome(Hsapiens,

+ TxDb.Hsapiens.UCSC.hg19.knownGene)

10

And, once these sequences have been extracted, you can translate them
into proteins with translate:

> translate(tx_seqs1)

A AAStringSet instance of length 3281

width seq

[1] 125 EDQDDEARVQYEGFRPGMYVRVEIENVPCEFV...EDHNGRQRLLKYTPQHMHCGAAFWA*FSDSCH

[2] 288 RIAS*GRAEFSSAQTSEIQRRRSSVLLSTDPG...TFFHSVIFLFFESVFYSVYFNYGNNCFFTVTD

[3] 588 RSGQRLPEQPEAEGGDPGKQRRRAEHRAVGLP...QEERNSKVICERDLLENETHLYLCSIKICFSS

[4] 10 HHLNCRPQTG

[5] 9 STVTLPHSQ

[6] 9 PACDLERCI

[7] 1760 IPGYASSGSVAQLPGR*LEVLISAWWDFADVA...KRKY*KTFA*SGIIDCWCDDTVM**IIKLLQS

[8] 6 *ALSSR

[9] 1134 VAGYRVLTCTSAAEFGESGSRLCCRRLEPGTW...TEALLNIFSASVLFLQ*Q*HKFAFGDIKIVFS

...

[3273] 10 LVPTRVQVGQ

[3274] 10 SEKMNSLVCL

[3275] 10 SEKMNSLVCL

[3276] 10 QVPMRVQVGQ

[3277] 10 QVPMRVQVGQ

[3278] 306 MVTEFIFLGLSDSQELQTFLFMLFFVFYGGIV...LNPIIYTLRNKDMKTAIRRLRKWDAHSSVKF*

[3279] 550 LAVSLFFDLFFLFMCICCLLAQTSRVLSTGPL...LGTNRGRRQSLTPRRLHPAQLEILY*KHTVGF

[3280] 496 LAVSLFFDLFFLFMCICCLLAQTSRVLSTGPL...RDQQGQEAVTDPETFASCTARDPLLKAHCWFL

[3281] 531 LAVSLFFDLFFLFMCICCLLAQTSRVLSTGPL...LGTNRGRRQSLTPRRLHPAQLEILY*KHTVGF

Exercise 5
But of course this is not a meaningful translation, because the call to ex-

tractTranscriptsFromGenome will have extracted all the transcribed re-
gions of the genome regardless of whether or not they are translated. look
at the manual page for extractTranscriptsFromGenome and see how you
can use cdsBy to only translate only the coding regions.

Solution:

> cds_seqs <- extractTranscriptsFromGenome(Hsapiens, cdsBy(txdb, by="tx"))

> translate(cds_seqs)

A AAStringSet instance of length 1819

width seq

[1] 102 MYVRVEIENVPCEFVQNIDPHYPIILGGLGNS...IPLYYIEDHNGRQRLLKYTPQHMHCGAAFWA*

11

[2] 435 MEWKLEQSMREQALLKAQLTQLKESLKEVQLE...PIVQDHQEHPGLGSNCCVPFFCWAWPPRRRR*

[3] 317 MKIANNTVVTEFILLGLTQSQDIQLLVFVLIL...IYTLRNQEVKTSMKRLLSRHVVCQVDFIIRN*

[4] 314 METANYTKVTEFVLTGLSQTPEVQLVLFVIFL...LRNPIIYTLRNKEVKAAMRKLVTKYILCKEK*

[5] 317 MKIANNTVVTEFILLGLTQSQDIQLLVFVLIL...IYTLRNQEVKTSMKRLLSRHVVCQVDFIIRN*

[6] 228 MLVDFLSEKKVISYRGCITQLFFLHFLGGGEG...VILPLLNPVIYTLHNQEVKASMKKVFNKHIA*

[7] 669 MLMWPQPHLPTHPHLPTHPHLPTHPHLPTHPH...RQEEKMWEQEVRLRQQEEKMQEHQEHLEAAI*

[8] 1025 MARHGPPWSRLDAQQERDVRELVRGVAGLQDE...LVTILNKAVCRGSFPHCEYIMLKYFYLCISL*

[9] 1025 MARHGPPWSRLDAQQERDVRELVRGVAGLQDE...LVTILNKAVCRGSFPHLESLALSLMAGMEQS*

...

[1811] 184 MAGGVLPLRGLRALCRVLLFLSQFCILSGGES...NWTGGYKWSTALALSLQAQVGLHVQLTVGLH*

[1812] 183 MKCPSNGLCSRLPADCIDCTTNFSCTYGKPVT...FSFGGLGIWTLIDVLLIGVGYVGPADGSLYI*

[1813] 248 MAGGVLPLRGLRALCRVLLFLSQFCILSGGEQ...FSFGGLGIWTLIDVLLIGVGYVGPADGSLYI*

[1814] 222 MAGGVLPLRGLRALCRVLLFLSQFCILSGGES...FSFGGLGIWTLIDVLLIGVGYVGPADGSLYI*

[1815] 186 MAGGVLPLRGLRALCRVLLFLSQFCILSGGEQ...PANCTVRDHVHCLGRSEFKDICQQNVFLQVY*

[1816] 258 MYNSKLWEASGHWQHYSENMFTFEIEKDTFAL...ILSENYGGKWYPVNFLKKDLWLTLTWITVVH*

[1817] 803 MAAEALAAEAVASRLERQEEDIRWLWSEVERL...NKIHGEILVTSAIDKLKNLRKTRTLNAEEAF*

[1818] 306 MVTEFIFLGLSDSQELQTFLFMLFFVFYGGIV...LNPIIYTLRNKDMKTAIRRLRKWDAHSSVKF*

[1819] 134 MSESINFSHNLGQLLSPPRCVVMPGMPFPSIR...CHGPGLQGSCYKGETQESVESRVLPGPRHRH*

4 Creating New TranscriptDb Objects or Pack-
ages

The GenomicFeatures package provides functions to create TranscriptDb
objects based on data downloaded from UCSC Genome Bioinformatics or
BioMart. The following subsections demonstrate the use of these functions.
There is also support for creating TranscriptDb objects from custom data
sources using makeTranscriptDb; see the help page for this function for
details.

4.1 Using makeTranscriptDbFromUCSC

The function makeTranscriptDbFromUCSC downloads UCSC Genome Bioin-
formatics transcript tables (e.g. "knownGene", "refGene", "ensGene") for
a genome build (e.g. "mm9", "hg19"). Use the supportedUCSCtables utility
function to get the list of supported tables.

> supportedUCSCtables()[1:4,]

12

track subtrack

knownGene UCSC Genes <NA>

knownGeneOld3 Old UCSC Genes <NA>

wgEncodeGencodeManualV3 Gencode Genes Genecode Manual

wgEncodeGencodeAutoV3 Gencode Genes Genecode Auto

> mm9KG <- makeTranscriptDbFromUCSC(genome = "mm9", tablename = "knownGene")

The function makeTranscriptDbFromUCSC also takes an important ar-
gument called circ_seqs to label which chromosomes are circular. The
argument is a character vector of strings that correspond to the circular
chromosomes (as labeled by the source). To discover what the source calls
their chromosomes, use the getChromInfoFromUCSC function to list them.
By default, there is a supplied character vector that will attempt to label
all the mitochondrial chromosomes as circular by matching to them. This is
the DEFAULT_CIRC_SEQS vector. It contains strings that usually correspond
to mitochondrial chromosomes. Once the database has been generated with
the circular chromosomes tagged in this way, all subsequent analysis of these
chromosomes will be able to consider their circularity for analysis. So it is
important for the user to make sure that they pass in the correct strings to
the circ_seqs argument to ensure that the correct sequences are tagged as
circular by the database.

> head(getChromInfoFromUCSC("hg19"))

chrom length

1 chr1 249250621

2 chr2 243199373

3 chr3 198022430

4 chr4 191154276

5 chr5 180915260

6 chr6 171115067

4.2 Using makeTranscriptDbFromBiomart

Retrieve data from BioMart by specifying the mart and the data set to
the makeTranscriptDbFromBiomart function (not all BioMart data sets are
currently supported):

> mmusculusEnsembl <-

+ makeTranscriptDbFromBiomart(biomart = "ensembl",

+ dataset = "mmusculus_gene_ensembl")

13

As with the makeTranscriptDbFromUCSC function, the makeTranscript-
DbFromBiomart function also has a circ_seqs argument that will default
to using the contents of the DEFAULT_CIRC_SEQS vector. And just like those
UCSC sources, there is also a helper function called getChromInfoFrom-

Biomart that can show what the different chromosomes are called for a
given source.

Using the makeTranscriptDbFromBiomart makeTranscriptDbFromUCSC
functions can take a while and may also require some bandwidth as these
methods have to download and then assemble a database from their respec-
tive sources. It is not expected that most users will want to do this step
every time. Instead, we suggest that you save your annotation objects and
label them with an appropriate time stamp so as to facilitate reproducible
research.

4.3 Using makeTranscriptDbFromGFF

You can also extract transcript information from either GFF3 or GTF files
by using the makeTranscriptDbFromGFF function. Usage is similar to make-

TranscriptDbFromBiomart and makeTranscriptDbFromUCSC.

4.4 Saving and Loading a TranscriptDb Object

Once a TranscriptDb object has been created, it can be saved to avoid
the time and bandwidth costs of recreating it and to make it possible to
reproduce results with identical genomic feature data at a later date. Since
TranscriptDb objects are backed by a SQLite database, the save format is
a SQLite database file (which could be accessed from programs other than
Rif desired). Note that it is not possible to serialize a TranscriptDb object
using R’s save function.

> saveDb(mm9KG, file="fileName.sqlite")

And as was mentioned earlier, a saved TranscriptDb object can be ini-
tialized from a .sqlite file by simply using loadDb.

> mm9KG <- loadDb("fileName.sqlite")

4.5 Using makeTxDbPackageFromUCSC and makeTxDbPackageFrom-

Biomart

It is often much more convenient to just make an annotation package out
of your annotations. If you are finding that this is the case, then you

14

should consider the convenience functions: makeTxDbPackageFromUCSC and
makeTxDbPackageFromBiomart. These functions are similar to makeTran-

scriptDbFromUCSC and makeTranscriptDbFromBiomart except that they
will take the extra step of actually wrapping the database up into an anno-
tation package for you. This package can then be installed and used as of the
standard TranscriptDb packages found on in the Bioconductor repository.

5 Session Information

R version 2.15.2 (2012-10-26)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] BSgenome.Hsapiens.UCSC.hg19_1.3.19

[2] BSgenome_1.26.1

[3] Biostrings_2.26.3

[4] TxDb.Hsapiens.UCSC.hg19.knownGene_2.8.0

[5] GenomicFeatures_1.10.2

[6] AnnotationDbi_1.20.3

[7] Biobase_2.18.0

[8] GenomicRanges_1.10.6

[9] IRanges_1.16.6

[10] BiocGenerics_0.4.0

loaded via a namespace (and not attached):

[1] DBI_0.2-5 RCurl_1.95-3 RSQLite_0.11.2 Rsamtools_1.10.2

[5] XML_3.95-0.1 biomaRt_2.14.0 bitops_1.0-5 parallel_2.15.2

[9] rtracklayer_1.18.2 stats4_2.15.2 tools_2.15.2 zlibbioc_1.4.0

15

