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qpgraph-package The q-order partial correlation graph learning software, qpgraph.

Description

q-order partial correlation graphs, or qp-graphs for short, are undirected Gaussian graphical Markov
models built from q-order partial correlations. They are useful for learning undirected graphical
Gaussian Markov models from data sets where the number of random variables p exceeds the avail-
able sample size n as, for instance, in the case of microarray data where they can be employed to
reverse engineer a molecular regulatory network.

Details

Package: qpgraph
Version: 1.10.0
Built: R 2.14.0
Depends: methods
Imports: methods, annotate, Matrix, graph, Biobase, AnnotationDbi
Enhances: rlecuyer, snow, Rgraphviz
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Suggests: Matrix, mvtnorm, graph, genefilter, Category, org.EcK12.eg.db, GOstats
biocViews: Microarray, GeneExpression, Transcription, Pathways, Bioinformatics, GraphsAndNetworks
License: GPL (>= 2)
URL: http://functionalgenomics.upf.edu/qpgraph

Functions

• qpNrr estimates non-rejection rates for every pair of variables.

• qpAvgNrr estimates average non-rejection rates for every pair of variables.

• qpGenNrr estimates generalized average non-rejection rates for every pair of variables.

• qpEdgeNrr estimate the non-rejection rate of one pair of variables.

• qpCItest performs a conditional independence test between two variables given a condition-
ing set.

• qpHist plots the distribution of non-rejection rates.

• qpGraph obtains a qp-graph from a matrix of non-rejection rates.

• qpAnyGraph obtains an undirected graph from a matrix of pairwise measurements.

• qpGraphDensity calculates and plots the graph density as function of the non-rejection rate.

• qpCliqueNumber calculates the size of the largest maximal clique (the so-called clique num-
ber or maximum clique size) in a given undirected graph.

• qpClique calculates and plots the size of the largest maximal clique (the so-called clique
number or maximum clique size) as function of the non-rejection rate.

• qpGetCliques finds the set of (maximal) cliques of a given undirected graph.

• qpRndWishart random generation for the Wishart distribution.

• qpCov calculates the sample covariance matrix, just as the function cov() but returning a
dspMatrix-class object which efficiently stores such a dense symmetric matrix.

• qpG2Sigma builds a random covariance matrix from an undrected graph. The inverse of the
resulting matrix contains zeroes at the missing edges of the given undirected graph.

• qpUnifRndAssociation builds a matrix of uniformly random association values between -
1 and +1 for all pairs of variables that follow from the number of variables given as input
argument.

• qpK2ParCor obtains the partial correlation coefficients from a given concentration matrix.

• qpIPF performs maximum likelihood estimation of a sample covariance matrix given the
independence constraints from an input list of (maximal) cliques.

• qpPAC estimates partial correlation coefficients and corresponding P-values for each edge in
a given undirected graph, from an input data set.

• qpPCC estimates pairwise Pearson correlation coefficients and their corresponding P-values
between all pairs of variables from an input data set.

• qpRndGraph builds a random undirected graph with a bounded maximum connectivity de-
gree on every vertex.

• qpPrecisionRecall calculates the precision-recall curve for a given measure of association
between all pairs of variables in a matrix.

• qpPRscoreThreshold calculates the score threshold at a given precision or recall level from
a given precision-recall curve.
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• qpImportNrr imports non-rejection rates.

• qpFunctionalCoherence estimates functional coherence of a given transcriptional regulatory
network using Gene Ontology annotations.

• qpTopPairs reports a top number of pairs of variables according to either an association
measure and/or occurring in a given reference graph.

• qpPlotNetwork plots a network using the Rgraphviz library.

This package provides an implementation of the procedures described in (Castelo and Roverato,
2006, 2009). An example of its use for reverse-engineering of transcriptional regulatory networks
from microarray data is available in the vignette qpTxRegNet and, the same directory, contains
a pre-print of a book chapter describing the basic functionality of the package which serves the
purpose of a basic users’s guide. This package is a contribution to the Bioconductor (Gentleman et
al., 2004) and gR (Lauritzen, 2002) projects.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comput. Biol. 16(2):213-227, 2009.

Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier,
L., Ge, Y., Gentry, J., Hornik, K. Hothorn, T., Huber, W., Iacus, S., Irizarry, R., Leisch, F., Li,
C., Maechler, M. Rosinni, A.J., Sawitzki, G., Smith, C., Smyth, G., Tierney, L., Yang, T.Y.H. and
Zhang, J. Bioconductor: open software development for computational biology and bioinformatics.
Genome Biol., 5:R80, 2004.

Lauritzen, S.L. (2002). gRaphical Models in R. R News, 3(2)39.

EcoliOxygen Preprocessed microarray oxygen deprivation data and filtered Regu-
lonDB data

Description

The data consist of two classes of objects, one containing normalized gene expression microar-
ray data from Escherichia coli (E. coli) and the other containing a subset of filtered RegulonDB
transcription regulatory relationships on E. coli.

Usage

data(EcoliOxygen)

Format

gds680.eset ExpressionSet object containing n=43 experiments of various mutants under oxygen deprivation (Covert et al., 2004). The mutants were designed to monitor the response from E. coli during an oxygen shift in order to target the a priori most relevant part of the transcriptional network by using six strains with knockouts of five key transcriptional regulators in the oxygen response (arcA, appY, fnr, oxyR and soxS). The data was obtained by downloading the corresponding CEL files from the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession GDS680 and then normalized using the rma() function from the affy package. Following the steps described in (Castelo and Roverato, 2009) probesets were mapped to Entrez Gene Identifiers and filtered such that the current ExpressionSet object contains a total of p=4205 genes. The slot featureNames has already the corresponding Entrez Gene IDs.
subset.gds680.eset ExpressionSet object corresponding to a subset of gds680.eset defined by the transcription factor genes that were knocked-out in the experiments by Covert et al. (2004) and their putative targets according to the RegulonDB database version 6.1.
filtered.regulon6.1 Data frame object containing a subset of the E. coli transcriptional network from RegulonDB 6.1 (Gama-Castro et al, 2008) obtained through the filtering steps described in (Castelo and Roverato, 2009). In this data frame each row corresponds to a transcriptional regulatory relationship and the first two columns contain Blattner IDs of the transcription factor and target genes, respectively, and the following two correspond to the same genes but specified by Entrez Gene IDs. The fifth column contains the direction of the regulation according to RegulonDB.
subset.filtered.regulon6.1 Subset of filtered.regulon6.1 containing the transcriptional regulatory relationships in RegulonDB version 6.1 that involve the transcription factor genes which were knocked-out in the experiments by Covert et al. (2004).

http://www.ncbi.nlm.nih.gov/geo
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Source

Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J., and Palsson, B.O. Integrating high-throughput
and computational data elucidates bacterial networks. Nature, 429(6987):92-96, 2004.

Gama-Castro, S., Jimenez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A., Penaloza-Spinola, M.I.,
Contreras-Moreira, B., Segura-Salazar, J., Muniz-Rascado, L., Martinez-Flores, I., Salgado, H.,
Bonavides-Martinez, C., Abreu-Goodger, C., Rodriguez-Penagos, C., Miranda-Rios, J., Morett,
E., Merino, E., Huerta, A.M., Trevino-Quintanilla, L., and Collado-Vides, J. RegulonDB (version
6.0): gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental)
annotated promoters and Textpresso navigation. Nucleic Acids Res., 36(Database issue):D120-124,
2008.

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

Examples

data(EcoliOxygen)
ls()

qpAllCItests Tests of conditional independence

Description

Performs a test of conditional independence for every pair of variables.

Usage

## S4 method for signature ’data.frame’
qpAllCItests(X, I=NULL, Q=NULL, pairup.i=NULL, pairup.j=NULL,

long.dim.are.variables=TRUE, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01,
return.type=c("p.value", "statn", "all"), verbose=TRUE,
R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,
nAdj2estimateTime=10)

## S4 method for signature ’matrix’
qpAllCItests(X, I=NULL, Q=NULL, pairup.i=NULL, pairup.j=NULL,

long.dim.are.variables=TRUE, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01,
return.type=c("p.value", "statn", "all"), verbose=TRUE,
R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,
nAdj2estimateTime=10)
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Arguments

X data set from where to estimate the non-rejection rates. It can be an Expression-
Set object, a data frame or a matrix.

I indexes or names of the variables in X that are discrete. See details below re-
garding this argument.

Q indexes or names of the variables in X forming the conditioning set.
pairup.i subset of vertices to pair up with subset pairup.j
pairup.j subset of vertices to pair up with subset pairup.i
long.dim.are.variables

logical; if TRUE it is assumed that when data are in a data frame or in a ma-
trix, the longer dimension is the one defining the random variables (default); if
FALSE, then random variables are assumed to be at the columns of the data
frame or matrix.

exact.test logical; if FALSE an asymptotic conditional independence test is employed with
mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact con-
ditional independence test with mixed data is employed. See details below re-
garding this argument.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

return.type type of value returned by this function. By default "p.value" indicates that a list
containing a matrix of p-values from all performed conditional independence
(CI) tests will be returned. If return.type="statn" then a list containing the
matrix of the statistics and the sample sizes on each CI test, will be returned. If
return.type="all" then all previous matrices of values will be returned within
a list.

verbose show progress on the calculations.
R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE

then only R code is executed.
clusterSize size of the cluster of processors to employ if we wish to speed-up the calcula-

tions by performing them in parallel. A value of 1 (default) implies a single-
processor execution. The use of a cluster of processors requires having previ-
ously loaded the packages snow and rlecuyer.

estimateTime logical; if TRUE then the time for carrying out the calculations with the given
parameters is estimated by calculating for a limited number of adjacencies, spec-
ified by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE
(default) calculations are performed normally till they finish.

nAdj2estimateTime
number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE).
By default this has a default value of 10 adjacencies and larger values should
provide more accurate estimates. This might be relevant when using a cluster
facility.

Details

When I is set different to NULL then mixed graphical model theory is employed and, concretely, it
is assumed that the data comes from an homogeneous conditional Gaussian distribution. By default,
with exact.test=TRUE, an exact test for conditional independence is employed, otherwise an
asymptotic one will be used. Full details on these features can be found in Tur and Castelo (2011).
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Value

A list with three entries called p.value, statistic and n corresponding to a dspMatrix-class sym-
metric matrix of p-values for the null hypothesis of coindtional independence with the diagonal set
to NA values, an analogous matrix of the statistics of each test and of the sample sizes, respectively.
These returned values, however, depend on the setting of argument return.type which, by default,
enables only returning the matrix of p-values. If arguments pairup.i and pairup.j are employed,
those cells outside the constrained pairs will get also a NA value.

Note, however, that when estimateTime=TRUE, then instead of the matrix of estimated non-
rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds for
completion of the calculations is returned.

Author(s)

R. Castelo, A. Roverato and I. Tur

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

Tur, I. and Castelo, R. Learning mixed graphical models from data with p larger than n, In Proc.
27th Conference on Uncertainty in Artificial Intelligence, F.G. Cozman and A. Pfeffer eds., pp.
689-697, AUAI Press, ISBN 978-0-9749039-7-2, Barcelona, 2011.

See Also

qpCItest

Examples

library(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 3 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

alltests <- qpAllCItests(X, verbose=FALSE)

## distribution of p-values for the present edges
summary(alltests$p.value[upper.tri(alltests$p.value) & A])

## distribution of p-values for the missing edges
summary(alltests$p.value[upper.tri(alltests$p.value) & !A])
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qpAnyGraph A graph

Description

Obtains an undirected graph from a matrix of pairwise measurements

Usage

qpAnyGraph(measurementsMatrix, threshold=NULL, remove=c("below", "above"),
topPairs=NULL, decreasing=TRUE, pairup.i=NULL, pairup.j=NULL,
return.type=c("adjacency.matrix", "edge.list", "graphNEL", "graphAM"))

Arguments

measurementsMatrix
matrix of pairwise measurements.

threshold threshold on the measurements below or above which pairs of variables are as-
sumed to be disconnected in the resulting graph.

remove direction of the removal with the threshold. It should be either "below" (default)
or "above".

topPairs number of edges from the top of the ranking, defined by the pairwise measure-
ments in measurementsMatrix, to use to form the resulting graph. This param-
eter is incompatible with a value different from NULL in threshold.

decreasing logical, only applies when topPairs is set; if TRUE then the ranking is made in
decreasing order; if FALSE then is made in increasing order.

pairup.i subset of vertices to pair up with subset pairup.j

pairup.j subset of vertices to pair up with subset pairup.i

return.type type of data structure on which the resulting undirected graph should be re-
turned. Either a logical adjacency matrix with cells set to TRUE when the two
indexing variables are connected in the graph (default), or a list of edges in
a matrix where each row corresponds to one edge and the two columns con-
tain the two vertices defining each edge, or a graphNEL-class object, or a
graphAM-class object.

Details

This function requires the graph package when return.type=graphNEL or return.type=graphAM.

Value

The resulting undirected graph as either an adjacency matrix, a graphNEL object or a graphAM
object, depending on the value of the return.type parameter. Note that when some gold-standard
graph is available for comparison, a value for the parameter threshold can be found by calculating
a precision-recall curve with qpPrecisionRecall with respect to this gold-standard, and then using
qpPRscoreThreshold. Parameters threshold and topPairs are mutually exclusive, that is, when
we specify with topPairs=n that we want a graph with n edges then threshold cannot be used.
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Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpGraph qpGraphDensity qpClique qpPrecisionRecall qpPRscoreThreshold

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

## estimate Pearson correlations
pcc.estimates <- qpPCC(X)

## the higher the threshold
g <- qpAnyGraph(abs(pcc.estimates$R), threshold=0.9,

remove="below")

## the sparser the qp-graph
(sum(g)/2) / (nVar*(nVar-1)/2)

## the lower the threshold
g <- qpAnyGraph(abs(pcc.estimates$R), threshold=0.5,

remove="below")

# the denser the graph
(sum(g)/2) / (nVar*(nVar-1)/2)

qpAvgNrr Average non-rejection rate estimation

Description

Estimates average non-rejection rates for every pair of variables.
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Usage

## S4 method for signature ’ExpressionSet’
qpAvgNrr(X, qOrders=4, I=NULL, restrict.Q=NULL,

fix.Q=NULL, nTests=100, alpha=0.05,
pairup.i=NULL, pairup.j=NULL, type=c("arith.mean"),
verbose=TRUE, identicalQs=TRUE,
exact.test=TRUE, use=c("complete.obs", "em"),
tol=0.01, R.code.only=FALSE, clusterSize=1,
estimateTime=FALSE, nAdj2estimateTime=10)

## S4 method for signature ’data.frame’
qpAvgNrr(X, qOrders=4, I=NULL, restrict.Q=NULL,

fix.Q=NULL, nTests=100, alpha=0.05, pairup.i=NULL,
pairup.j=NULL, long.dim.are.variables=TRUE,
type=c("arith.mean"), verbose=TRUE,
identicalQs=TRUE, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

## S4 method for signature ’matrix’
qpAvgNrr(X, qOrders=4, I=NULL, restrict.Q=NULL, fix.Q=NULL,

nTests=100, alpha=0.05, pairup.i=NULL,
pairup.j=NULL, long.dim.are.variables=TRUE,
type=c("arith.mean"), verbose=TRUE,
identicalQs=TRUE, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

Arguments

X data set from where to estimate the average non-rejection rates. It can be an
ExpressionSet object, a data frame or a matrix.

qOrders either a number of partial-correlation orders or a vector of vector of particular
orders to be employed in the calculation.

I indexes or names of the variables in X that are discrete. When X is an ExpressionSet
then I may contain only names of the phenotypic variables in X. See details be-
low regarding this argument.

restrict.Q indexes or names of the variables in X that restrict the sample space of condi-
tioning subsets Q.

fix.Q indexes or names of the variables in X that should be fixed within every condi-
tioning conditioning subsets Q.

nTests number of tests to perform for each pair for variables.

alpha significance level of each test.

pairup.i subset of vertices to pair up with subset pairup.j

pairup.j subset of vertices to pair up with subset pairup.i
long.dim.are.variables

logical; if TRUE it is assumed that when the data is a data frame or a matrix,
the longer dimension is the one defining the random variables; if FALSE, then
random variables are assumed to be at the columns of the data frame or matrix.

type type of average. By now only the arithmetic mean is available.

verbose show progress on the calculations.
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identicalQs use identical conditioning subsets for every pair of vertices (default), otherwise
sample a new collection of nTests subsets for each pair of vertices.

exact.test logical; if FALSE an asymptotic conditional independence test is employed with
mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact con-
ditional independence test with mixed data is employed.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

clusterSize size of the cluster of processors to employ if we wish to speed-up the calcula-
tions by performing them in parallel. A value of 1 (default) implies a single-
processor execution. The use of a cluster of processors requires having previ-
ously loaded the packages snow and rlecuyer.

estimateTime logical; if TRUE then the time for carrying out the calculations with the given
parameters is estimated by calculating for a limited number of adjacencies, spec-
ified by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE
(default) calculations are performed normally till they finish.

nAdj2estimateTime
number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE).
By default this has a default value of 10 adjacencies and larger values should
provide more accurate estimates. This might be relevant when using a cluster
facility.

Details

Note that when specifying a vector of particular orders q, these values should be in the range 1 to
min(p, n-3), where p is the number of variables and n the number of observations. The computa-
tional cost increases linearly within each q value and quadratically in p. When setting identicalQs
to FALSE the computational cost may increase between 2 times and one order of magnitude (de-
pending on p and q) while asymptotically the estimation of the non-rejection rate converges to the
same value.

When I is set different to NULL then mixed graphical model theory is employed and, concretely,
it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this
setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p
plus the number of levels of the discrete variables involved in the marginal distributions employed
by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence
is employed, otherwise an asymptotic one will be used. Full details on these features can be found
in Tur and Castelo (2011).

Value

A dspMatrix-class symmetric matrix of estimated average non-rejection rates with the diagonal set
to NA values. When using the arguments pairup.i and pairup.j, those cells outside the constraint
pairs will get also a NA value.

Note, however, that when estimateTime=TRUE, then instead of the matrix of estimated average
non-rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds
for completion of the calculations is returned.
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Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

Tur, I. and Castelo, R. Learning mixed graphical models from data with p larger than n, In Proc.
27th Conference on Uncertainty in Artificial Intelligence, F.G. Cozman and A. Pfeffer eds., pp.
689-697, AUAI Press, ISBN 978-0-9749039-7-2, Barcelona, 2011.

See Also

qpNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 3 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

avgnrr.estimates <- qpAvgNrr(X, verbose=FALSE)

## distribution of average non-rejection rates for the present edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & A])

## distribution of average non-rejection rates for the missing edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & !A])

## Not run:
library(snow)
library(rlecuyer)

## only for moderate and large numbers of variables the
## use of a cluster of processors speeds up the calculations

nVar <- 500
maxCon <- 3
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

system.time(avgnrr.estimates <- qpAvgNrr(X, q=10, verbose=TRUE))
system.time(avgnrr.estimates <- qpAvgNrr(X, q=10, verbose=TRUE, clusterSize=4))

## End(Not run)
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qpBoundary Maximum boundary size of the resulting qp-graphs

Description

Calculates and plots the size of the largest vertex boundary as function of the non-rejection rate.

Usage

qpBoundary(nrrMatrix, n=NA, threshold.lim=c(0,1), breaks=5, vertexSubset=NULL,
plot=TRUE, qpBoundaryOutput=NULL, density.digits=0, logscale.bdsize=FALSE,
titlebd="Maximum boundary size as function of threshold", verbose=FALSE)

Arguments

nrrMatrix matrix of non-rejection rates.

n number of observations from where the non-rejection rates were estimated.

threshold.lim range of threshold values on the non-rejection rate.

breaks either a number of threshold bins or a vector of threshold breakpoints.

vertexSubset subset of vertices for which their maximum boundary size is calculated with
respect to all other vertices.

plot logical; if TRUE makes a plot of the result; if FALSE it does not.
qpBoundaryOutput

output from a previous call to qpBoundary. This allows one to plot the result
changing some of the plotting parameters without having to do the calculation
again.

density.digits number of digits in the reported graph densities.

logscale.bdsize logical; if TRUE then the scale for the maximum boundary size is logarithmic
which is useful when working with more than 1000 variables; FALSE otherwise
(default).

titlebd main title to be shown in the plot.

verbose show progress on calculations.

Details

The maximum boundary is calculated as the largest degree among all vertices of a given qp-graph.

Value

A list with the maximum boundary size and graph density as function of threshold, the threshold on
the non-rejection rate that provides a maximum boundary size strictly smaller than the sample size
n and the resulting maximum boundary size.

Author(s)

R. Castelo and A. Roverato
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References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpHTF qpGraphDensity

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

## the higher the q the less complex the qp-graph

nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)

qpBoundary(nrr.estimates, plot=FALSE)

nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)

qpBoundary(nrr.estimates, plot=FALSE)

qpCItest Conditional independence test

Description

Performs a conditional independence test between two variables given a conditioning set.

Usage

## S4 method for signature ’smlSet’
qpCItest(X, i=1, j=2, Q=c(), exact.test=TRUE, use=c("complete.obs", "em"),

tol=0.01, R.code.only=FALSE)
## S4 method for signature ’ExpressionSet’
qpCItest(X, i=1, j=2, Q=c(), exact.test=TRUE, use=c("complete.obs", "em"),

tol=0.01, R.code.only=FALSE)
## S4 method for signature ’data.frame’
qpCItest(X, i=1, j=2, Q=c(), I=NULL, long.dim.are.variables=TRUE,

exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE)
## S4 method for signature ’matrix’
qpCItest(X, i=1, j=2, Q=c(), I=NULL, long.dim.are.variables=TRUE,
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exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE)
## S4 method for signature ’SsdMatrix’
qpCItest(X, i=1, j=2, Q=c(), R.code.only=FALSE)

Arguments

X data set where the test should be performed. It can be either an smlSet object,
an ExpressionSet object, a data frame, a matrix or an SsdMatrix-class object.
In the latter case, the input matrix should correspond to a sample covariance
matrix of data on which we want to test for conditional independence. The
function qpCov() can be used to estimate such matrices.

i index or name of one of the two variables in X to test.

j index or name of the other variable in X to test.

Q indexes or names of the variables in X forming the conditioning set.

I indexes or names of the variables in X that are discrete. See details below re-
garding this argument.

long.dim.are.variables
logical; if TRUE it is assumed that when data are in a data frame or in a ma-
trix, the longer dimension is the one defining the random variables (default);
if FALSE, then random variables are assumed to be at the columns of the data
frame or matrix.

exact.test logical; if FALSE an asymptotic likelihood ratio test of conditional indepen-
dence test is employed with mixed (i.e., continuous and discrete) data; if TRUE
(default) then an exact likelihood ratio test of conditional independence with
mixed data is employed. See details below regarding this argument.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

Details

When variables in i, j and Q are continuous and I=NULL, this function performs a conditional
independence test using a t-test for zero partial regression coefficient (Lauritzen, 1996, pg. 150).
Note that the size of possible Q sets should be in the range 1 to min(p,n-3), where p is the number
of variables and n the number of observations. The computational cost increases linearly with the
number of variables in Q.

When variables in i, j and Q are continuous and discrete (mixed data), indicated with the I argu-
ment when X is a matrix, then mixed graphical model theory (Lauritzen and Wermuth, 1989) is
employed and, concretely, it is assumed that data come from an homogeneous conditional Gaus-
sian distribution. By default, with exact.test=TRUE, an exact likelihood ratio test for conditional
independence is performed (Lauritzen, 1996, pg. 192-194; Tur and Castelo, 2011), otherwise an
asymptotic one is used.

In this setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller
than p plus the number of levels of the discrete variables involved in the marginal distributions
employed by the algorithm.
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Value

A list with class "htest" containing the following components:

statistic in case of pure continuous data and I=NULL, the t-statistic for zero partial
regression coefficient; when I!=NULL, the value Lambda of the likelihood
ratio if exact.test=TRUE and -n log Lambda otherwise.

parameter in case of pure continuous data and I=NULL, the degrees of freedom for the
t-statistic (n-q-2); when I!=NULL, the degrees of freedom for -n log Lambda
of a chi-square distribution under the null hypothesis if exact.test=FALSE and
the (a, b) parameters of a beta distribution under the null if exact.test=TRUE.

p.value the p-value for the test.

estimate in case of pure continuous data and I=NULL, the estimated partial regression
coefficient and no value, otherwise.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of conditional independence test was
performed.

data.name a character string giving the name(s) of the random variables involved in the
conditional independence test.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

Lauritzen, S.L. Graphical models. Oxford University Press, 1996.

Lauritzen, S.L and Wermuth, N. Graphical Models for associations between variables, some of
which are qualitative and some quantitative. Ann. Stat., 17(1):31-57, 1989.

Tur, I. and Castelo, R. Learning mixed graphical models from data with p larger than n, In Proc.
27th Conference on Uncertainty in Artificial Intelligence, F.G. Cozman and A. Pfeffer eds., pp.
689-697, AUAI Press, ISBN 978-0-9749039-7-2, Barcelona, 2011.

See Also

qpCov qpNrr qpEdgeNrr

Examples

require(mvtnorm)

nObs <- 100 ## number of observations to simulate

## the following adjacency matrix describes an undirected graph
## where vertex 3 is conditionally independent of 4 given 1 AND 2
A <- matrix(c(FALSE, TRUE, TRUE, TRUE,

TRUE, FALSE, TRUE, TRUE,
TRUE, TRUE, FALSE, FALSE,
TRUE, TRUE, FALSE, FALSE), nrow=4, ncol=4, byrow=TRUE)

Sigma <- qpG2Sigma(A, rho=0.5)
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X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

qpCItest(X, i=3, j=4, Q=1, long.dim.are.variables=FALSE)

qpCItest(X, i=3, j=4, Q=c(1,2), long.dim.are.variables=FALSE)

qpClique Complexity of the resulting qp-graphs

Description

Calculates and plots the size of the largest maximal clique (the so-called clique number or maximum
clique size) as function of the non-rejection rate.

Usage

qpClique(nrrMatrix, n=NA, threshold.lim=c(0,1), breaks=5, plot=TRUE,
exact.calculation=TRUE, approx.iter=100,
qpCliqueOutput=NULL, density.digits=0,
logscale.clqsize=FALSE,
titleclq="maximum clique size as function of threshold",
verbose=FALSE)

Arguments

nrrMatrix matrix of non-rejection rates.

n number of observations from where the non-rejection rates were estimated.

threshold.lim range of threshold values on the non-rejection rate.

breaks either a number of threshold bins or a vector of threshold breakpoints.

plot logical; if TRUE makes a plot of the result; if FALSE it does not.

exact.calculation
logical; if TRUE then the exact clique number is calculated; if FALSE then a
lower bound is given instead.

approx.iter number of iterations to be employed in the calculation of the lower bound (i.e.,
only applies when exact.calculation=FALSE).

qpCliqueOutput output from a previous call to qpClique. This allows one to plot the result
changing some of the plotting parameters without having to do the calculation
again.

density.digits number of digits in the reported graph densities.

logscale.clqsize logical; if TRUE then the scale for the maximum clique size is logarithmic which
is useful when working with more than 1000 variables; FALSE otherwise (de-
fault).

titleclq main title to be shown in the plot.

verbose show progress on calculations.
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Details

The estimate of the complexity of the resulting qp-graphs is calculated as the area enclosed under
the curve of maximum clique sizes.

The maximum clique size, or clique number, is obtained by calling the function qpCliqueNumber
The calculation of the clique number of an undirected graph is an NP-complete problem which
means that its computational cost is bounded by an exponential running time (Pardalos and Xue,
1994). Therefore, giving breakpoints between 0.95 and 1.0 may result into very dense graphs which
can lead to extremely long execution times. If it is necessary to look at that range of breakpoints it
is recommended either to use the lower bound on the clique number (exact.calculation=FALSE)
or to look at qpGraphDensity.

Value

A list with the maximum clique size and graph density as function of threshold, an estimate of
the complexity of the resulting qp-graphs across the thresholds, the threshold on the non-rejection
rate that provides a maximum clique size strictly smaller than the sample size n and the resulting
maximum clique size.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Pardalos, P.M. and Xue, J. The maximum clique problem. J. Global Optim., 4:301-328, 1994.

See Also

qpCliqueNumber qpGraphDensity

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

## the higher the q the less complex the qp-graph

nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)

qpClique(nrr.estimates, plot=FALSE)$complexity

nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
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qpClique(nrr.estimates, plot=FALSE)$complexity

qpCliqueNumber Clique number

Description

Calculates the size of the largest maximal clique (the so-called clique number or maximum clique
size) in a given undirected graph.

Usage

qpCliqueNumber(g, exact.calculation=TRUE, return.vertices=FALSE,
approx.iter=100, verbose=TRUE, R.code.only)

Arguments

g either a graphNEL object or an adjacency matrix of the given undirected graph.
exact.calculation

logical; if TRUE then the exact clique number is calculated; if FALSE then a
lower bound is given instead.

return.vertices logical; if TRUE a set of vertices forming a maximal clique of maximum size is
returned; if FALSE only the maximum clique size is returned.

approx.iter number of iterations to be employed in the calculation of the lower bound (i.e.,
only applies when exact.calculation=FALSE.

verbose show progress on calculations.

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

Details

The calculation of the clique number of an undirected graph is one of the basic NP-complete prob-
lems (Karp, 1972) which means that its computational cost is bounded by an exponential running
time (Pardalos and Xue, 1994). The current implementation uses C code from the GNU GPL Cli-
quer library by Niskanen and Ostergard (2003) based on the, probably the fastest to date, algorithm
by Ostergard (2002).

The lower bound on the maximum clique size is calculated by ranking the vertices by their connec-
tivity degree, put the first vertex in a set and go through the rest of the ranking adding those vertices
to the set that form a clique with the vertices currently within the set. Once the entire ranking has
been examined a large clique should have been built and eventually one of the largests ones. This
process is repeated a number of times (approx.iter) each of which the ranking is altered with in-
creasing levels of randomness acyclically (altering 1 to $p$ vertices and again). Larger values of
approx.iter should provide tighter lower bounds although it has been proven that no polynomial
time algorithm can approximate the maximum clique size within a factor of nε (ε > 0), unless
P=NP (Feige et al, 1991; Pardalos and Xue, 1994).

Value

a lower bound of the size of the largest maximal clique in the given graph, also known as its clique
number.
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Author(s)

R. Castelo

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Feige, U., Goldwasser, S., Lov\’asz, L., Safra, S. and Szegedy, M. Approximating the maximum
clique is almost NP-Complete. Proc. 32nd IEEE Symp. on Foundations of Computer Science, 2-12,
1991.

Karp, R.M. Reducibility among combinatorial problems. Complexity of computer computations,
43:85-103, 1972.

Niskanen, S. Ostergard, P. Cliquer User’s Guide, Version 1.0. Communications Laboratory, Helsinki
University of Technology, Espoo, Finland, Tech. Rep. T48, 2003. (http://users.tkk.fi/~pat/
cliquer.html)

Ostergard, P. A fast algorithm for the maximum clique problem. Discrete Appl. Math. 120:197-207,
2002.

Pardalos, P.M. and Xue, J. The maximum clique problem. J. Global Optim., 4:301-328, 1994.

See Also

qpClique

Examples

require(graph)

nVar <- 50

set.seed(123)

g1 <- randomEGraph(V=as.character(1:nVar), p=0.3)
qpCliqueNumber(g1, verbose=FALSE)

g2 <- randomEGraph(V=as.character(1:nVar), p=0.7)
qpCliqueNumber(g2, verbose=FALSE)

qpCov Calculation of the sample covariance matrix

Description

Calculates the sample covariance matrix, just as the function cov() but returning a dspMatrix-class
object which efficiently stores such a dense symmetric matrix.

Usage

qpCov(X, corrected=TRUE)

http://users.tkk.fi/~pat/cliquer.html
http://users.tkk.fi/~pat/cliquer.html
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Arguments

X data set from where to calculate the sample covariance matrix. As the cov()
function, it assumes the columns correspond to random variables and the rows
to multivariate observations.

corrected flag set to TRUE when calculating the sample covariance matrix (default; and
set to FALSE when calculating the uncorrected sum of squares and deviations.

Details

This function makes the same calculation as the cov function but returns a sample covariance matrix
stored in the space-efficient class dspMatrix-class and, moreover, allows one for calculating the
uncorrected sum of squares and deviations which equals (n-1) * cov().

Value

A sample covariance matrix stored as a dspMatrix-class object. See the Matrix package for full
details on this object class.

Author(s)

R. Castelo

See Also

qpPCC

Examples

require(graph)
require(mvtnorm)

nVar <- 50 ## number of variables
nObs <- 10 ## number of observations to simulate

set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

S <- qpCov(X)

## estimate Pearson correlation coefficients by scaling the sample covariance matrix
R <- cov2cor(as(S, "matrix"))

## get the corresponding boolean adjacency matrix
A <- as(g, "matrix") == 1

## Pearson correlation coefficients of the present edges
summary(abs(R[upper.tri(R) & A]))

## Pearson correlation coefficients of the missing edges
summary(abs(R[upper.tri(R) & !A]))
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qpEdgeNrr Non-rejection rate estimation for a pair of variables

Description

Estimates the non-rejection rate for one pair of variables.

Usage

## S4 method for signature ’smlSet’
qpEdgeNrr(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL,

nTests=100, alpha=0.05, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE)

## S4 method for signature ’ExpressionSet’
qpEdgeNrr(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL,

nTests=100, alpha=0.05, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE)

## S4 method for signature ’data.frame’
qpEdgeNrr(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL,

nTests=100, alpha=0.05, long.dim.are.variables=TRUE,
exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE)

## S4 method for signature ’matrix’
qpEdgeNrr(X, i=1, j=2, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL,

nTests=100, alpha=0.05, long.dim.are.variables=TRUE,
exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE)

## S4 method for signature ’SsdMatrix’
qpEdgeNrr(X, i=1, j=2, q=1, restrict.Q=NULL, fix.Q=NULL,

nTests=100, alpha=0.05, R.code.only=FALSE)

Arguments

X data set from where the non-rejection rate should be estimated. It can be ei-
ther an smlSet object , an ExpressionSet object a data frame, a matrix or an
SsdMatrix-class object. In the latter case, the input matrix should correspond
to a sample covariance matrix of data from which we want to estimate the non-
rejection rate for a pair of variables. The function qpCov() can be used to
estimate such matrices.

i index or name of one of the two variables in X to test.

j index or name of the other variable in X to test.

q order of the conditioning subsets employed in the calculation.

I indexes or names of the variables in X that are discrete when X is a matrix or a
data frame.

restrict.Q indexes or names of the variables in X that restrict the sample space of condi-
tioning subsets Q.
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fix.Q indexes or names of the variables in X that should be fixed within every condi-
tioning conditioning subsets Q.

nTests number of tests to perform for each pair for variables.

alpha significance level of each test.
long.dim.are.variables

logical; if TRUE it is assumed that when data are in a data frame or in a ma-
trix, the longer dimension is the one defining the random variables (default);
if FALSE, then random variables are assumed to be at the columns of the data
frame or matrix.

exact.test logical; if FALSE an asymptotic conditional independence test is employed with
mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact con-
ditional independence test with mixed data is employed.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

Details

The estimation of the non-rejection rate for a pair of variables is calculated as the fraction of tests
that accept the null hypothesis of conditional independence given a set of randomly sampled q-order
conditionals.

Note that the possible values of q should be in the range 1 to min(p,n-3), where p is the number of
variables and n the number of observations. The computational cost increases linearly with q.

Value

An estimate of the non-rejection rate for the particular given pair of variables.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpHist qpGraphDensity qpClique qpCov

Examples

require(mvtnorm)

nObs <- 100 ## number of observations to simulate

## the following adjacency matrix describes an undirected graph
## where vertex 3 is conditionally independent of 4 given 1 AND 2
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A <- matrix(c(FALSE, TRUE, TRUE, TRUE,
TRUE, FALSE, TRUE, TRUE,
TRUE, TRUE, FALSE, FALSE,
TRUE, TRUE, FALSE, FALSE), nrow=4, ncol=4, byrow=TRUE)

Sigma <- qpG2Sigma(A, rho=0.5)

X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

qpEdgeNrr(X, i=3, j=4, q=1, long.dim.are.variables=FALSE)

qpEdgeNrr(X, i=3, j=4, q=2, long.dim.are.variables=FALSE)

qpFunctionalCoherence Functional coherence estimation

Description

Estimates functional coherence for a given transcriptional regulatory network specified either as
an adjacency matrix with a list of transcription factor gene identifiers or as a list of transcriptional
regulatory modules.

Usage

## S4 method for signature ’lsCMatrix’
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),

chip, minRMsize=5, verbose=FALSE, clusterSize=1)
## S4 method for signature ’lspMatrix’
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),

chip, minRMsize=5, verbose=FALSE, clusterSize=1)
## S4 method for signature ’lsyMatrix’
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),

chip, minRMsize=5, verbose=FALSE, clusterSize=1)
## S4 method for signature ’matrix’
qpFunctionalCoherence(object, TFgenes, geneUniverse=rownames(object),

chip, minRMsize=5, verbose=FALSE, clusterSize=1)
## S4 method for signature ’list’
qpFunctionalCoherence(object, geneUniverse=unique(c(names(object), unlist(object, use.names=FALSE))),

chip, minRMsize=5, verbose=FALSE, clusterSize=1)

Arguments

object object containing the transcriptional regulatory modules for which we want to
estimate their functional coherence. It can be an adjacency matrix of the undi-
rected graph representing the transcriptional regulatory network or a list of gene
target sets where the name of the entry should be the transcription factor identi-
fier.

TFgenes when the input object is a matrix, it is required to provide a vector of tran-
scription factor gene identifiers (which should match somewhere in the row and
column names of the matrix.

geneUniverse vector of all genes considered in the analysis. By default it equals the rows
and column names of object when it is a matrix, or the set of all different gene
identifiers occuring in object when it is a list.
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chip name of the .db package containing the Gene Ontology (GO) annotations.

minRMsize minimum size of the target gene set in each regulatory module where functional
enrichment will be calculated and thus where functional coherence will be esti-
mated.

verbose logical; if TRUE the function will show progress on the calculations; if FALSE
the function will remain quiet (default).

clusterSize size of the cluster of processors to employ if we wish to speed-up the calcula-
tions by performing them in parallel. A value of 1 (default) implies a single-
processor execution. The use of a cluster of processors requires having previ-
ously loaded the packages snow and rlecuyer.

Details

This function estimates the functional coherence of a transcriptional regulatory network represented
by means of an undirected graph encoded by an adjacency matrix and of a set of transcription factor
genes. The functional coherence of a transcriptional regulatory network is calculated as specified by
Castelo and Roverato (2009) and corresponds to the distribution of individual functional coherence
values of every of the regulatory modules of the network each of them defined as a transcription
factor and its set of putatively regulated target genes. In the calculation of the functional coherence
value of a regulatory module, Gene Ontology (GO) annotations are employed through the given an-
notation .db package and the conditional hyper-geometric test implemented in the GOstats package
from Bioconductor.

Value

A list with three slots, a first one containing the transcriptional regulatory network as a list of
regulatory modules and their targets, a second one containing this same network but including
only those modules with GO BP annotations and a third one consisting of a vector of functional
coherence values.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

See Also

qpAvgNrr qpGraph

Examples

library(org.EcK12.eg.db)

# load RegulonDB data from this package
data(EcoliOxygen)

# pick two TFs from the RegulonDB data in this package

TFgenes <- c("mhpR", "iscR")
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# get their Entrez Gene Identifiers
TFgenesEgIDs <- unlist(mget(TFgenes, AnnotationDbi::revmap(org.EcK12.egSYMBOL)))

# get all genes involved in their regulatory modules from
# the RegulonDB data in this package
mt <- match(filtered.regulon6.1[,"EgID_TF"], TFgenesEgIDs)

allGenes <- as.character(unique(as.vector(
as.matrix(filtered.regulon6.1[!is.na(mt),

c("EgID_TF","EgID_TG")]))))

mtTF <- match(filtered.regulon6.1[,"EgID_TF"],allGenes)
mtTG <- match(filtered.regulon6.1[,"EgID_TG"],allGenes)

# select the corresponding subset of the RegulonDB data in this package
subset.filtered.regulon6.1 <- filtered.regulon6.1[!is.na(mtTF) & !is.na(mtTG),]
TFi <- match(subset.filtered.regulon6.1[,"EgID_TF"], allGenes)
TGi <- match(subset.filtered.regulon6.1[,"EgID_TG"], allGenes)
subset.filtered.regulon6.1 <- cbind(subset.filtered.regulon6.1,

idx_TF=TFi, idx_TG=TGi)

# build an adjacency matrix representing the transcriptional regulatory
# relationships from these regulatory modules
p <- length(allGenes)
adjacencyMatrix <- matrix(FALSE, nrow=p, ncol=p)
rownames(adjacencyMatrix) <- colnames(adjacencyMatrix) <- allGenes
idxTFTG <- as.matrix(subset.filtered.regulon6.1[,c("idx_TF","idx_TG")])
adjacencyMatrix[idxTFTG] <-
adjacencyMatrix[cbind(idxTFTG[,2],idxTFTG[,1])] <- TRUE

# calculate functional coherence on these regulatory modules
fc <- qpFunctionalCoherence(adjacencyMatrix, TFgenes=TFgenesEgIDs,

chip="org.EcK12.eg.db")

print(sprintf("the %s module has a FC value of %.2f",
mget(names(fc$functionalCoherenceValues),org.EcK12.egSYMBOL),
fc$functionalCoherenceValues))

qpG2Sigma Random covariance matrix

Description

Builds a positive definite matrix from an undirected graph G that can be used as a covariance matrix
for a Gaussian graphical model with graph G. The inverse of the resulting matrix contains zeroes at
the missing edges of the given undirected graph G.

Usage

qpG2Sigma(g, rho=0, matrix.completion=c("HTF", "IPF"), verbose=FALSE, R.code.only=FALSE)
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Arguments

g undirected graph specified either as a graphNEL object or as an adjacency ma-
trix.

rho real number between -1/(n.var-1) and 1 corresponding to the mean marginal
correlation

matrix.completion
algorithm to employ in the matrix completion operations employed to construct
a positive definite matrix with the zero pattern specified in g

verbose show progress on the calculations.

R.code.only logical; if FALSE then the faster C implementation is used in the internal call to
the IPF algorithm (default); if TRUE then only R code is executed.

Details

The random covariance matrix is built by first generating a random matrix with the function qpRndWishart
from a Wishart distribution whose expected value is a matrix with unit diagonal and constant off-
diagonal entries equal to rho.

Value

A random positive definite matrix that can be used as a covariance matrix for a Gaussian graphical
model with graph G.

Author(s)

A. Roverato

References

Castelo, R. and Roverato, A. Utilities for large Gaussian graphical model inference and simulation
with the R package qpgraph, submitted.

See Also

qpRndGraph qpGetCliques qpIPF qpRndWishart rmvnorm

Examples

set.seed(123)
G <- qpRndGraph(p=5, d=2)

Sigma <- qpG2Sigma(G, rho=0.5)

round(solve(Sigma), digits=2)

as(G, "matrix")
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qpGenNrr Generalized non-rejection rate estimation

Description

Estimates generalized non-rejection rates for every pair of variables from two or more data sets.

Usage

## S4 method for signature ’ExpressionSet’
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,

fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
pairup.i=NULL, pairup.j=NULL, verbose=TRUE, identicalQs=TRUE,

exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,
nAdj2estimateTime=10)

## S4 method for signature ’data.frame’
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,

fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE,
verbose=TRUE, identicalQs=TRUE, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

## S4 method for signature ’matrix’
qpGenNrr(X, datasetIdx=1, qOrders=NULL, I=NULL, restrict.Q=NULL,

fix.Q=NULL, return.all=FALSE, nTests=100, alpha=0.05,
pairup.i=NULL, pairup.j=NULL, long.dim.are.variables=TRUE,
verbose=TRUE, identicalQs=TRUE, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

Arguments

X data set from where to estimate the average non-rejection rates. It can be an
ExpressionSet object, a data frame or a matrix.

datasetIdx either a single number, or a character string, indicating the column in the phe-
notypic data of the ExpressionSet object, or in the input matrix or data frame,
containing the indexes to the data sets. Alternatively, it can be a vector of these
indexes with as many positions as samples.

qOrders either a NULL value (default) indicating that a default guess on the q-order will
be employed for each data set or a vector of particular orders with one for each
data set. The default guess corresponds to the floor of the median value among
the valid q orders of the data set.

I indexes or names of the variables in X that are discrete. When X is an ExpressionSet
then I may contain only names of the phenotypic variables in X. See details be-
low regarding this argument.

restrict.Q indexes or names of the variables in X that restrict the sample space of condi-
tioning subsets Q.

fix.Q indexes or names of the variables in X that should be fixed within every condi-
tioning conditioning subsets Q.
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return.all logical; if TRUE all intervining non-rejection rates will be return in a matrix
per dataset within a list; FALSE (default) if only generalized non-rejection rates
should be returned.

nTests number of tests to perform for each pair for variables.

alpha significance level of each test.

pairup.i subset of vertices to pair up with subset pairup.j

pairup.j subset of vertices to pair up with subset pairup.i
long.dim.are.variables

logical; if TRUE it is assumed that when the data is a data frame or a matrix,
the longer dimension is the one defining the random variables; if FALSE, then
random variables are assumed to be at the columns of the data frame or matrix.

verbose show progress on the calculations.

identicalQs use identical conditioning subsets for every pair of vertices (default), otherwise
sample a new collection of nTests subsets for each pair of vertices.

exact.test logical; if FALSE an asymptotic conditional independence test is employed with
mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact con-
ditional independence test with mixed data is employed.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

clusterSize size of the cluster of processors to employ if we wish to speed-up the calcula-
tions by performing them in parallel. A value of 1 (default) implies a single-
processor execution. The use of a cluster of processors requires having previ-
ously loaded the packages snow and rlecuyer.

estimateTime logical; if TRUE then the time for carrying out the calculations with the given
parameters is estimated by calculating for a limited number of adjacencies, spec-
ified by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE
(default) calculations are performed normally till they finish.

nAdj2estimateTime
number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE).
By default this has a default value of 10 adjacencies and larger values should
provide more accurate estimates. This might be relevant when using a cluster
facility.

Details

Note that when specifying a vector of particular orders q, these values should be in the range 1 to
min(p,n-3), where p is the number of variables and n the number of observations for the corre-
sponding data set. The computational cost increases linearly within each q value and quadratically
in p. When setting identicalQs to FALSE the computational cost may increase between 2 times
and one order of magnitude (depending on p and q) while asymptotically the estimation of the
non-rejection rate converges to the same value.

When I is set different to NULL then mixed graphical model theory is employed and, concretely,
it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this
setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p
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plus the number of levels of the discrete variables involved in the marginal distributions employed
by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence
is employed, otherwise an asymptotic one will be used. Full details on these features can be found
in Tur and Castelo (2011).

Value

A list containing the following two or more entries: a first one with name genNrr with a dspMatrix-class
symmetric matrix of estimated generalized non-rejection rates with the diagonal set to NA values.
When using the arguments pairup.i and pairup.j, those cells outside the constraint pairs will get
also a NA value; a second one with name qOrders with the q-orders employed in the calculation
for each data set; if return.all=TRUE then there will be one additional entry for each data set
containing the matrix of the non-rejection rates estimated from that data set with the corresponding
q-order, using the indexing value of the data set as entry name.

Note, however, that when estimateTime=TRUE, then instead of the list with matrices of estimated
(generalized) non-rejection rates, a vector specifying the estimated number of days, hours, minutes
and seconds for completion of the calculations is returned.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

Tur, I. and Castelo, R. Learning mixed graphical models from data with p larger than n, In Proc.
27th Conference on Uncertainty in Artificial Intelligence, F.G. Cozman and A. Pfeffer eds., pp.
689-697, AUAI Press, ISBN 978-0-9749039-7-2, Barcelona, 2011.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A1 <- qpRndGraph(p=nVar, d=maxCon)
A2 <- qpRndGraph(p=nVar, d=maxCon)
Sigma1 <- qpG2Sigma(A1, rho=0.5)
Sigma2 <- qpG2Sigma(A2, rho=0.5)
X1 <- rmvnorm(nObs, sigma=as.matrix(Sigma1))
X2 <- rmvnorm(nObs, sigma=as.matrix(Sigma2))

nrr.estimates <- qpGenNrr(rbind(X1, X2), datasetIdx=rep(1:2, each=nObs),
long.dim.are.variables=FALSE, verbose=FALSE)
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## distribution of generalized non-rejection rates for the common present edges
summary(nrr.estimates$genNrr[upper.tri(nrr.estimates$genNrr) & A1 & A2])

## distribution of generalized non-rejection rates for the present edges specific to A1
summary(nrr.estimates$genNrr[upper.tri(nrr.estimates$genNrr) & A1 & !A2])

## distribution of generalized non-rejection rates for the present edges specific to A2
summary(nrr.estimates$genNrr[upper.tri(nrr.estimates$genNrr) & !A1 & A2])

## distribution of generalized non-rejection rates for the common missing edges
summary(nrr.estimates$genNrr[upper.tri(nrr.estimates$genNrr) & !A1 & !A2])

## compare with the average non-rejection rate on the pooled data set
avgnrr.estimates <- qpAvgNrr(rbind(X1, X2), long.dim.are.variables=FALSE, verbose=FALSE)

## distribution of average non-rejection rates for the common present edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & A1 & A2])

## distribution of average non-rejection rates for the present edges specific to A1
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & A1 & !A2])

## distribution of average non-rejection rates for the present edges specific to A2
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & !A1 & A2])

## distribution of average non-rejection rates for the common missing edges
summary(avgnrr.estimates[upper.tri(avgnrr.estimates) & !A1 & !A2])

qpGetCliques Clique list

Description

Finds the set of (maximal) cliques of a given undirected graph.

Usage

qpGetCliques(g, clqspervtx=FALSE, verbose=TRUE)

Arguments

g either a graphNEL object or an adjacency matrix of the given undirected graph.
clqspervtx logical; if TRUE then the resulting list returned by the function includes addi-

tionally p entries at the beginning (p=number of variables) each corresponding
to a vertex in the graph and containing the indices of the cliques where that
vertex belongs to; if FALSE these additional entries are not included (default).

verbose show progress on calculations.

Details

To find the list of all (maximal) cliques in an undirected graph is an NP-hard problem which means
that its computational cost is bounded by an exponential running time (Garey and Johnson, 1979).
For this reason, this is an extremely time and memory consuming computation for large dense
graphs. The current implementation uses C code from the GNU GPL Cliquer library by Niskanen
and Ostergard (2003).
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Value

A list of maximal cliques. When clqspervtx=TRUE the first p entries (p=number of variables)
contain, each of them, the indices of the cliques where that particular vertex belongs to.

Author(s)

R. Castelo

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Garey, M.R. and Johnson D.S. Computers and intractability: a guide to the theory of NP-completeness.
W.H. Freeman, San Francisco, 1979.

Niskanen, S. Ostergard, P. Cliquer User’s Guide, Version 1.0. Communications Laboratory, Helsinki
University of Technology, Espoo, Finland, Tech. Rep. T48, 2003. (http://users.tkk.fi/~pat/
cliquer.html)

See Also

qpCliqueNumber qpIPF

Examples

require(graph)

set.seed(123)
nVar <- 50
g1 <- randomEGraph(V=as.character(1:nVar), p=0.3)
clqs1 <- qpGetCliques(g1, verbose=FALSE)

length(clqs1)

summary(sapply(clqs1, length))

g2 <- randomEGraph(V=as.character(1:nVar), p=0.7)
clqs2 <- qpGetCliques(g2, verbose=FALSE)

length(clqs2)

clqs2 <- qpGetCliques(g2, verbose=FALSE)

summary(sapply(clqs2, length))

qpGraph The qp-graph

Description

Obtains a qp-graph from a matrix of non-rejection rates

http://users.tkk.fi/~pat/cliquer.html
http://users.tkk.fi/~pat/cliquer.html
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Usage

qpGraph(nrrMatrix, threshold=NULL, topPairs=NULL, pairup.i=NULL, pairup.j=NULL,
return.type=c("adjacency.matrix", "edge.list", "graphNEL", "graphAM"))

Arguments

nrrMatrix matrix of non-rejection rates.

threshold threshold on the non-rejection rate above which pairs of variables are assumed
to be disconnected in the resulting qp-graph.

topPairs number of edges from the top of the ranking, defined by the non-rejection rates
in nrrMatrix, to use to form the resulting qp-graph. This parameter is incom-
patible with a value different from NULL in threshold.

pairup.i subset of vertices to pair up with subset pairup.j

pairup.j subset of vertices to pair up with subset pairup.i

return.type type of data structure on which the resulting undirected graph should be re-
turned. Either a logical adjacency matrix with cells set to TRUE when the two
indexing variables are connected in the qp-graph (default), or a list of edges in
a matrix where each row corresponds to one edge and the two columns con-
tain the two vertices defining each edge, or a graphNEL-class object, or a
graphAM-class object.

Details

This function requires the graph package when return.type=graphNEL or return.type=graphAM.

Value

The resulting qp-graph as either an adjacency matrix, a graphNEL object or a graphAM object,
depending on the value of the return.type parameter. Note that when some gold-standard graph
is available for comparison, a value for the parameter threshold can be found by calculating a
precision-recall curve with qpPrecisionRecall with respect to this gold-standard, and then using
qpPRscoreThreshold. Parameters threshold and topPairs are mutually exclusive, that is, when
we specify with topPairs=n that we want a qp-graph with n edges then threshold cannot be used.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpAnyGraph qpGraphDensity qpClique qpPrecisionRecall qpPRscoreThreshold
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Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

## estimate non-rejection rates
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)

## the higher the threshold
g <- qpGraph(nrr.estimates, threshold=0.9)

## the denser the qp-graph
(sum(g)/2) / (nVar*(nVar-1)/2)

## the lower the threshold
g <- qpGraph(nrr.estimates, threshold=0.5)

## the sparser the qp-graph
(sum(g)/2) / (nVar*(nVar-1)/2)

qpGraphDensity Densities of resulting qp-graphs

Description

Calculates and plots the graph density as function of the non-rejection rate.

Usage

qpGraphDensity(nrrMatrix, threshold.lim=c(0,1), breaks=5,
plot=TRUE, qpGraphDensityOutput=NULL,
density.digits=0,
titlegd="graph density as function of threshold")

Arguments

nrrMatrix matrix of non-rejection rates.

threshold.lim range of threshold values on the non-rejection rate.

breaks either a number of threshold bins or a vector of threshold breakpoints.

plot logical; if TRUE makes a plot of the result; if FALSE it does not.



qpGraphDensity 35

qpGraphDensityOutput
output from a previous call to qpGraphDensity. This allows one to plot the
result changing some of the plotting parameters without having to do the calcu-
lation again.

density.digits number of digits in the reported graph densities.

titlegd main title to be shown in the plot.

Details

The estimate of the sparseness of the resulting qp-graphs is calculated as one minus the area en-
closed under the curve of graph densities.

Value

A list with the graph density as function of threshold and an estimate of the sparseness of the
resulting qp-graphs across the thresholds.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpClique

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

## the higher the q the sparser the qp-graph

nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)

qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness

nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)

qpGraphDensity(nrr.estimates, plot=FALSE)$sparseness
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qpHist Histograms of non-rejection rates

Description

Plots the distribution of non-rejection rates.

Usage

qpHist(nrrMatrix, A=NULL,
titlehist = "all estimated\nnon-rejection rates", freq=TRUE)

Arguments

nrrMatrix matrix of non-rejection rates.

A adjacency matrix of an undirected graph whose present and missing edges will
be employed to show separately the distribution of non-rejection rates.

titlehist main title of the histogram(s).

freq logical; if TRUE, the histograms show frequencies (counts) of occurrence of
the different non-rejection rate values; if FALSE, then probability densities are
plotted

Details

This function plots histograms using the R-function hist and therefore the way they are displayed
follows that of this R-function.

Value

None

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpNrr qpAvgNrr qpEdgeNrr qpGraphDensity qpClique
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Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)

qpHist(nrr.estimates, A)

qpHTF Hastie Tibshirani Friedman algorithm

Description

Performs maximum likelihood estimation of a covariance matrix given the independence constraints
from an input undirected graph.

Usage

qpHTF(S, g, tol = 0.001, verbose = FALSE, R.code.only = FALSE)

Arguments

S input matrix, in the context of this package, the sample covariance matrix.

g input undirected graph.

tol tolerance under which the iterative algorithm stops.

verbose show progress on calculations.

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

Details

This is an alternative to the Iterative Proportional Fitting (IPF) algorithm (see, Whittaker, 1990,
pp. 182-185 and qpIPF) which also adjusts the input matrix to the independence constraints in
the input undirected graph. However, differently to the IPF, it works by going through each of the
vertices fitting the marginal distribution over the corresponding vertex boundary. It stops when the
adjusted matrix at the current iteration differs from the matrix at the previous iteration in less or
equal than a given tolerance value. This algorithm is described by Hastie, Tibshirani and Friedman
(2009, pg. 634), hence we name it here HTF, and it has the advantage over the IPF that it does not
require the list of maximal cliques of the graph which may be exponentially large. In contrast, it
requires that the maximum boundary size of the graph is below the number of samples where the
input sample covariance matrix S was estimated. For the purpose of exploring qp-graphs that meet
such a requirement, one can use the function qpBoundary.



38 qpHTF

Value

The input matrix adjusted to the constraints imposed by the input undirected graph, i.e., a maximum
likelihood estimate of the sample covariance matrix that includes the independence constraints en-
coded in the undirected graph.

Note

Thanks to Giovanni Marchetti for bringing us our attention to this algorithm and sharing an early
version of its implementation on the R package ggm.

Author(s)

R. Castelo

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Hastie, T., Tibshirani, R. and Friedman, J.H. The Elements of Statistical Learning, Springer, 2009.

Whittaker, J. Graphical Models in Applied Multivariate Statistics. Wiley, 1990.

See Also

qpBoundary qpIPF qpPAC

Examples

require(graph)
require(mvtnorm)

nVar <- 50 ## number of variables
nObs <- 100 ## number of observations to simulate

set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

## MLE of the sample covariance matrix
S <- cov(X)

## more efficient MLE of the sample covariance matrix using HTF
S_htf <- qpHTF(S, g)

## get the adjacency matrix and put the diagonal to one
A <- as(g, "matrix")
diag(A) <- 1

## entries in S and S_htf for present edges in g should coincide
max(abs(S_htf[A==1] - S[A==1]))

## entries in the inverse of S_htf for missing edges in g should be zero
max(solve(S_htf)[A==0])
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qpImportNrr Import non-rejection rates

Description

Imports non-rejection rates from an external flat file.

Usage

qpImportNrr(filename, nTests)

Arguments

filename name of the flat file with the data on the non-rejection rates.

nTests number of tests performed in the estimation of these non-rejection rates.

Details

This function expects a flat file with three tab-separated columns corresponding to, respectively,
0-based index of one of the variables, 0-based index of the other variable, number of non-rejected
tests for the pair of variables of that row in the text file. An example of a few lines of that file would
be:

6 3 95
6 4 98
6 5 23
7 0 94
7 1 94

After reading the file the function builds a matrix of non-rejection rates by dividing the number of
non-rejected tests by nTests. Note that if the flat file to be imported would eventually have directly
the rates instead of the number of tests, these can be also imported by setting nTests=1.

This function is thought to be used to read files obtained from the standalone parallel version of
qpNrr which can be downloaded from http://functionalgenomics.upf.edu/qp.

Value

A symmetric matrix of non-rejection rates with the diagonal set to the NA value.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpNrr

http://functionalgenomics.upf.edu/qp
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qpIPF Iterative proportional fitting algorithm

Description

Performs maximum likelihood estimation of a covariance matrix given the independence constraints
from an input list of (maximal) cliques.

Usage

qpIPF(vv, clqlst, tol = 0.001, verbose = FALSE, R.code.only = FALSE)

Arguments

vv input matrix, in the context of this package, the sample covariance matrix.

clqlst list of maximal cliques obtained from an undirected graph by using the function
qpGetCliques.

tol tolerance under which the iterative algorithm stops.

verbose show progress on calculations.

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

Details

The Iterative proportional fitting algorithm (see, Whittaker, 1990, pp. 182-185) adjusts the input
matrix to the independence constraints in the undirected graph from where the input list of cliques
belongs to, by going through each of the cliques fitting the marginal distribution over the clique
for the fixed conditional distribution of the clique. It stops when the adjusted matrix at the current
iteration differs from the matrix at the previous iteration in less or equal than a given tolerance
value.

Value

The input matrix adjusted to the constraints imposed by the list of cliques, i.e., a maximum likeli-
hood estimate of the sample covariance matrix that includes the independence constraints encoded
in the undirected graph formed by the given list of cliques.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Whittaker, J. Graphical models in applied multivariate statistics. Wiley, 1990.

See Also

qpGetCliques qpPAC



qpK2ParCor 41

Examples

require(graph)
require(mvtnorm)

nVar <- 50 ## number of variables
nObs <- 100 ## number of observations to simulate

set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

## MLE of the sample covariance matrix
S <- cov(X)

## more efficient MLE of the sample covariance matrix using IPF
clqs <- qpGetCliques(g, verbose=FALSE)
S_ipf <- qpIPF(S, clqs)

## get the adjacency matrix and put the diagonal to one
A <- as(g, "matrix")
diag(A) <- 1

## entries in S and S_ipf for present edges in g should coincide
max(abs(S_ipf[A==1] - S[A==1]))

## entries in the inverse of S_ipf for missing edges in g should be zero
max(solve(S_ipf)[A==0])

qpK2ParCor Partial correlation coefficients

Description

Obtains partial correlation coefficients from a given concentration matrix.

Usage

qpK2ParCor(K)

Arguments

K positive definite matrix, typically a concentration matrix.

Details

This function applies cov2cor to the given concentration matrix and then changes the sign of the
off-diagonal entries in order to obtain a partial correlation matrix.

Value

A partial correlation matrix.
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Author(s)

R. Castelo and A. Roverato

References

Lauritzen, S.L. Graphical models. Oxford University Press, 1996.

See Also

qpG2Sigma

Examples

require(graph)

n.var <- 5 # number of variables
set.seed(123)
g <- randomEGraph(as.character(1:n.var), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
K <- solve(Sigma)

round(qpK2ParCor(K), digits=2)

as(g, "matrix")

qpNrr Non-rejection rate estimation

Description

Estimates non-rejection rates for every pair of variables.

Usage

## S4 method for signature ’ExpressionSet’
qpNrr(X, q=1, restrict.Q=NULL, fix.Q=NULL, nTests=100,

alpha=0.05, pairup.i=NULL, pairup.j=NULL,
verbose=TRUE, identicalQs=TRUE, exact.test=TRUE,
use=c("complete.obs", "em"), tol=0.01, R.code.only=FALSE,
clusterSize=1, estimateTime=FALSE, nAdj2estimateTime=10)

## S4 method for signature ’data.frame’
qpNrr(X, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100,

alpha=0.05, pairup.i=NULL, pairup.j=NULL,
long.dim.are.variables=TRUE, verbose=TRUE,

identicalQs=TRUE, exact.test=TRUE, use=c("complete.obs", "em"),
tol=0.01, R.code.only=FALSE, clusterSize=1,
estimateTime=FALSE, nAdj2estimateTime=10)

## S4 method for signature ’matrix’
qpNrr(X, q=1, I=NULL, restrict.Q=NULL, fix.Q=NULL, nTests=100,

alpha=0.05, pairup.i=NULL, pairup.j=NULL,
long.dim.are.variables=TRUE, verbose=TRUE, identicalQs=TRUE,
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exact.test=TRUE, use=c("complete.obs", "em"), tol=0.01,
R.code.only=FALSE, clusterSize=1, estimateTime=FALSE,
nAdj2estimateTime=10)

Arguments

X data set from where to estimate the non-rejection rates. It can be an Expression-
Set object, a data frame or a matrix.

q partial-correlation order to be employed.
I indexes or names of the variables in X that are discrete. See details below re-

garding this argument.
restrict.Q indexes or names of the variables in X that restrict the sample space of condi-

tioning subsets Q.
fix.Q indexes or names of the variables in X that should be fixed within every condi-

tioning conditioning subsets Q.
nTests number of tests to perform for each pair for variables.
alpha significance level of each test.
pairup.i subset of vertices to pair up with subset pairup.j
pairup.j subset of vertices to pair up with subset pairup.i
long.dim.are.variables

logical; if TRUE it is assumed that when data are in a data frame or in a ma-
trix, the longer dimension is the one defining the random variables (default); if
FALSE, then random variables are assumed to be at the columns of the data
frame or matrix.

verbose show progress on the calculations.
identicalQs use identical conditioning subsets for every pair of vertices (default), otherwise

sample a new collection of nTests subsets for each pair of vertices.
exact.test logical; if FALSE an asymptotic conditional independence test is employed with

mixed (i.e., continuous and discrete) data; if TRUE (default) then an exact con-
ditional independence test with mixed data is employed. See details below re-
garding this argument.

use a character string defining the way in which calculations are done in the presence
of missing values. It can be either "complete.obs" (default) or "em".

tol maximum tolerance controlling the convergence of the EM algorithm employed
when the argument use="em".

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

clusterSize size of the cluster of processors to employ if we wish to speed-up the calcula-
tions by performing them in parallel. A value of 1 (default) implies a single-
processor execution. The use of a cluster of processors requires having previ-
ously loaded the packages snow and rlecuyer.

estimateTime logical; if TRUE then the time for carrying out the calculations with the given
parameters is estimated by calculating for a limited number of adjacencies, spec-
ified by nAdj2estimateTime, and extrapolating the elapsed time; if FALSE
(default) calculations are performed normally till they finish.

nAdj2estimateTime
number of adjacencies to employ when estimating the time of calculations (estimateTime=TRUE).
By default this has a default value of 10 adjacencies and larger values should
provide more accurate estimates. This might be relevant when using a cluster
facility.
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Details

Note that for pure continuous data the possible values of q should be in the range 1 to min(p, n-3),
where p is the number of variables and n the number of observations. The computational cost
increases linearly with q and quadratically in p. When setting identicalQs to FALSE the computa-
tional cost may increase between 2 times and one order of magnitude (depending on p and q) while
asymptotically the estimation of the non-rejection rate converges to the same value. Full details on
the calculation of the non-rejection rate can be found in Castelo and Roverato (2006).

When I is set different to NULL then mixed graphical model theory is employed and, concretely,
it is assumed that the data comes from an homogeneous conditional Gaussian distribution. In this
setting further restrictions to the maximum value of q apply, concretely, it cannot be smaller than p
plus the number of levels of the discrete variables involved in the marginal distributions employed
by the algorithm. By default, with exact.test=TRUE, an exact test for conditional independence
is employed, otherwise an asymptotic one will be used. Full details on these features can be found
in Tur and Castelo (2011).

Value

A dspMatrix-class symmetric matrix of estimated non-rejection rates with the diagonal set to NA
values. If arguments pairup.i and pairup.j are employed, those cells outside the constrained pairs
will get also a NA value.

Note, however, that when estimateTime=TRUE, then instead of the matrix of estimated non-
rejection rates, a vector specifying the estimated number of days, hours, minutes and seconds for
completion of the calculations is returned.

Author(s)

R. Castelo, A. Roverato and I. Tur

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

Tur, I. and Castelo, R. Learning mixed graphical models from data with p larger than n, In Proc.
27th Conference on Uncertainty in Artificial Intelligence, F.G. Cozman and A. Pfeffer eds., pp.
689-697, AUAI Press, ISBN 978-0-9749039-7-2, Barcelona, 2011.

See Also

qpAvgNrr qpEdgeNrr qpHist qpGraphDensity qpClique

Examples

library(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 3 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))
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nrr.estimates <- qpNrr(X, q=3, verbose=FALSE)

## distribution of non-rejection rates for the present edges
summary(nrr.estimates[upper.tri(nrr.estimates) & A])

## distribution of non-rejection rates for the missing edges
summary(nrr.estimates[upper.tri(nrr.estimates) & !A])

## using R code only this would take much more time
qpNrr(X, q=3, R.code.only=TRUE, estimateTime=TRUE)

## Not run:
library(snow)
library(rlecuyer)

## only for moderate and large numbers of variables the
## use of a cluster of processors speeds up the calculations

nVar <- 500
maxCon <- 3
A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

system.time(nrr.estimates <- qpNrr(X, q=10, verbose=TRUE))
system.time(nrr.estimates <- qpNrr(X, q=10, verbose=TRUE, clusterSize=4))

## End(Not run)

qpPAC Estimation of partial correlation coefficients

Description

Estimates partial correlation coefficients (PACs) for a Gaussian graphical model with undirected
graph G and their corresponding P-values for the hypothesis of zero partial correlations.

Usage

## S4 method for signature ’ExpressionSet’
qpPAC(X, g, return.K=FALSE, tol=0.001,

matrix.completion=c("HTF", "IPF"), verbose=TRUE,
R.code.only=FALSE)

## S4 method for signature ’data.frame’
qpPAC(X, g, return.K=FALSE, long.dim.are.variables=TRUE,

tol=0.001, matrix.completion=c("HTF", "IPF"),
verbose=TRUE, R.code.only=FALSE)

## S4 method for signature ’matrix’
qpPAC(X, g, return.K=FALSE, long.dim.are.variables=TRUE,

tol=0.001, matrix.completion=c("HTF", "IPF"),
verbose=TRUE, R.code.only=FALSE)
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Arguments

X data set from where to estimate the partial correlation coefficients. It can be an
ExpressionSet object, a data frame or a matrix.

g either a graphNEL object or an adjacency matrix of the given undirected graph.

return.K logical; if TRUE this function also returns the concentration matrix K; if FALSE
it does not return it (default).

long.dim.are.variables
logical; if TRUE it is assumed that when X is a data frame or a matrix, the
longer dimension is the one defining the random variables (default); if FALSE,
then random variables are assumed to be at the columns of the data frame or
matrix.

tol maximum tolerance in the application of the IPF algorithm.

matrix.completion
algorithm to employ in the matrix completion operations employed to construct
a positive definite matrix with the zero pattern specified in g

verbose show progress on the calculations.

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.

Details

In the context of maximum likelihood estimation (MLE) of PACs it is a necessary condition for the
existence of MLEs that the sample size n is larger than the clique number w(G) of the graph G.

The PAC estimation is done by first obtaining a MLE of the covariance matrix using the qpIPF
function and the P-values are calculated based on the estimation of the standard errors (see Roverato
and Whittaker, 1996).

Value

A list with two matrices, one with the estimates of the PACs and the other with their P-values.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n. J. Mach. Learn. Res., 7:2621-2650, 2006.

Castelo, R. and Roverato, A. Reverse engineering molecular regulatory networks from microarray
data with qp-graphs. J. Comp. Biol., 16(2):213-227, 2009.

Roverato, A. and Whittaker, J. Standard errors for the parameters of graphical Gaussian models.
Stat. Comput., 6:297-302, 1996.

See Also

qpGraph qpCliqueNumber qpClique qpGetCliques qpIPF
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Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

nrr.estimates <- qpNrr(X, verbose=FALSE)

g <- qpGraph(nrr.estimates, 0.5)

pac.estimates <- qpPAC(X, g=g, verbose=FALSE)

## distribution absolute values of the estimated
## partial correlation coefficients of the present edges
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & A]))

## distribution absolute values of the estimated
## partial correlation coefficients of the missing edges
summary(abs(pac.estimates$R[upper.tri(pac.estimates$R) & !A]))

qpPCC Estimation of Pearson correlation coefficients

Description

Estimates Pearson correlation coefficients (PCCs) and their corresponding P-values between all
pairs of variables from an input data set.

Usage

## S4 method for signature ’ExpressionSet’
qpPCC(X)
## S4 method for signature ’data.frame’
qpPCC(X, long.dim.are.variables=TRUE)
## S4 method for signature ’matrix’
qpPCC(X, long.dim.are.variables=TRUE)

Arguments

X data set from where to estimate the Pearson correlation coefficients. It can be an
ExpressionSet object, a data frame or a matrix.

long.dim.are.variables
logical; if TRUE it is assumed that when X is a data frame or a matrix, the
longer dimension is the one defining the random variables (default); if FALSE,
then random variables are assumed to be at the columns of the data frame or
matrix.
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Details

The calculations made by this function are the same as the ones made for a single pair of variables
by the function cor.test but for all the pairs of variables in the data set.

Value

A list with two matrices, one with the estimates of the PCCs and the other with their P-values.

Author(s)

R. Castelo and A. Roverato

See Also

qpPAC

Examples

require(graph)
require(mvtnorm)

nVar <- 50 ## number of variables
nObs <- 10 ## number of observations to simulate

set.seed(123)

g <- randomEGraph(as.character(1:nVar), p=0.15)

Sigma <- qpG2Sigma(g, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

pcc.estimates <- qpPCC(X)

## get the corresponding boolean adjacency matrix
A <- as(g, "matrix") == 1

## Pearson correlation coefficients of the present edges
summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & A]))

## Pearson correlation coefficients of the missing edges
summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & !A]))

qpPlotMap Plots a map of associated pairs

Description

Plots a map of associated pairs defined by adjusted p-values
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Usage

qpPlotMap(p.valueMatrix, markerPos, genePos, chrLen,
p.value=0.05, adjust.method="holm",
xlab="Ordered Markers", ylab="Ordered Genes",
main="", ...)

Arguments

p.valueMatrix squared symmetric matrix with raw p-values for all pairs.

markerPos two-column matrix containing chromosome and position of each genetic marker.

genePos two-column matrix containing chromosome and position of each gene.

chrLen named vector with chromosome lengths. Vector names should correspond to
chromosome names, which are displayed in the axes of the plot. This vector
should be ordered following the same convention for chromosomes in arguments
markerPos and genePos.

p.value adjusted p-value cutoff.

adjust.method method employed to adjust the raw p-values. It is passed in a call to p.adjust()
in its method argument.

xlab label for the x-axis.

ylab label for the y-axis.

main main title of the plot, set to the empty string by default.

... further arguments passed to the plot() function.

Details

This function plots a map of present associations, typically between genetic markers and gene
expression profiles (i.e., eQTL associations), according to the chromosomal locations of both the
genetic markers and the genes. The input argument p.valueMatrix should contain the raw p-values
of these associations. Present associations are selected by a cutoff given in the p.value argument
applied to the adjusted p-values.

The input raw p-values can be obtained with the function qpAllCItests.

Value

The selected present associations are invisibly returned.

Author(s)

R. Castelo

See Also

qpAllCItests
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Examples

## generate uniformly random p-values for synthetic associations
## between m genetic markers and g genes into a symmetric matrix
m <- 100
g <- 100
p <- m + g
markerids <- paste0("m", 1:m)
geneids <- paste0("g", 1:g)
rndpvalues <- matrix(0, nrow=p, ncol=p,

dimnames=list(c(markerids, geneids), c(markerids, geneids)))
rndpvalues[1:m,(m+1):p] <- runif(m*g)

## put significant cis associations
rndpvalues[cbind(1:m, (m+1):p)] <- rnorm(m, mean=1e-4, sd=1e-2)^2

## put one hotspot locus with significant, but somehat weaker, trans associations
hotspotmarker <- sample(1:m, size=1)
rndpvalues[cbind(hotspotmarker, (m+1):p)] <- rnorm(g, mean=1e-2, sd=1e-2)^2

## make matrix symmetric
rndpvalues <- rndpvalues + t(rndpvalues)
stopifnot(isSymmetric(rndpvalues))
rndpvalues[1:m, 1:m] <- rndpvalues[(m+1):p,(m+1):p] <- NA

## create chromosomal map
chrlen <- c("chr1"=1000)
posmarkers <- matrix(c(rep(1, m), seq(1, chrlen, length.out=m)), nrow=m)
posgenes <- matrix(c(rep(1, g), seq(1, chrlen, length.out=g)), nrow=g)
rownames(posmarkers) <- paste0("m", 1:m)
rownames(posgenes) <- paste0("g", 1:g)

qpPlotMap(rndpvalues, posmarkers, posgenes, chrlen, cex=3)

qpPlotNetwork Plots a graph

Description

Plots a graph using the Rgraphviz library

Usage

qpPlotNetwork(g, vertexSubset=graph::nodes(g), boundary=FALSE,
minimumSizeConnComp=2, pairup.i=NULL, pairup.j=NULL,

highlight=NULL, annotation=NULL, layout=c("twopi", "dot", "neato", "circo", "fdp"))

Arguments

g graph to plot provided as a graphNEL-class object.

vertexSubset subset of vertices that define the induced subgraph to be plotted.

boundary flag set to TRUE when we wish that the subset specified in vertexSubset also
includes the vertices connected to them; FALSE otherwise.
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minimumSizeConnComp
minimum size of the connected components to be plotted.

pairup.i subset of vertices to pair up with subset pairup.j.

pairup.j subset of vertices to pair up with subset pairup.i.

highlight subset of vertices to highlight by setting the color font to red.

annotation name of an annotation package to transform gene identifiers into gene symbols
when vertices correspond to genes.

layout layout argument for the Rgraphviz library that plots the network. Possible values
are twopi (default), dot, neato, circo, fdp.

Details

This function acts as a wrapper for the functionality provided by the Rgraphviz package to plot
graphs in R. It should help to plot networks obtained with methods from theqpgraph package.

Value

The plotted graph is invisibly returned as a graphNEL-class object.

Author(s)

R. Castelo

See Also

qpGraph qpAnyGraph

Examples

require(Rgraphviz)

rndassociations <- qpUnifRndAssociation(10)
g <- qpAnyGraph(abs(rndassociations), threshold=0.7, remove="below", return.type="graphNEL")
qpPlotNetwork(g)

qpPrecisionRecall Calculation of precision-recall curves

Description

Calculates the precision-recall curve (see Fawcett, 2006) for a given measure of association between
all pairs of variables in a matrix.

Usage

qpPrecisionRecall(measurementsMatrix, refGraph, decreasing=TRUE, pairup.i=NULL,
pairup.j=NULL, recallSteps=seq(0, 1, by=0.1))
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Arguments

measurementsMatrix
matrix containing the measure of association between all pairs of variables.

refGraph a reference graph from which to calculate the precision-recall curve provided
either as an adjacency matrix, a two-column matrix of edges, a graphNEL-class
object or a graphAM-class object.

decreasing logical; if TRUE then the measurements are ordered in decreasing order; if
FALSE then in increasing order.

pairup.i subset of vertices to pair up with subset pairup.j.

pairup.j subset of vertices to pair up with subset pairup.i.

recallSteps steps of the recall on which to calculate precision.

Details

The measurementsMatrix should be symmetric and may have also contain NA values which will
not be taken into account. That is an alternative way to restricting the variable pairs with the
parameters pairup.i and pairup.j.

Value

A matrix where rows correspond to recall steps and columns correspond, respetively, to the actual
recall, the precision, the number of true positives at that recall rate and the threshold score that
yields that recall rate.

Author(s)

R. Castelo and A. Roverato

References

Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett., 27:861-874, 2006.

See Also

qpPRscoreThreshold qpGraph qpAvgNrr qpPCC

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

## estimate non-rejection rates
nrr.estimates <- qpNrr(X, q=5, verbose=FALSE)
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## estimate Pearson correlation coefficients
pcc.estimates <- qpPCC(X)

## calculate area under the precision-recall curve
## for both sets of estimated values of association
nrr.prerec <- qpPrecisionRecall(nrr.estimates, refGraph=A, decreasing=FALSE,

recallSteps=seq(0, 1, 0.1))
f <- approxfun(nrr.prerec[, c("Recall", "Precision")])
integrate(f, 0, 1)$value

pcc.prerec <- qpPrecisionRecall(abs(pcc.estimates$R), refGraph=A,
recallSteps=seq(0, 1, 0.1))

f <- approxfun(pcc.prerec[, c("Recall", "Precision")])
integrate(f, 0, 1)$value

qpPRscoreThreshold Calculation of scores thresholds attaining nominal precision or recall
levels

Description

Calculates the score threshold at a given precision or recall level from a given precision-recall curve.

Usage

qpPRscoreThreshold(preRecFun, level, recall.level=TRUE, max.score=9999999)

Arguments

preRecFun precision-recall function (output from qpPrecisionRecall).

level recall or precision level.

recall.level logical; if TRUE then it is assumed that the value given in the level parameter
corresponds to a desired level of recall; if FALSE then it is assumed a desired
level of precision.

max.score maximum score given by the method that produced the precision-recall function
to an association.

Value

The score threshold at which a given level of precision or recall is attained by the given precision-
recall function. For levels that do not form part of the given function their score is calculated
by linear interpolation and for this reason is important to carefully specify a proper value for the
max.score parameter.

Author(s)

R. Castelo and A. Roverato

References

Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett., 27:861-874, 2006.
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See Also

qpPrecisionRecall qpGraph

Examples

require(mvtnorm)

nVar <- 50 ## number of variables
maxCon <- 5 ## maximum connectivity per variable
nObs <- 30 ## number of observations to simulate

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)
Sigma <- qpG2Sigma(A, rho=0.5)
X <- rmvnorm(nObs, sigma=as.matrix(Sigma))

nrr.estimates <- qpNrr(X, q=1, verbose=FALSE)

nrr.prerec <- qpPrecisionRecall(nrr.estimates, A, decreasing=FALSE,
recallSteps=seq(0, 1, by=0.1))

qpPRscoreThreshold(nrr.prerec, level=0.5, recall.level=TRUE, max.score=0)

qpPRscoreThreshold(nrr.prerec, level=0.5, recall.level=FALSE, max.score=0)

qpRndGraph Undirected random d-regular graphs

Description

Samples an undirected d-regular graph approximately uniformly at random.

Usage

qpRndGraph(p=6, d=2, exclude=NULL, verbose=FALSE, R.code.only=FALSE)

Arguments

p number of vertices.

d degree of every vertex.

exclude vector of vertices inducing edges that should be excluded from the sampled d-
regular graph.

verbose show progress on the calculations.

R.code.only logical; if FALSE then the faster C implementation is used (default); if TRUE
then only R code is executed.
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Details

This function implements the algorithm from Steger and Wormald (1999) for sampling undirected
d-regular graphs from a probability distribution of all d-regular graphs on p vertices which is ap-
proximately uniform. More concretely, for all vertex degree values d that grow as a small power
of p, all d-regular graphs on p vertices will have in the limit the same probability as p grows large.
Steger and Wormald (1999, pg. 396) believe that for d » sqrt(p) the resulting probability distribution
will no longer be approximately uniform.

This function is provided in order to generate a random undirected graph as input to the function
qpG2Sigma which samples a random covariance matrix whose inverse (aka, precision matrix) has
zeroes on those cells corresponding to the missing edges in the input graph. d-regular graphs are
useful for working with synthetic graphical models for two reasons: one is that d-regular graph
density is a linear function of d and the other is that the minimum connectivity degree of two
disconnected vertices is an upper bound of their outer connectivity (see Castelo and Roverato, 2006,
pg. 2646).

Value

The adjacency matrix of the resulting graph.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

Steger, A. and Wormald, N.C. Generating random regular graphs quickly, Combinatorics, Probab.
and Comput., 8:377-396.

See Also

qpG2Sigma

Examples

nVar <- 50 ## number of vertices
maxCon <- 5 ## maximum connectivity per vertex

set.seed(123)

A <- qpRndGraph(p=nVar, d=maxCon)

summary(apply(A, 1, sum))
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qpRndHMGM Random homogeneous mixed graphical Markov model

Description

Builds a random homogeneous mixed graphical Markov model (experimental feature).

Usage

qpRndHMGM(nDiscrete=1, nContinuous=3, d=2, mixedIntStrength=5, rho=0.5, G=NULL)

Arguments

nDiscrete number of discrete variables.

nContinuous number of continuous variables.

d degree of every vertex.
mixedIntStrength

strength of the mixed interactions.

rho marginal correlation of the quadratic interactions.

G input graph, if we don’t want the function to simulate one.

Details

This function builds a random homogeneous mixed graphical model. It uses qpRndGraph to
simulate a random d-regular graph and then builds a set of parameters that encode the conditional
independencies encoded by the graph and the given number of discrete and continuous vertices.
This is still an experimental feature and by now it generates only models where the discrete variables
are marginally independent.

Value

A list with the graph and the parameters of the homogeneous mixed graphical model, ready to be
used with the function qpSampleFromHMGM for sampling synthetic data using this model.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpRndGraph qpSampleFromHMGM

Examples

qpRndHMGM()
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qpRndWishart Random Wishart distribution

Description

Random generation for the (n.var * n.var) Wishart distribution (see Press, 1972) with matrix pa-
rameter A=diag(delta)%*%P%*%diag(delta) and degrees of freedom df .

Usage

qpRndWishart(delta=1, P=0, df=NULL, n.var=NULL)

Arguments

delta a numeric vector of n.var positive values. If a scalar is provided then this is
extended to form a vector.

P a (n.var * n.var) positive definite matrix with unit diagonal. If a scalar is pro-
vided then this number is used as constant off-diagonal entry for P.

df degrees of freedom.

n.var dimension of the Wishart matrix. It is required only when both delata and P are
scalar.

Details

The degrees of freedom are df > n.var-1 and the expected value of the distribution is equal to
df * A. The random generator is based on the algorithm of Odell and Feiveson (1966).

Value

A list of two n.var * n.var matrices rW and meanW where rW is a random value from the Wishart
and meanW is the expected value of the distribution.

Author(s)

A. Roverato

References

Odell, P.L. and Feiveson, A.G. A numerical procedure to generate a sample covariance matrix. J.
Am. Statist. Assoc. 61, 199-203, 1966.

Press, S.J. Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference.
New York: Holt, Rinehalt and Winston, 1972.

See Also

qpG2Sigma
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Examples

## Construct an adjacency matrix for a graph on 6 vertices

nVar <- 6
A <- matrix(0, nVar, nVar)
A[1,2] <- A[2,3] <- A[3,4] <- A[3,5] <- A[4,6] <- A[5,6] <- 1
A=A + t(A)
A
set.seed(123)
M <- qpRndWishart(delta=sqrt(1/nVar), P=0.5, n.var=nVar)
M
set.seed(123)
d=1:6
M <- qpRndWishart(delta=d, P=0.7, df=20)
M

qpSampleFromHMGM Sample from homogeneous mixed graphical Markov models

Description

Samples synthetic data from homogeneous mixed graphical Markov models (experimental feature).

Usage

qpSampleFromHMGM(n=10, hmgm=qpRndHMGM())

Arguments

n number of observations to sample.

hmgm homogeneous mixed graphical Markov model as generated by the function qpRndHMGM.

Details

This function samples synthetic data from a random homogeneous mixed graphical model build
with the function qpRndHMGM. This is still an experimental feature.

Value

The sampled synthetic data.

Author(s)

R. Castelo and A. Roverato

References

Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from mi-
croarray data with p larger than n, J. Mach. Learn. Res., 7:2621-2650, 2006.

See Also

qpRndGraph qpSampleFromHMGM
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Examples

qpSampleFromHMGM()

qpTopPairs Report pairs of variables

Description

Report a top number of pairs of variables according to either some association measure and/or
occurring in a given reference graph.

Usage

qpTopPairs(measurementsMatrix=NULL, refGraph=NULL, n=6L, file=NULL,
decreasing=FALSE, pairup.i=NULL, pairup.j=NULL,
annotation=NULL, fcOutput=NULL, fcOutput.na.rm=FALSE,
digits=NULL)

Arguments

measurementsMatrix
matrix containing the measure of association between all pairs of variables.

refGraph a reference graph containing the pairs that should be reported and provided ei-
ther as an adjacency matrix, a graphNEL-class object or a graphAM-class ob-
ject.

n number of pairs to report, 6 by default, use Inf for reporting all of them.

file file name to dump the pairs information as tab-separated column text.

decreasing logical; if TRUE then the measurements are employed to be ordered in decreas-
ing order; if FALSE then in increasing order.

pairup.i subset of vertices to pair up with subset pairup.j.

pairup.j subset of vertices to pair up with subset pairup.i.

annotation name of an annotation package to transform gene identifiers into gene symbols
when variables correspond to genes.

fcOutput output of qpFunctionalCoherence.

fcOutput.na.rm flag set to TRUE when pairs with NA values from fcOutput should not be
reported; FALSE (default) otherwise.

digits number of decimal digits reported in the values of measurementsMatrix and
functional coherence values. By default digits=NULL, and therefore, no round-
ing is performed.

Details

The measurementsMatrix should be symmetric and may have also contain NA values which will
not be taken into account. That is an alternative way to restricting the variable pairs with the
parameters pairup.i and pairup.j. The same holds for refGraph. One of these two, should be
specified.
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Value

The ranking of pairs is invisibly returned.

Author(s)

R. Castelo

See Also

qpGraph qpPrecisionRecall qpFunctionalCoherence

Examples

qpTopPairs(matrix(runif(100), nrow=10, dimnames=list(1:10,1:10)))

qpUnifRndAssociation Uniformly random association values

Description

Builds a matrix of uniformly random association values between -1 and +1 for all pairs of variables
that follow from the number of variables given as input argument.

Usage

qpUnifRndAssociation(n.var, var.names=1:n.var)

Arguments

n.var number of variables.
var.names names of the variables to use as row and column names in the resulting matrix.

Details

This function simply generates uniformly random association values with no independence pattern
associated to them. For generating a random covariance matrix that reflects such a pattern use the
function qpG2Sigma.

Value

A symmetric matrix of uniformly random association values between -1 and +1.

Author(s)

R. Castelo

See Also

qpG2Sigma

Examples

rndassociation <- qpUnifRndAssociation(100)
summary(rndassociation[upper.tri(rndassociation)])
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qpUpdateCliquesRemoving
Update clique list when removing one edge

Description

Updates the set of (maximal) cliques of a given undirected graph when removing one edge.

Usage

qpUpdateCliquesRemoving(g, clqlst, v, w, verbose=TRUE)

Arguments

g either a graphNEL object or an adjacency matrix of the given undirected graph.

clqlst list of cliques of the graph encoded in g. this list should start on element n+1
(for n vertices) while between elements 1 to n there should be references to
the cliques to which each of the 1 to n vertices belong to (i.e., the output of
qpGetCliques) with parameter clqspervtx=TRUE.

v vertex of the edge being removed.

w vertex of the edge being removed.

verbose show progress on calculations.

Details

To find the list of all (maximal) cliques in an undirected graph is an NP-hard problem which means
that its computational cost is bounded by an exponential running time (Garey and Johnson, 1979).
For this reason, this is an extremely time and memory consuming computation for large dense
graphs. If we spend the time to obtain one such list of cliques and we remove one edge of the graph
with this function we may be able to update the set of maximal cliques instead of having to generate
it again entirely with qpGetCliques but it requires that in the first call to qpGetCliques we set
clqspervtx=TRUE. It calls a C implementation of the algorithm from Stix (2004).

Value

The updated list of maximal cliques after removing one edge from the input graph. Note that be-
cause the corresponding input clique list had to be generated with the argument clqspervtx=TRUE
in the call to qpGetCliques, the resulting updated list of cliques also includes in its first p entries
(p=number of variables) the indices of the cliques where that particular vertex belongs to. Notice
also that although this strategy might be in general more efficient than generating again the entire
list of cliques, when removing one edge from the graph, the clique enumeration problem remains
NP-hard (see Garey and Johnson, 1979) and therefore depending on the input graph its computation
may become unfeasible.

Author(s)

R. Castelo
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References

Garey, M.R. and Johnson D.S. Computers and intractability: a guide to the theory of NP-completeness.
W.H. Freeman, San Francisco, 1979.

Stix, V. Finding all maximal cliques in dynamic graphs Comput. Optimization and Appl., 27:173-
186, 2004.

See Also

qpCliqueNumber qpGetCliques qpIPF

Examples

require(graph)

set.seed(123)
nVar <- 1000
g1 <- randomEGraph(V=as.character(1:nVar), p=0.1)
g1
clqs1 <- qpGetCliques(g1, clqspervtx=TRUE, verbose=FALSE)

length(clqs1)

g2 <- removeEdge(from="1", to=edges(g1)[["1"]][1], g1)
g2

system.time(clqs2a <- qpGetCliques(g2, verbose=FALSE))

system.time(clqs2b <- qpUpdateCliquesRemoving(g1, clqs1, "1", edges(g1)[["1"]][1], verbose=FALSE))

length(clqs2a)

length(clqs2b)-nVar

SsdMatrix-class Sum of squares and deviations Matrices

Description

The "SsdMatrix" class is the class of symmetric, dense matrices in packed storage (just as a
dspMatrix-class, i.e., only the upper triangle is stored) defined within the qpgraph package to
store corrected, or uncorrected, matrices of the sum of squares and deviations (SSD) of pairs of
random variables. A corrected SSD matrix corresponds to a sample covariance matrix.

Objects from the Class

Objects can be created by calls of the form new("SsdMatrix", ...) or by using qpCov() which
estimates a sample covariance matrix from data returning an object of this class.



SsdMatrix-class 63

Slots

ssd: Object of class dspMatrix-class storing the SSD matrix.

n: Object of class "numeric" storing the sample size employed to estimate the SSD matrix stored
in the slot ssd. This is specially relevant when the SSD matrix was estimated from data with
missing values by using complete observations only, which is the default mode of operation
of qpCov().

Extends

"SsdMatrix" extends class "dspMatrix", directly.

Methods

dim signature(x = "SsdMatrix")

dimnames signature(x = "SsdMatrix")

show signature(object = "SsdMatrix")

determinant signature(object = "SsdMatrix", logarithm = "missing")
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