Package ‘GenomicFeatures’

March 26, 2013

Title Tools for making and manipulating transcript centric annotations

Version 1.10.2

Author M. Carlson, H. Pages, P. Aboyoun, S. Falcon, M. Morgan,D. Sarkar, M. Lawrence
License Artistic-2.0

Description A set of tools and methods for making and manipulating transcript
centric annotations. With these tools the user can easily download the
genomic locations of the transcripts, exons and cds of a given
organism, from either the UCSC Genome Browser or a BioMart database
(more sources will be supported in the future). This information is
then stored in a local database that keeps track of the relationship
between transcripts, exons, cds and genes. Flexible methods are
provided for extracting the desired features in a convenient format.

Maintainer Bioconductor Package Maintainer <maintainer@bioconductor.org>

Depends BiocGenerics (>= 0.1.0), IRanges (>= 1.15.35), GenomicRanges
(>=1.9.66), AnnotationDbi (>= 1.19.36)

Imports methods, DBI (>= 0.2-5), RSQLite (>= 0.8-
1), BiocGenerics,IRanges, GenomicRanges, Biostrings (>= 2.23.2), rtracklayer (>=
1.15.1), biomaRt, RCurl, utils, Biobase (>=2.15.1)

Suggests
rtracklayer, biomaRt, org. Mm.eg.db, Biostrings, BSgenome,BSgenome.Hsapiens.UCSC.hg18 (>=1.3.14),BSgenome.]
1.3.17), mir-
base.db, FDb.UCSC.tRNAs, TxDb.Hsapiens.UCSC.hg18.knownGene, TxDb.Hsapiens.UCSC.hg19.knownGene, TxDb.
tools,pasillaBamSubset (>= 0.0.5), RUnit

Collate utils.R Ensembl.utils.R TranscriptDb-class.R FeatureDb-class.R
makeTranscriptDb.R makeTranscriptDbFromUCSC.R
makeTranscriptDbFromBiomart.R makeTranscriptDbFromGFF.R
makeFeatureDbFromUCSC.R saveFeatures.R id2name.R transcripts.R
transcriptsByOverlaps.R transcriptsBy.R regions.R features.R
extractTranscriptsFromGenome.R makeTxDbPackage.R
seqnames-methods.R select-methods.R getPromoterSeq-methods.R
test_GenomicFeatures_package.R

biocViews Genetics, Infrastructure, Annotation,HighThroughputSequencing

2

as-format-methods

R topics documented:

as-format-methods 2
DEFAULT _CIRC_SEQS e e 3
extractTranscriptsFromGenome oL oo 4
FeatureDb-class e 7
features L L e 8
getPromoterSeq 9
id2name e 10
makeFeatureDbFromUCSC 11
makeTranscriptDb L 13
makeTranscriptDbFromBiomart Lo, 16
makeTranscriptDbFromGFF o 18
makeTranscriptDbFromUCSC 20
makeTxDbPackage 22
TEZIOMS « « v v v v v e 25
saveFeatures 26
select-methods 27
TranscriptDb-class 28
transcripts e e e 30
transcriptsBy 32
transcriptsByOverlaps 34
Index 37
as-format-methods Coerce to file format structures
Description

These functions coerce a TranscriptDb object to a GRanges object with metadata columns encod-
ing transcript structures according to the model of a standard file format. Currently, BED and GFF
models are supported. If a TranscriptDb is passed to export, when targeting a BED or GFF file,
this coercion occurs automatically.

Usage

#+# S4 method for signature "TranscriptDb’
asBED(x)
S4 method for signature "TranscriptDb’
asGFF(x)

Arguments

X

A TranscriptDb object to coerce to a GRanges, structured as BED or GFF.

DEFAULT _CIRC_SEQS 3

Value

For asBED, a GRanges, with the columns name, thickStart, thickEnd, blockStarts, blockSizes
added. The thick regions correspond to the CDS regions, and the blocks represent the exons. The
transcript IDs are stored in the name column. The ranges are the transcript bounds.

For asGFF, a GRanges, with columns type, Name, ID,, and Parent. The gene structures are
expressed according to the conventions defined by the GFF3 spec. There are elements of each type
of feature: “gene”, “mRNA” “exon” and “cds”. The Name column contains the gene _id for genes,
tx_name for transcripts, and exons and cds regions are NA. The ID column uses gene id and
tx__id, with the prefixes “GenelD” and “TxID” to ensure uniqueness across types. The exons and
cds regions have NA for ID. The Parent column contains the IDs of the parent features. A feature
may have multiple parents (the column is a CharacterList). Each exon belongs to one or more
mRNAs, and mRNAs belong to a gene.

Author(s)

Michael Lawrence

Examples

txdb_file <- system.file("extdata", "UCSC_knownGene sample.sqlite",
package="GenomicFeatures")
txdb <- loadDb(txdb _ file)

asBED (txdb)
asGFF (txdb)

DEFAULT CIRC_SEQS

character vector: strings that are usually circular chromosomes

Description

The DEFAULT CIRC_SEQS character vector contains strings that are normally used by major

repositories as the names of chromosomes that are typically circular, it is available as a convenience

so that users can us it as a default value for circ_seqs arguments, and append to it as needed.
Usage

DEFAULT CIRC_SEQS

See Also

makeTranscript DbFromUCSC, makeTranscript DbFromBiomart

Examples

DEFAULT CIRC_SEQS

4 extractTranscriptsFromGenome

extractTranscriptsFromGenome
Tools for extracting transcript sequences

Description

extractTranscriptsFromGenome extracts the transcript sequences from a BSgenome data package
using the transcript information (exon boundaries) stored in a TranscriptDb or GRangesList object.

extractTranscripts extracts a set of transcripts from a single DNA sequence.
Related utilities:

transcriptWidths to get the lengths of the transcripts (called the "widths" in this context) based on
the boundaries of their exons.

transcriptLocs2refLocs converts transcript-based locations into reference-based (aka chromosome-
based or genomic) locations.

sortExonsByRank orders (or reorders) by rank the exons stored in a GRangesList object containing
exons grouped by transcript.
Usage

extract TranscriptsFromGenome(genome, txdb,
decreasing.rank.on.minus.strand=FALSE,
use.names=TRUE)

extractTranscripts(x,
exonStarts=list(), exonEnds=list(), strand=character(0),
decreasing.rank.on.minus.strand=FALSE)
#+# Related utilities:
transcript Widths(exonStarts=list(), exonEnds=list())
transcriptLocs2refLocs(tlocs,
exonStarts=list(), exonEnds=list(), strand=character(0),

decreasing.rank.on.minus.strand=FALSE)

sortExonsByRank(x, decreasing.rank.on.minus.strand=FALSE)

Arguments
genome A BSgenome object. See the available.genomes function in the BSgenome
package for how to install a genome.
txdb A TranscriptDb object or a GRangesList object.

decreasing.rank.on.minus.strand
TRUE or FALSE. Describes the order of exons in transcripts located on the
minus strand: are they ordered by increasing (default) or decreasing rank? For
all the functions described in this man page (except sortExonsByRank), this
argument describes the input. For sortExonsByRank, it describes how exons
should be ordered in the output.

extractTranscriptsFromGenome 5

use.names

TRUE or FALSE. Ignored if txdb is not a TranscriptDb object. If TRUE (the
default), the returned sequences are named with the transcript names. If FALSE,
they are named with the transcript internal ids. Note that, unlike the transcript
internal ids, the transcript names are not guaranteed to be unique or even defined
(they could be all NAs). A warning is issued when this happens.

A DNAString or MaskedDNAString object for extractTranscripts.

A GRangesList object for sort ExonsByRank, typically coming from exonsBy/(.

exonStarts, exonEnds

strand

tlocs

Value

The starts and ends of the exons, respectively.

Each argument can be a list of integer vectors, an IntegerList object, or a charac-
ter vector where each element is a comma-separated list of integers. In addition,
the lists represented by exonStarts and exonEnds must have the same shape
i.e. have the same lengths and have elements of the same lengths. The length of
exonStarts and exonEnds is the number of transcripts.

A character vector of the same length as exonStarts and exonEnds specifying
the strand ("+" or "-") from which the transcript is coming.

A list of integer vectors of the same length as exonStarts and exonEnds. Each
element in tlocs must contain transcript-based locations.

For extractTranscriptsFromGenome: A named DNAStringSet object with one element per tran-
script. When txdb is a GRangesList object, elements in the output align with elements in the input
(txdb), and they have the same names.

For extractTranscripts: A DNAStringSet object with one element per transcript.

For transcriptWidths: An integer vector with one element per transcript.

For transcriptLocs2refLocs: A list of integer vectors of the same shape as tlocs.

For sortExonsByRank: A GRangesList object with one top-level element per transcript. More
precisely, the returned object has the same "shape" (i.e. same length and same number of elements
per top-level element) as the input GRangesList object x.

Author(s)

H. Pages

See Also

o by="tx").

available.genomes, TranscriptDb-class, exonsBy, GRangesList-class, DNAStringSet-class, translate

Examples

library(BSgenome.Hsapiens.UCSC.hgl8) # load the genome

#H#

#4# A. USING extractTranscriptsFromGenome() WITH A TranscriptDb OBJECT

#H

txdb_file <- system.file("extdata", "UCSC _knownGene sample.sqlite",

package="GenomicFeatures")

txdb <- loadDb(txdb_ file)
tx_seqsl <- extractTranscriptsFromGenome(Hsapiens, txdb)

tx_segsl

extractTranscriptsFromGenome

##
B. USING extractTranscriptsFromGenome() WITH A GRangesList OBJECT

#H#

A GRangesList object containing exons grouped by transcripts gives
#+ the same result as above:

exbytx <- exonsBy(txdb, by="tx", use.names=TRUE)

tx_seqs2 <- extractTranscriptsFromGenome(Hsapiens, exbytx)

stopifnot (identical (as.character(tx_seqs2), as.character(tx _segsl)))

A sanity check:
stopifnot (identical (unname(sapply (width(exbytx), sum)), width(tx _segs2)))

##+ CDSs grouped by transcripts (this extracts only the translated parts

#7# of the transcripts):

cds_seqs <- extractTranscriptsFromGenome(Hsapiens, cdsBy(txdb, by="tx"))
translate(cds _seqs)

##
C. GOING FROM TRANSCRIPT-BASED TO REFERENCE-BASED LOCATIONS

##

Get the reference-based locations of the first 4 (5’ end)

#4+ and last 4 (3’ end) nucleotides in each transcript:

tlocs <- lapply(width(tx_seqs2), function(w) c(1:4, (w-3):w))

tx_strand <- sapply(strand(exbytx), runValue)

#4+ Note that, because of how we made them, ’tlocs’, ’start(exbytx)’,

#+# ’end(exbytx)’ and ’tx_strand’ have the same length, and, for any

valid positional index, elements at this position are corresponding

#7+ to each other. This is how transcriptLocs2refLocs() expects them

#+4 to be!

rlocs <- transcriptLocs2refLocs(tlocs, start(exbytx), end(exbytx),
tx_strand, decreasing.rank.on.minus.strand=TRUE)

##
D. EXTRACTING WORM TRANSCRIPTS ZC101.3 AND F37B1.1

i

##+ Transcript ZC101.3 (is on + strand):

#+# Exons starts/ends relative to transcript:

rstartsl <- c(1, 488, 654, 996, 1365, 1712, 2163, 2453)
rendsl <- (137, 578, 889, 1277, 1662, 1870, 2410, 2561)
Exons starts/ends relative to chromosome:
startsl <- 14678410 + rstartsl

endsl <- 14678410 + rendsl

#4+ Transcript F37B1.1 (is on - strand):

Exons starts/ends relative to transcript:
rstarts2 <- ¢(1, 325)

rends2 <- ¢(139, 815)

##+ Exons starts/ends relative to chromosome:
starts2 <- 13611188 - rends2

ends2 <- 13611188 - rstarts2

exon_starts <- list(as.integer(startsl), as.integer(starts2))
exon _ends <- list(as.integer(endsl), as.integer(ends2))

FeatureDb-class 7

library(BSgenome.Celegans.UCSC.ce2)

Both transcripts are on chrll:

chrll <- Celegans$chrIl

tx_seqs <- extractTranscripts(chrll,
exonStarts=exon _starts,
exonEnds=exon__ends,
Strandzc(l|+l|7ll_ll))

Same as ’width(tx_seqs):
transcript Widths(exonStarts=exon _starts, exonEnds=exon _ends)

transcriptLocs2refLocs(list(c(1:6, 135:140, 1555:1560),
c(1:6, 137:142, 625:630)),
exonStarts=exon _starts,
exonEnds=exon _ends,
Strand:C("+|' , "_"))

A sanity check:

ref locs <- transcriptLocs2refLocs(list(1:1560, 1:630),
exonStarts—exon _starts,
exonEnds=exon _ends,
Strand:C("+'|7""'))

stopifnot(chrIIfref locs[[1]]] == tx_segs[[1]])
stopifnot(complement(chrlI)[ref locs[[2]]] == tx__seqs[[2]])
##

##+ E. sortExonsByRank()

#H

Typically used to reorder by decreasing rank the exons in transcripts

located on the minus strand:

exbytx3 <- sortExonsByRank(exbytx, decreasing.rank.on.minus.strand=TRUE)

exbytx3

tx_seqs3 <- extractTranscriptsFromGenome(Hsapiens, exbytx3,
decreasing.rank.on.minus.strand=TRUE)

stopifnot (identical(as.character(tx _seqs3), as.character(tx segsl)))

FeatureDb-class FeatureDb objects

Description

The FeatureDb class is a generic container for storing genomic locations of an arbitrary type of
genomic features.

See ?TranscriptDb for a container for storing transcript annotations.

See TmakeFeatureDbFromUCSC for a convenient way to make FeatureDb objects from BioMart
online resources.

Methods

In the code snippets below, x is a FeatureDb object.

metadata(x): Return x’s metadata in a data frame.

8 features

Author(s)

Marc Carlson

See Also

* The TranscriptDb class for storing transcript annotations.

* makeFeatureDbFromUCSC for a convenient way to make a FeatureDb object from UCSC
online resources.

 saveDb and loadDb for saving and loading the database content of a FeatureDb object.

* features for how to extract genomic features from a FeatureDb object.

Examples

fdb_file <- system.file("extdata", "FeatureDb.sqlite",
package="GenomicFeatures")

fdb <- loadDb(fdb_ file)

fdb

features Extract simple features from a FeatureDb object

Description

Generic function to extract genomic features from a FeatureDb object.

Usage
features(x)
#4 S4 method for signature "FeatureDb’
features(x)

Arguments

X A FeatureDb object.

Value

a GRanges object

Author(s)
M. Carlson

See Also
FeatureDb

Examples

fdb <- loadDb(system.file("extdata", "FeatureDb.sqlite",
package="GenomicFeatures"))
features(fdb)

getPromoterSeq 9

getPromoterSeq Get gene promoter sequences

Description

Extract sequences for the genes or transcripts specified in the query (aGRanges or GRangesList
object) from a BSgenome object or an FaFile.

Usage

#+# S4 method for signature 'GRangesList’
getPromoterSeq(query, subject, upstream, downstream,...)
S4 method for signature 'GRangesList’
getPromoterSeq(query, subject, upstream, downstream,...)
#4 S4 method for signature "GRanges’
getPromoterSeq(query, subject, upstream, downstream,...)
#+# S4 method for signature 'GRanges’
getPromoterSeq(query, subject, upstream, downstream,...)

Arguments
query A GRanges or GRangesList object containing genes grouped by transcript.
subject A BSgenome object or a FaFile from which the sequences will be taken.
upstream The number of DNA bases to include upstream of the TSS (transcription start
site)
downstream The number of DNA bases to include downstream of the TSS (transcription start
site)
Additional arguments
Details

getPromoterSeq is an overloaded method dispatching on query, which is either a GRanges or a
GRangesList. It is a wrapper for the promoters and getSeq functions. The purpose is to allow
sequence extraction from either a BSgenome or FaFile.

Value
A DNAStringSet or DNAStringSetList instance corresponding to the GRanges or GRangesList
supplied in the query.

Author(s)

Paul Shannon

See Also

promoters getSeq

10 id2name

Examples

library(TxDb.Hsapiens.UCSC.hg19.knownGene)
library(BSgenome.Hsapiens.UCSC.hg19)

e2f3 <- "1871" +# entrez genelD for a cell cycle control transcription
factor, chr6 on the plus strand

transcript CoordsByGene.GRangesList <-
transcriptsBy (TxDb.Hsapiens.UCSC.hgl9.knownGene, by = "gene") [e2f3]
a GrangesList of length one, describing three transcripts

promoter.seqs <- getPromoterSeq (transcriptCoordsByGene.GRangesList,
Hsapiens, upstream=10, downstream=0)
DNAStringSetList of length 1
[["1871"]] GCTTCCTGGA GCTTCCTGGA CGGAGCCAGG

id2name Map internal ids to external names for a given feature type

Description

Utility function for retrieving the mapping from the internal ids to the external names of a given
feature type.

Usage

n

id2name(txdb, feature.type=c("tx", "exon", "cds"))

Arguments

txdb A TranscriptDb object.

feature.type The feature type for which the mapping must be retrieved.
Details

Transcripts, exons and CDS in a TranscriptDb object are stored in seperate tables where the primary
key is an integer called feature internal id. This id is stored in the "tx_id" column for transcripts,
in the "exon id" column for exons, and in the "cds id" column for CDS. Unlike other com-
monly used ids like Entrez Gene IDs or Ensembl IDs, this internal id was generated at the time the
TranscriptDb object was created and has no meaning outside the scope of this object.

The id2name function can be used to translate this internal id into a more informative id or name
called feature external name. This name is stored in the "tx _name" column for transcripts, in the
"exon mname" column for exons, and in the "cds name" column for CDS.

Note that, unlike the feature internal id, the feature external name is not guaranteed to be unique or
even defined (the column can contain NAs).

Value

A named character vector where the names are the internal ids and the values the external names.

makeFeature DbFromUCSC 11

Author(s)
H. Pages

See Also

* transcripts, transcriptsBy, and transcriptsByOverlaps, for how to extract genomic features
from a TranscriptDb object.

* The TranscriptDb class.

Examples

txdbl _file <- system.file("extdata", "UCSC _knownGene sample.sqlite",
package="GenomicFeatures")

txdbl <- loadDb(txdbl file)

id2name(txdbl, feature.type="tx")[1:4]

id2name(txdbl, feature.type="exon")[1:4]

id2name(txdbl, feature.type="cds")[1:4]

txdb2_file <- system.file("extdata", "Biomart Ensembl sample.sqlite",
package="GenomicFeatures")

txdb2 <- loadDb(txdb2_file)

id2name(txdb2, feature.type="tx")[1:4]

id2name(txdb2, feature.type="exon")[1:4]

id2name(txdb2, feature.type="cds")[1:4]

makeFeatureDbFromUCSC
Making a FeatureDb object from annotations available at the UCSC
Genome Browser

Description

The makeFeatureDbFromUCSC function allows the user to make a FeatureDb object from sim-
ple annotation tracks at UCSC. The tracks in question must (at a minimum) have a start, end and a
chromosome affiliation in order to be made into a FeatureDb. This function requires a precise dec-
laration of its first three arguments to indicate which genome, track and table wish to be imported.
There are discovery functions provided to make this process go smoothly.

Usage
supportedUCSCFeatureDbTracks(genome)

supportedUCSCFeatureDbTables(genome, track)

UCSCFeatureDbTableSchema(genome,
track,
tablename)

makeFeatureDbFromUCSC(
genome,
track,
tablename,

12 makeFeatureDbFromUCSC

columns = UCSCFeatureDbTableSchema(genome,track,tablename),
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath url="http://hgdownload.cse.ucsc.edu/goldenPath",

chromCol,
chromStartCol,
chromEndCol)
Arguments
genome genome abbreviation used by UCSC and obtained by ucscGenomes()[, "db"].
For example: "hgl8".
track name of the UCSC track. Use supportedUCSCFeatureDbTracks to get the
list of available tracks for a particular genome
tablename name of the UCSC table containing the annotations to retrieve. Use the supportedUCSCFeatureDb']
utility function to get the list of supported tables for a track.
columns a named character vector to list out the names and types of the other columns

that the downloaded track should have. Use UCSCFeatureDbTableSchema to
retrieve this information for a particular table.

url,goldenPath url
use to specify the location of an alternate UCSC Genome Browser.

chromCol If the schema comes back and the ’chrom’ column has been labeled something
other than ’chrom’, use this argument to indicate what that column has been
labeled as so we can properly designate it. This could happen (for example)
with the knownGene track tables, which has no ’chromStart’ or ’chromEnd’
columns, but which DOES have columns that could reasonably substitute for
these columns under particular circumstances. Therefore we allow these three
columns to have arguments so that their definition can be re-specified

chromStartCol Same thing as chromCol, but for renames of ’chromStart’

chromEndCol Same thing as chromCol, but for renames of ’chromEnd’

Details

makeFeatureDbFromUCSC is a convenience function that builds a tiny database from one of the
UCSC track tables. supportedUCSCFeatureDbTracks a convenience function that returns poten-
tial track names that could be used to make FeatureDb objects supportedUCSCFeatureDbTables
a convenience function that returns potential table names for FeatureDb objects (table names go
with a track name) UCSCFeatureDbTableSchema A convenience function that creates a named
vector of types for all the fields that can potentially be supported for a given track. By default, this
will be called on your specified tablename to include all of the fields in a track.

Value

A FeatureDb object for makeFeatureDbFromUCSC. Or in the case of supportedUCSCFeatureDbTracks
and UCSCFeatureDbTableSchema a named character vector

Author(s)
M. Carlson and H. Pages

See Also

ucscGenomes,

makeTranscriptDb 13

Examples

Display the list of genomes available at UCSC:
library(GenomicFeatures)

library(rtracklayer)

ucscGenomes()[, "db"|

#4+ Display the list of Tracks supported by makeFeatureDbFromUCSC|():
supportedUCSCFeatureDbTracks("mm9")

44 Display the list of tables supported by your track:
supportedUCSCFeatureDbTables(genome="mm9",
track="oreganno")

Display fields that could be passed in to colnames:

UCSCFeatureDbTableSchema(genome="mm9",
track="oreganno",
tablename="oreganno")

#+# Retrieving a full transcript dataset for Yeast from UCSC:

fdb <- makeFeatureDbFromUCSC(genome="mm9",
track="oreganno",
tablename="oreganno")

fdb

makeTranscriptDb Making a TranscriptDb object from user supplied annotations

Description

makeTranscriptDb is a low-level constructor for making a TranscriptDb object from user supplied
transcript annotations. See 7makeTranscriptDbFromUCSC and ?makeTranscriptDbFromBiomart
for higher-level functions that feed data from the UCSC or BioMart sources to makeTranscriptDb.

Usage

makeTranscriptDb(transcripts, splicings,
genes=NULL, chrominfo=NULL, metadata=NULL,
reassign.ids=FALSE)

Arguments
transcripts data frame containing the genomic locations of a set of transcripts
splicings data frame containing the exon and cds locations of a set of transcripts
genes data frame containing the genes associated to a set of transcripts
chrominfo data frame containing information about the chromosomes hosting the set of
transcripts
metadata 2-column data frame containing meta information about this set of transcripts

like species, organism, genome, UCSC table, etc... The names of the columns
must be "name" and "value" and their type must be character.

14

makeTranscriptDb

reassign.ids controls how internal ids should be assigned for each type of feature i.e. for

Details

transcripts, exons, and cds. For each type, if reassign.ids is FALSE and if the
ids are supplied, then they are used as the internal ids, otherwise the internal ids
are assigned in a way that is compatible with the order defined by ordering the
features first by chromosome, then by strand, then by start, and finally by end.

The transcripts (required), splicings (required) and genes (optional) arguments must be data frames
that describe a set of transcripts and the genomic features related to them (exons, cds and genes at
the moment). The chrominfo (optional) argument must be a data frame containing chromosome
information like the length of each chromosome.

transcripts must have 1 row per transcript and the following columns:

tx__id: Transcript ID. Integer vector. No NAs. No duplicates.

tx_name: [optional] Transcript name. Character vector (or factor). NAs and/or duplicates
are ok.

tx__chrom: Transcript chromosome. Character vector (or factor) with no NAs.

tx_strand: Transcript strand. Character vector (or factor) with no NAs where each element
is either "+" or "-".

tx_start, tx__end: Transcript start and end. Integer vectors with no NAs.

Other columns, if any, are ignored (with a warning).

splicings must have N rows per transcript, where N is the nb of exons in the transcript. Each row
describes an exon plus, optionally, the cds contained in this exon. Its columns must be:

tx_id: Foreign key that links each row in the splicings data frame to a unique row in the
transcripts data frame. Note that more than 1 row in splicings can be linked to the same row
in transcripts (many-to-one relationship). Same type as transcripts$tx_id (integer vector).
No NAs. All the values in this column must be present in transcripts$tx _id.

exon_rank: The rank of the exon in the transcript. Integer vector with no NAs. (tx_ id,
exon _rank) pairs must be unique.

exon_id: [optional] Exon ID. Integer vector with no NAs.
exon_ name: [optional] Exon name. Character vector (or factor).

exon chrom: [optional] Exon chromosome. Character vector (or factor) with no NAs. If
missing then transcripts$tx chrom is used. If present then exon strand must also be
present.

exon_strand: [optional] Exon strand. Character vector (or factor) with no NAs. If missing
then transcripts$tx_strand is used and exon _chrom must also be missing.

exon_start, exon end: Exon start and end. Integer vectors with no NAs.

cds_id: [optional] cds ID. Integer vector. If present then cds_start and cds_end must also
be present. NAs are allowed and must match NAs in cds_start and cds__end.

cds_name: [optional] cds name. Character vector (or factor). If present then cds_start
and cds__end must also be present. NAs are allowed and must match NAs in cds_ start and
cds_end.

cds_start, cds__end: [optional] cds start and end. Integer vectors. If one of the 2 columns
is missing then all cds_* columns must be missing. NAs are allowed and must occur at the
same positions in cds_start and cds__end.

makeTranscriptDb 15

Other columns, if any, are ignored (with a warning).
genes must have N rows per transcript, where N is the nb of genes linked to the transcript (N will
be 1 most of the time). Its columns must be:

* tx_id: [optional] genes must have either a tx_id or a tx _name column but not both. Like
splicings$tx _id, this is a foreign key that links each row in the genes data frame to a unique
row in the transcripts data frame.

* tx_name: [optional] Can be used as an alternative to the genes$tx id foreign key.

» gene id: Gene ID. Character vector (or factor). No NAs.

Other columns, if any, are ignored (with a warning).

chrominfo must have 1 row per chromosome and the following columns:

¢ chrom: Chromosome name. Character vector (or factor) with no NAs and no duplicates.
* length: Chromosome length. Either all NAs or an integer vector with no NAs.

* is_circular: [optional] Chromosome circularity flag. Either all NAs or a logical vector with
no NAs.

Other columns, if any, are ignored (with a warning).

Value

A TranscriptDb object.

Author(s)

H. Pages

See Also

* makeTranscriptDbFromUCSC and makeTranscriptDbFromBiomart for convenient ways
to make TranscriptDb objects from UCSC or BioMart online resources.

* makeTranscriptDbFromGFF for making a TranscriptDb object from annotations available
as a GFF3 or GTF file.

* The TranscriptDb class.

Examples

transcripts <- data.frame(
tx_id=1:3,
tx_chrom="chrl",
tx_strand:c(”—", nyn u+u)7
tx_start=c(1, 2001, 2001),
tx_end=c(999, 2199, 2199))

splicings <- data.frame(
tx_id=c(1L, 2L, 2L, 2L, 3L, 3L),
exon_rank=c(1, 1, 2, 3, 1, 2),
exon_start=c(1, 2001, 2101, 2131, 2001, 2131),
exon__end=c(999, 2085, 2144, 2199, 2085, 2199),
cds_start=c(1, 2022, 2101, 2131, NA, NA),
cds_end=c(999, 2085, 2144, 2193, NA, NA))

txdb <- makeTranscriptDb(transcripts, splicings)

16 makeTranscriptDbFromBiomart

makeTranscriptDbFromBiomart
Make a TranscriptDb object from annotations available on a BioMart
database

Description

The makeTranscriptDbFromBiomart function allows the user to make a TranscriptDb object
from transcript annotations available on a BioMart database.

Usage

getChromInfoFromBiomart(biomart="ensembl",
dataset="hsapiens _gene ensembl",
id prefix="ensembl ",
host="www.biomart.org",

port=380)

makeTranscriptDbFromBiomart(biomart="ensembl",
dataset="hsapiens gene ensembl",
transcript _ids=NULL,
circ_seqs=DEFAULT CIRC SEQS,
filters="",
id_prefix="ensembl ",
host="www.biomart.org",
port=80,
miRBaseBuild = NULL)

Arguments
biomart which BioMart database to use. Get the list of all available BioMart databases
with the listMarts function from the biomaRt package. See the details section
below for a list of BioMart databases with compatible transcript annotations.
dataset which dataset from BioMart. For example: "hsapiens gene ensembl", "mmusculus_gene ense:

"dmelanogaster gene ensembl", "celegans gene ensembl", "scerevisiae _gene ensembl",
etc in the ensembl database. See the examples section below for how to discover
which datasets are available in a given BioMart database.

transcript _ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the result-
ing TranscriptDb object will say ’Full dataset: no’. Otherwise it will say "Full
dataset: yes’.

circ_seqs a character vector to list out which chromosomes should be marked as circular.

filters Additional filters to use in the BioMart query. Must be a named list. An example
is filters=as.list(c(source="entrez"))

host The host URL of the BioMart. Defaults to www.biomart.org.

port The port to use in the HTTP communication with the host.

id_prefix Specifies the prefix used in BioMart attributes. For example, some BioMarts

may have an attribute specified as "ensembl transcript id" whereas others

have the same attribute specified as "transcript _id". Defaults to "ensembl ".

makeTranscriptDbFromBiomart 17

miRBaseBuild specify the string for the appropriate build Information from mirbase.db to use
for microRNAs. This can be learned by calling supportedMiRBaseBuild Values.
By default, this value will be NULL, which will inactivate the microRNAs ac-
Cessor.

Details

makeTranscriptDbFromBiomart is a convenience function that feeds data from a BioMart database
to the lower level makeTranscriptDb function. See ?makeTranscript DbFromUCSC for a similar
function that feeds data from the UCSC source.

BioMart databases that are known to have compatible transcript annotations are:

* the most recent ensembl: ENSEMBL GENES (SANGER UK)

¢ the most recent bacterial_mart: ENSEMBL BACTERIA (EBI UK)
¢ the most recent fungal_mart: ENSEMBL FUNGAL (EBI UK)

¢ the most recent metazoa_mart: ENSEMBL METAZOA (EBI UK)

* the most recent plant_mart: ENSEMBL PLANT (EBI UK)

¢ the most recent protist_mart: ENSEMBL PROTISTS (EBI UK)

¢ the most recent ensembl_expressionmart: EURATMART (EBI UK)

Not all annotations will have CDS information.

Value

A TranscriptDDb object.

Author(s)
M. Carlson and H. Pages

See Also

listMarts, useMart, listDatasets, DEFAULT CIRC _SEQS, makeTranscriptDbFromUCSC,
makeTranscriptDbFromGFF, makeTranscriptDb, supportedMiR BaseBuild Values

Examples

Discover which datasets are available in the "ensembl" BioMart
#+# database:

library ("biomaRt")

listDatasets(useMart("ensembl"))

Retrieving an incomplete transcript dataset for Human from the
#+t "ensembl" BioMart database:
transcript_ids <- ¢(
"ENST00000268655",
"ENST00000313243",
"ENST00000341724",
"ENST00000400839",
"ENST00000435657",
"ENST00000478783"
)

txdb <- makeTranscriptDbFromBiomart(transcript ids=transcript_ids)

18 makeTranscriptDbFromGFF

txdb # note that these annotations match the GRCh37 genome assembly

Now what if we want to use another mirror? We might make use of the

47 new host argument. But wait! If we use biomaR#t, we can see that

#+# this host has named the mart differently!

listMarts(host="uswest.ensembl.org")

4### Therefore we must also change the name passed into the "mart"

argument thusly:

try(

txdb <- makeTranscriptDbFromBiomart(biomart="ENSEMBL _MART ENSEMBL",

transcript _ids=transcript_ ids,

host="uswest.ensembl.org")

txdb

makeTranscriptDbFromGFF

Make a TranscriptDb object from annotations available as a GFF3 or
GTF file

Description

The makeTranscriptDbFromGFF function allows the user to make a TranscriptDb object from
transcript annotations available as a GFF3 or GTF file.

Usage

makeTranscriptDbFromGFF (file,
format=c("gff3","gtf"),
exonRankAttributeName=NULL,
gffGeneld AttributeName=NULL,
chrominfo,
dataSource,
species,
circ_seqs=DEFAULT CIRC_ SEQS,
miRBaseBuild=NULL)

Arguments
file path/file to be processed
format "eff3" or "gtf" depending on which file format you have to process

exonRankAttributeName
what is the name (if any) of the attribute that defines the exon rank information.
gffGeneld AttributeName
an optional argument that can be used for gff style files ONLY. If the gff file
lacks rows to specify gene IDs but the mRNA rows of the gff file specify the
gene IDs via a named attribute,then passing the name of the attribute for this
argument can allow the file to still extract gene IDs that map to these transcripts.
If left blank, then the parser will try and extract rows that are named ’gene’ for
gene to transcript mappings when parsing a gff3 file. For gtf files this argument
is ignored entirely.

makeTranscriptDbFromGFF 19

chrominfo data frame containing information about the chromosomes. This data.frame has
3 columns: ’chrom’, ’length’ and ’is_circular’. The ’chrom’ column contains
the character names of the chromosome elements that are present, the ’length’
is the integer length for each one and the ’is_circular’ contains a logical value
to indicate whether that element is a circularized (such as a mitochondria or
a chloroplast). If this argument is left blank then there will not be any length
information recorded for the different chromosomes since it is not possible to
infer if from the transcript ranges alone.

dataSource Where did this data file originate? Please be as specific as possible.

species What is the Genus and species of this organism. Please use proper scientific
nomenclature for example: "Homo sapiens" or "Canis familiaris" and not "hu-
man" or "my fuzzy buddy". If properly written, this information may be used
by the software to help you out later.

circ_ seqs a character vector to list out which chromosomes should be marked as circular.

miRBaseBuild specify the string for the appropriate build Information from mirbase.db to use
for microRNAs. This can be learned by calling supportedMiRBaseBuild Values.
By default, this value will be NULL, which will inactivate the microRNAs ac-
Cessor.

Details

makeTranscript DbFromGFF is a convenience function that feeds data from the parsed file to the
lower level makeTranscriptDb function.

There are some real deficiencies in the gtf and the gff3 file formats to bear in mind when making
use of them. For gtf files the length of the transcripts is not normally encoded and so it has to be
inferred from the exon ranges presented. That’s not a horrible problem, but it bears mentioning for
the sake of full disclosure. And for gff3 files the situation is typically even worse since they usually
don’t encode any information about the exon rank within a transcript. This is a serious oversight
and so if you have an alternative to using this kind of data, you should really do so.

Some files will have an attribute defined to indicate the exon rank information. For GTF files this
is usually given as "exon_number", however you still must specify this argument if you don’t want
the code to try and infer the exon rank information. For gff3 files, we have not seen any examples
of this information encoded anywhere, but if you have a file with an attribute, you can still specify
this to avoid the inference.

Value

A TranscriptDDb object.

Author(s)

M. Carlson

See Also

DEFAULT CIRC _SEQS, makeTranscriptDbFromUCSC, makeTranscriptDbFromBiomart,
makeTranscriptDb, supportedMiR BaseBuild Values

20

makeTranscriptDbFromUCSC

Examples

44 TESTING GFF3

gffFile <- system.file("extdata","a.gff3" package

txdb <- makeTranscriptDbFromGFF (file=gffFile,
format="gff3",
dataSource="partial gtf file for Tomatoes for testing",
species="Solanum lycopersicum")

if(interactive()) {

saveDb(txdb,file="TESTGFF .sqlite")

}

TESTING GTF, this time specifying the chrominfo
gtfFile <- system.file("extdata"," Aedes_aegypti.partial.gtf",
package="GenomicFeatures")
chrominfo <- data.frame(chrom = c(’supercontl.1’’supercont1.2’),
length=c (5220442, 5300000),
is_circular=c(FALSE, FALSE))
txdb2 <- makeTranscriptDbFromGFF (file=gt{File,
format="gtf",
exonRankAttributeName="exon _number",
chrominfo=chrominfo,
dataSource=paste("ftp://ftp.ensemblgenomes.org/pub/metazoa/",
"release-13/gtf/aedes aegypti/",sep=""),
species="Aedes aegypti")
if(interactive()) {
saveDb(txdb2,file="TESTGTF .sqlite")

}

="GenomicFeatures")

makeTranscript DbFromUCSC
Make a TranscriptDb object from annotations available at the UCSC

Genome Browser

Description

The makeTranscriptDbFromUCSC function allows the user to make a TranscriptDb object from

transcript annotations available at the UCSC Genome Browser.

Usage

supportedUCSCtables()

getChromInfoFromUCSC(
genome,
goldenPath url="http://hgdownload.cse.ucsc.edu/goldenPath")

makeTranscriptDbFromUCSC(
genome="hg18",
tablename="knownGene",
transcript _ids=NULL,
circ_seqs=DEFAULT CIRC_ SEQS,
url="http: //genome.ucsc.edu/cgi-bin/",
goldenPath url="http://hgdownload.cse.ucsc.edu/goldenPath",
miRBaseBuild = NULL)

makeTranscriptDbFromUCSC 21

Arguments
genome genome abbreviation used by UCSC and obtained by ucscGenomes()[, "db"].
For example: "hgl8".
tablename name of the UCSC table containing the transcript annotations to retrieve. Use

the supportedUCSCtables utility function to get the list of supported tables.
Note that not all tables are available for all genomes.

transcript _ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the result-
ing TranscriptDb object will say ’Full dataset: no’. Otherwise it will say "Full
dataset: yes’.

circ_seqs a character vector to list out which chromosomes should be marked as circular.
url,goldenPath url
use to specify the location of an alternate UCSC Genome Browser.

miRBaseBuild specify the string for the appropriate build Information from mirbase.db to use
for microRNAs. This can be learned by calling supportedMiRBaseBuild Values.
By default, this value will be NULL, which will inactivate the microRNAs ac-
CEessor.

Details

makeTranscript DbFromUCSC is a convenience function that feeds data from the UCSC source to
the lower level makeTranscriptDb function. See 7makeTranscriptDbFromBiomart for a similar
function that feeds data from a BioMart database.

Value

A TranscriptDb object.

Author(s)
M. Carlson and H. Pages

See Also
ucscGenomes, DEFAULT CIRC _SEQS, makeTranscriptDbFromBiomart, makeTranscriptDbFromGFF,
makeTranscriptDb, supportedMiRBaseBuild Values

Examples

4### Display the list of genomes available at UCSC:
library (rtracklayer)
ucscGenomes()[, "db"|

Display the list of tables supported by makeTranscriptDbFromUCSC():
supportedUCSCtables()

Not run:

#+# Retrieving a full transcript dataset for Yeast from UCSC:

txdbl <- makeTranscriptDbFromUCSC(genome="sacCer2", tablename="ensGene")
End(Not run)

Retrieving an incomplete transcript dataset for Mouse from UCSC

22 makeTxDbPackage

#7+ (only transcripts linked to Entrez Gene ID 22290):
transcript_ids <- ¢(

"uc009uzf.1",

"uc009uzg.1",

"uc009uzh.1",

"uc009uzi.1",

"uc009uzj.1"

)

txdb2 <- makeTranscriptDbFromUCSC(genome="mm9", tablename="knownGene",
transcript_ids=transcript _ids)

txdb2
makeTxDbPackage Making a TranscriptDb packages from annotations available at the
UCSC Genome Browser, biomaRt or from another source.
Description

The makeTxDbPackageFromUCSC function allows the user to make a TranscriptDb object from
transcript annotations available at the UCSC Genome Browser. The makeTxDbPackageFromBiomart
function allows the user to do the same thing as makeTxDbPackageFromUCSC except that the
annotations originate from biomaRt. Finally, the makeTxDbPackage function allows the user to
make a TranscriptDb object from transcript annotations that are in a custom transcript Database,
such as could be produced using makeTranscriptDb.

Usage

makeTxDbPackageFromUCSC(
version=,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
genome="hg19",
tablename="knownGene",
transcript ids=NULL,
circ_seqs=DEFAULT CIRC_SEQS,
url="http://genome.ucsc.edu/cgi-bin/",
goldenPath url="http://hgdownload.cse.ucsc.edu/goldenPath",
miRBaseBuild = NULL)

makeFDbPackageFromUCSC(
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
genome="hg19",
track="tRNAs",
tablename="tRNAs",

makeTxDbPackage 23

columns = UCSCFeatureDbTableSchema(genome, track, tablename),
url="http: //genome.ucsc.edu/cgi-bin/",

goldenPath url="http://hgdownload.cse.ucsc.edu/goldenPath",
chromCol=NULL,

chromStartCol=NULL,

chromEndCol=NULL)

makeTxDbPackageFromBiomart (
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0",
biomart="ensembl",
dataset="hsapiens gene ensembl",
transcript ids=NULL,
circ_seqs=DEFAULT CIRC_SEQS,
miRBaseBuild = NULL)

makeTxDbPackage(txdb,
version,
maintainer,
author,
destDir=".",
license="Artistic-2.0")

supportedMiRBaseBuild Values()

Arguments

version What is the version number for this package?

maintainer Who is the package maintainer? (must include email to be valid)

author Who is the creator of this package?

destDir A path where the package source should be assembled.

license What is the license (and it’s version)

biomart which BioMart database to use. Get the list of all available BioMart databases
with the listMarts function from the biomaRt package. See the details section
below for a list of BioMart databases with compatible transcript annotations.

dataset which dataset from BioMart. For example: "hsapiens gene ensembl", "mmusculus_gene ense:
"dmelanogaster gene ensembl", "celegans gene ensembl", "scerevisiae _gene ensembl",
etc in the ensembl database. See the examples section below for how to discover
which datasets are available in a given BioMart database.

genome genome abbreviation used by UCSC and obtained by ucscGenomes()|[, "db"].
For example: "hg18".

track name of the UCSC track. Use supportedUCSCFeatureDbTracks to get the
list of available tracks for a particular genome

tablename name of the UCSC table containing the transcript annotations to retrieve. Use

the supportedUCSCtables utility function to get the list of supported tables.
Note that not all tables are available for all genomes.

24 makeTxDbPackage

transcript _ids optionally, only retrieve transcript annotation data for the specified set of tran-
script ids. If this is used, then the meta information displayed for the result-
ing TranscriptDb object will say ’Full dataset: no’. Otherwise it will say "Full
dataset: yes’.

circ_seqs a character vector to list out which chromosomes should be marked as circular.

columns a named character vector to list out the names and types of the other columns
that the downloaded track should have. Use UCSCFeatureDbTableSchema to
retrieve this information for a particular table.

url,goldenPath url
use to specify the location of an alternate UCSC Genome Browser.

chromCol If the schema comes back and the chrom’ column has been labeled something
other than ’chrom’, use this argument to indicate what that column has been
labeled as so we can properly designate it. This could happen (for example)
with the knownGene track tables, which has no ’chromStart’ or ’chromEnd’
columns, but which DOES have columns that could reasonably substitute for
these columns under particular circumstances. Therefore we allow these three
columns to have arguments so that their definition can be re-specified

chromStartCol ~ Same thing as chromCol, but for renames of ’chromStart’
chromEndCol Same thing as chromCol, but for renames of ’chromEnd’

txdb A TranscriptDb object that represents a handle to a transcript database. This ob-
ject type is what is returned by makeTranscriptDbFromUCSC, makeTranscriptDbFromUCSC
or makeTranscriptDb

miRBaseBuild specify the string for the appropriate build Information from mirbase.db to use
for microRNAs. This can be learned by calling supportedMiR BaseBuild Values.
By default, this value will be NULL, which will inactivate the microRNAs ac-
CEsSOr.

Details

makeTxDbPackageFromUCSC is a convenience function that calls both the makeTranscriptDbFromUCSC
and the makeTxDbPackage functions. The makeTxDbPackageFromBiomart follows a sim-

ilar pattern and calls the makeTranscriptDbFromBiomart and makeTxDbPackage functions.
supportedMiRBaseBuildValues is a convenience function that will list all the possible values

for the miRBaseBuild argument.

Value

A TranscriptDb object.

Author(s)

M. Carlson

See Also

ucscGenomes, DEFAULT CIRC _SEQS, makeTranscriptDbFromUCSC, makeTranscriptDbFromBiomart,
makeTranscript Db supportedUCSCtables get ChromInfoFromUCSC get ChromInfoFromBiomart

regions 25

Examples

#7+ First consider relevant helper/discovery functions:
Display the list of tables supported by makeTxDbPackageFromUCSC():
supportedUCSCtables()

Can also list all the possible values for the miRBaseBuild argument:
supportedMiRBaseBuild Values()

Next are examples of actually building a package:

#+# Not run:

Makes a transcript package for Yeast from the ensGene table at UCSC:

makeTxDbPackageFromUCSC(version="0.01",
maintainer="Some One <so@someplace.org>",
author="Some One <so@someplace.com>",
genome="sacCer2",

tablename="ensGene")

Makes a transcript package from Human by using biomaRt and limited to a
small subset of the transcripts.
transcript_ids <- ¢(

"ENST00000400839",

"ENST00000400840",

"ENSTO00000478783",

"ENST00000435657",

"ENST00000268655",

"ENSTO00000313243",

"ENST00000341724")

makeTxDbPackageFromBiomart(version="0.01",
maintainer="Some One <so@someplace.org>",
author="Some One <so@someplace.com>",
transcript _ids=transcript _ids)

#+# End(Not run)

regions Functions that compute genomic regions of interest.

Description

Functions that compute genomic regions of interest such as promotor, upstream regions etc, from
the genomic locations provided in a UCSC-style data frame.

WARNING: All the functions described in this man page are now defunct!

Please use transcripts, exons or intronsByTranscript on a TranscriptDb object instead.

Usage

transcripts _deprecated(genes, proximal = 500, distal = 10000)
exons__deprecated(genes)
introns _deprecated(genes)

26 saveFeatures

Arguments
genes A UCSC-style data frame i.e. a data frame with 1 row per transcript and at least
the following columns: "name", "chrom", "strand", "txStart", "txEnd",
"exonCount", "exonStarts", "exonEnds", "intronStarts" and "intronEnds".
A value in any of the last 4 columns must be a comma-separated list of integers.
Note that unlike what UCSC does the start values here must be 1-based, not
0-based.
proximal The number of bases on either side of TSS and 3’-end for the promoter and end
region, respectively.
distal The number of bases on either side for upstream/downstream, i.e. enhancer/silencer
regions.
Details

The assumption made for introns is that there must be more than one exon, and that the introns are
between the end of one exon and before the start of the next exon.

Value

All of these functions return a RangedData object with a gene column with the UCSC ID of the
gene. For transcripts _deprecated, each element corresponds to a transcript, and there are columns
for each type of region (promoter, threeprime, upstream, and downstream). For exons _deprecated,
each element corresponds to an exon. For introns deprecated, each element corresponds to an
intron.

Author(s)

M. Lawrence.

See Also

transcripts, exons, intronsByTranscript, TranscriptDb-class

saveFeatures Methods to save and load the database contents for a TranscriptDb or
FeatureDb object.

Description

These methods provide a way to dump a TranscriptDb or FeatureDb object to an SQLite file, and to
recreate that object from the saved file.

However, these methods are now deprecated and have been replaced by saveDb and loadDb.

Users are encouraged to switch to those other methods as the methods documented here will soon
be defunct.

Usage

saveFeatures(x, file)
loadFeatures(file)

select-methods 27

Arguments
X A TranscriptDb or FeatureDb object.
file An SQLite Database filename.
Value

For loadFeatures only, a TranscriptDb or FeatureDb object is returned.

Author(s)
M. Carlson

See Also
saveDb, TranscriptDb, FeatureDb

Examples

#+# Not run:
txdb <-
loadFeatures(system.file("extdata", "UCSC_knownGene sample.sqlite",
package = "GenomicFeatures"))
txdb

End(Not run)

select-methods Using the "select" interface on TranscriptDb objects

Description

select, cols and keys can be used together to extract data from a TranscriptDb object.

Details

In the code snippets below, x is a TranscriptDb object.

keytypes(x): allows the user to discover which keytypes can be passed in to select or keys and
the keytype argument.

keys(x, keytype): Return keys for the database contained in the TranscriptDb object . By default
it will return the "TXNAME" keys for the database, but if used with the keytype argument, it
will return the keys from that keytype.

cols(x): Show which kinds of data can be returned for the TranscriptDb object.
select(x, keys, cols, keytype): When all the appropriate arguments are specified select will
retrieve the matching data as a data.frame based on parameters for selected keys and cols and
keytype arguments.
Author(s)

Marc Carlson

28 TranscriptDb-class

See Also

* transcripts, transcriptsBy, and transcriptsByOverlaps, for other ways to extract genomic
features from a TranscriptDb object.

* The TranscriptDb class.

Examples

txdb_file <- system.file("extdata", "Biomart Ensembl sample.sqlite",
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

txdb

#+# find key types
keytypes(txdb)

#2 list IDs that can be used to filter
head(keys(txdb, "GENEID"))

head (keys(txdb, "TXID"))
head(keys(txdb, "TXNAME"))

4### list columns that can be returned by select
cols(txdb)

#4+ call select

res <- select(txdb, head(keys(txdb, "GENEID")),
cols=c("GENEID","TXNAME"),
keytype="GENEID")

head(res)

TranscriptDb-class TranscriptDb objects

Description

The TranscriptDb class is a container for storing transcript annotations.

See ?FeatureDb for a more generic container for storing genomic locations of an arbitrary type of
genomic features.

See 7makeTranscriptDbFromUCSC and 7makeTranscriptDbFromBiomart for convenient ways
to make TranscriptDb objects from UCSC or BioMart online resources.

See “makeTranscriptDbFromGFF for making a TranscriptDb object from annotations available
as a GFF3 or GTF file.

Methods

In the code snippets below, x is a TranscriptDb object.

metadata(x): Return x’s metadata in a data frame.

seqinfo(x), seqinfo(x) <- value: Get or set the information about the underlying sequences. Note
that, for now, the setter only supports replacement of the sequence names, i.e., except for their
sequence names (accessed with seqnames(value) and seqnames(seqginfo(x)), respectively),
Seqinfo objects value (supplied) and seqinfo(x) (current) must be identical.

TranscriptDb-class 29

isActiveSeq(x): Return the currently active sequences for this txdb object as a named logical
vector. Only active sequences will be tapped when using the supplied accessor methods.
Inactive sequences will be ignored. By default, all available sequences will be active.

isActiveSeq(x) <- value: Allows the user to change which sequences will be actively accessed
by the accessor methods by altering the contents of this named logical vector.

seqnameStyle(x): List the matching seqname styles for x. seqnameStyle(x) is equivalent to
seqnameStyle(seqinfo(x)). Note that this information is not stored in x but inferred by look-
ing up seqlevels(x) against a seqname style database stored in the seqnames.db metadata
package (required).

determineDefaultSeqnameStyle(x): Determine the default seqname style for the database in x.

as.list(x): Dumps the entire db into a list of data frames txdump that can be used in do.call(makeTranscriptDb, txdur
to make the db again with no loss of information. Note that the transcripts are dumped in the
same order in all the data frames.

Author(s)

H. Pages, Marc Carlson

See Also

* The FeatureDb class for storing genomic locations of an arbitrary type of genomic features.

* makeTranscriptDbFromUCSC and makeTranscriptDbFromBiomart for convenient ways
to make TranscriptDb objects from UCSC or BioMart online resources.

* makeTranscriptDbFromGFF for making a TranscriptDb object from annotations available
as a GFF3 or GTF file.

 saveDb and loadDb for saving and loading the database content of a TranscriptDb object.

* transcripts, transcriptsBy, and transcriptsByOverlaps, for how to extract genomic features
from a TranscriptDb object.

* select-methods for how to use the simple "select" interface to extract information from a Tran-
scriptDb object.

* The Seqinfo class in the GenomicRanges package.

Examples

txdb_file <- system.file("extdata", "Biomart Ensembl sample.sqlite",
package="GenomicFeatures")

txdb <- loadDb(txdb_file)

txdb

#+# Use of seqinfo

seqinfo(txdb)

seqlevels(txdb) # shortcut for ’seqlevels(seqinfo(txdb))’
seqlengths(txdb) # shortcut for ’seqlengths(seqinfo(txdb))’
isCircular(txdb) # shortcut for ’isCircular(seqinfo(txdb))’
names(which(isCircular(txdb)))

Examples on how to change which sequences are active
#4+ Set chrl and chr3 to be inactive:

isActiveSeq(txdb) <- c¢("1"=FALSE, "3"=FALSE)

#+4 Set ALL of the chromsomed to be inactive
isActiveSeq(txdb)[seqlevels(txdb)] <- FALSE

30 transcripts

#+# Now set only chrl and chrb to be active
isActiveSeq(txdb) <- ¢("1"=TRUE, "5"=TRUE)

#+4 Use of as.list

txdump <- as.list(txdb)

txdump

txdbl <- do.call(makeTranscriptDb, txdump)
stopifnot(identical(as.list(txdbl), txdump))

transcripts Extract genomic features from an object

Description

Generic functions to extract genomic features from an object. This page documents the methods for
TranscriptDb objects only.

Usage

transcripts(x, ...)
S4 method for signature "TranscriptDb’
transcripts(x, vals=NULL, columns=c("tx_id", "tx name"))

exons(X, ...)
S4 method for signature "TranscriptDb’
exons(x, vals=NULL, columns="exon_id")

cds(x, ...)
S4 method for signature "TranscriptDb’
cds(x, vals=NULL, columns="cds_id")

promoters(x, upstream=2000, downstream=200, ...)
S4 method for signature "TranscriptDb’
promoters(x, upstream=2000, downstream=200, ...)

microRNAs(x)

S4 method for signature "TranscriptDb’

microRNAs(x)

tRNAs(x)

S4 method for signature "TranscriptDb’

tRNAs(x)

Arguments

X A TranscriptDb object.
For promoters(), x can be a TranscriptDb or a GRanges object.
Arguments to be passed to or from methods.

vals Either NULL or a named list of vectors to be used to restrict the output. Valid

names for this listare: "gene id", "tx_id", "tx_name", "tx_chrom", "tx_strand",
"exon id","exon name", "exon chrom","exon strand","cds id","cds name",

"cds _chrom", "cds_strand" and "exon rank".

transcripts 31

columns Columns to include in the output. Must be NULL or a character vector with
values in the above list of valid names. With the following restrictions:

* "tx_chrom" and "tx_strand" are not allowed for transcripts.
* "exon chrom" and "exon strand" are not allowed for exons.

* "cds chrom" and "cds__strand" are not allowed for cds.

If the vector is named, those names are used for the corresponding column in
the element metadata of the returned object.

upstream For promoters() : An integer(1) value indicating the number of bases upstream
from the transcription start site. The upstream range extends from this value up
to, but not including, the transcription start site. The upstream range is merged
with the downstream range to form the full promoter region.

downstream For promoters() : An integer(1) value indicating the number of bases down-
stream from the transcription start site. The downstream range extends from this
value up to, and including, the transcription start site. The downstream range is
merged with the upstream range to form the full promoter region.

Details

These are the main functions for extracting transcript information from a TranscriptDb object.
With the exception of microRNAs, these methods can restrict the output based on categorical in-
formation. To restrict the output based on interval information, use the transcriptsByOverlaps,
exonsByOverlaps, and cdsByOverlaps functions.

The promoters() function computes user-defined promoter regions for the transcripts in a TranscriptDb
or GRanges object. When a TranscriptDb is supplied the transcripts extractor is called; when a
GRanges is supplied it is expected that these are transcript ranges. The return object is a GRanges

of promoter regions around the transcription start site the span of which is defined by upstream
and downstream. Ranges on the * strand are treated the same as those on the + strand. When

no seqlengths are present in the TranscriptDb or GRanges (i.e., seqlength is NA) it is possible to
have non-positive start values in the promoter ranges. This occurs when (TSS - upstream) < 1. In

the equal but opposite case, the end values of the ranges may extend beyond the chromosome end
when (TSS + downstream + 1) > ’chromosome end’. When seqlengths are not NA the promoter
ranges are kept within the bounds of the defined seqlengths.

Value

a GRanges object

Author(s)

M. Carlson, P. Aboyoun and H. Pages

See Also

* transcriptsBy and transcriptsByOverlaps for more ways to extract genomic features from
a TranscriptDb object.

* select-methods for how to use the simple "select" interface to extract information from a Tran-
scriptDDb object.

* id2name for mapping TranscriptDb internal ids to external names for a given feature type.

* The TranscriptDb class.

32 transcriptsBy

Examples

transcripts() and exons() :
txdb <- loadDb(system.file("extdata", "UCSC_knownGene sample.sqlite",
package="GenomicFeatures"))
vals <- list(tx_chrom = c("chr3", "chr5"), tx_strand = "+")
transcripts(txdb, vals)
exons(txdb, vals=list(exon id=1), columns=c("exon id", "tx _name"))
exons(txdb, vals=list(tx _name="uc009vip.1"), columns=c("exon id",
"tx name"))

microRNAs() :

#4#+ Not run: library(TxDb.Hsapiens.UCSC.hgl19.knownGene)
library (mirbase.db)
microRNAs(TxDb.Hsapiens.UCSC.hgl19.knownGene)

End(Not run)

#4#+ promoters() :
head(promoters(txdb, 100, 50))

The promoter regions are defined around the transcription start
sites. On the "+" strand this region surrounds the ’start’

#+# value in a GRanges. On the -" strand this region surrounds

#+ the ’end’ value. Note the "*" ranges are treated as "-+".

gr <- GRanges("chrl", IRanges(rep(10, 3), width=6), c("+", "-", "*"))
gr

promoters(gr, 2, 2)

transcriptsBy Extract and group genomic features of a given type

Description

Generic functions to extract genomic features of a given type grouped based on another type of
genomic feature. This page documents the methods for TranscriptDb objects only.

Usage

transcriptsBy(x, by=c("gene", "exon", "cds"), ...)
S4 method for signature "TranscriptDb’
transcriptsBy(x, by=c("gene", "exon", "cds"), use.names=FALSE)

exonsBy(x, by=c("tx", "gene"), ...)
#4 S4 method for signature "TranscriptDb’
exonsBy(x, by=c("tx", "gene"), use.names=FALSE)

cdsBy(x, by=c("tx", "gene"), ...)
S4 method for signature "TranscriptDb’
cdsBy(x, by=c("tx", "gene"), use.names=FALSE)

intronsByTranscript(x, ...)
S4 method for signature "TranscriptDb’
intronsByTranscript(x, use.names=FALSE)

transcriptsBy

33

fiveUTRsByTranscript(x, ...)
#+# 5S4 method for signature "TranscriptDb’
fiveUTRsByTranscript(x, use.names=FALSE)

threeUTRsByTranscript(x, ...)
S4 method for signature "TranscriptDb’
threeUTRsByTranscript(x, use.names=FALSE)

Arguments

X

by

use.names

Details

A TranscriptDDb object.

Arguments to be passed to or from methods.

One of "gene", "exon", "cds" or "tx". Determines the grouping.

Controls how to set the names of the returned GRangesList object. These func-
tions return all the features of a given type (e.g. all the exons) grouped by another
feature type (e.g. grouped by transcript) in a GRangesList object. By default (i.e.
if use.names is FALSE), the names of this GRangesList object (aka the group
names) are the internal ids of the features used for grouping (aka the grouping
features), which are guaranteed to be unique. If use.names is TRUE, then the
names of the grouping features are used instead of their internal ids. For exam-
ple, when grouping by transcript (by="tx"), the default group names are the
transcript internal ids ("tx_id"). But, if use.names=TRUE, the group names
are the transcript names ("tx_name"). Note that, unlike the feature ids, the
feature names are not guaranteed to be unique or even defined (they could be all
NAs). A warning is issued when this happens. See 7id2name for more infor-
mation about feature internal ids and feature external names and how to map the
formers to the latters.

Finally, use.names=TRUE cannot be used when grouping by gene by="gene".
This is because, unlike for the other features, the gene ids are external ids (e.g.
Entrez Gene or Ensembl ids) so the db doesn’t have a "gene name" column
for storing alternate gene names.

These functions return a GRangesList object where the ranges within each of the elements are
ordered according to the following rule:

When using exonsBy and cdsBy with by = "tx", the ranges are returned in the order they appear
in the transcript, i.e. order by the splicing.exon_rank field in x’s internal database. In all other cases,
the ranges will be ordered by chromosome, strand, start, and end values.

Value

A GRangesList object.

Author(s)

M. Carlson, P. Aboyoun and H. Pages

34 transcriptsByOverlaps

See Also

* transcripts and transcriptsByOverlaps for more ways to extract genomic features from a
TranscriptDb object.

* select-methods for how to use the simple "select" interface to extract information from a Tran-
scriptDb object.

* id2name for mapping TranscriptDb internal ids to external names for a given feature type.

e The TranscriptDb class.

Examples

txdb_file <- system.file("extdata", "UCSC_knownGene sample.sqlite",
package="GenomicFeatures")
txdb <- loadDb(txdb_file)

#+# Get the transcripts grouped by gene:
transcriptsBy (txdb, "gene")

#+# Get the exons grouped by gene:
exonsBy(txdb, "gene")

#+# Get the cds grouped by transcript:

cds by tx0 <- cdsBy(txdb, "tx")

With more informative group names:

cds_by_ txl <- cdsBy(txdb, "tx", use.names=TRUE)

Note that ’cds_by tx1’ can also be obtained with:

names(cds_ by tx0) <- id2name(txdb, feature.type="tx")[names(cds by tx0)]
stopifnot(identical(cds by _tx0, cds_by tx1))

Get the introns grouped by transcript:
intronsByTranscript(txdb)

Get the 5° UTRs grouped by transcript:
fiveUTRsByTranscript (txdb)
fiveUTRsByTranscript(txdb, use.names=TRUE) # more informative group names

transcriptsByOverlaps Extract genomic features from an object based on their by genomic
location

Description

Generic functions to extract genomic features for specified genomic locations. This page documents
the methods for TranscriptDb objects only.

Usage

transcriptsByOverlaps(x, ranges,

maxgap = OL, minoverlap = 1L,

type = c¢("any", "start", "end"), ...)
S4 method for signature "TranscriptDb’
transcriptsByOverlaps(x, ranges,

maxgap = OL, minoverlap = 1L,

transcriptsByOverlaps 35

type = c¢("any", "start", "end"),
columns = c¢("tx_id", "tx_name"))

exonsByOverlaps(x, ranges,
maxgap = OL, minoverlap = 1L,
type = c¢("any", "start", "end"), ...)
S4 method for signature "TranscriptDb’
exonsByOverlaps(x, ranges,
maxgap = OL, minoverlap = 1L,
type = c¢("any", "start", "end"),
columns = "exon id")

cdsByOverlaps(x, ranges,
maxgap = 0L, minoverlap = 1L,
type = ¢("any", "start", "end"), ...)
S4 method for signature "TranscriptDb’
cdsByOverlaps(x, ranges,
maxgap = 0L, minoverlap = 1L,
type = ¢("any", "start", "end"),

columns = "cds_id")
Arguments
X A TranscriptDb object.
Arguments to be passed to or from methods.
ranges A GRanges object to restrict the output.
type How to perform the interval overlap operations of the ranges. See the findOverlaps
manual page in the GRanges package for more information.
maxgap A non-negative integer representing the maximum distance between a query
interval and a subject interval.
minoverlap Ignored.
columns Columns to include in the output. See ?transcripts for the possible values.
Details

These functions subset the results of transcripts, exons, and cds function calls with using the
results of findOverlaps calls based on the specified ranges.
Value

a GRanges object

Author(s)

P. Aboyoun

See Also
* transcripts and transcriptsBy for more ways to extract genomic features from a TranscriptDb
object.

* select-methods for how to use the simple "select” interface to extract information from a Tran-
scriptDDb object.

36 transcriptsByOverlaps

* id2name for mapping TranscriptDb internal ids to external names for a given feature type.

* The TranscriptDb class.

Examples

txdb <- loadDb(system.file("extdata", "UCSC_knownGene sample.sqlite",
package="GenomicFeatures"))
gr <- GRanges(seqnames = rep("chrl",2),
ranges = IRanges(start=c(500,10500), end=c(10000,30000)),
strand = strand(rep("-",2)))
transcriptsByOverlaps(txdb, gr)

Index

*Topic classes
FeatureDb-class, 7
TranscriptDb-class, 28

xTopic datasets
DEFAULT CIRC_SEQS,3

+Topic manip
extractTranscriptsFromGenome, 4
getPromoterSeq, 9

*Topic methods
FeatureDb-class, 7
getPromoterSeq, 9
select-methods, 27
TranscriptDb-class, 28
transcripts, 30
transcriptsBy, 32
transcriptsByOverlaps, 34

as-format-methods, 2

as.list, Transcript Db-method
(TranscriptDb-class), 28

asBED, Transcript Db-method
(as-format-methods), 2

asGFF,TranscriptDb-method
(as-format-methods), 2

available.genomes, 4, 5

BSgenome, 4, 9

cds, 35

cds (transcripts), 30

cds, TranscriptDb-method (transcripts), 30

cdsBy (transcriptsBy), 32

cdsBy, TranscriptDb-method
(transcriptsBy), 32

cdsByOverlaps, 31

cdsByOverlaps (transcriptsByOverlaps), 34

cdsByOverlaps, TranscriptDb-method
(transcriptsByOverlaps), 34

class:FeatureDb (FeatureDb-class), 7

class:TranscriptDb (TranscriptDb-class), 28

cols, TranscriptDb-method
(select-methods), 27

DEFAULT CIRC_SEQS, 3,17,19,21,24

37

determineDefaultSeqnameStyle
(TranscriptDb-class), 28

determineDefaultSeqnameStyle, TranscriptDb-method

(TranscriptDb-class), 28
DNAString, 5
DNAStringSet, 5, 9
DNAStringSet-class, 5
DNAStringSetList, 9

exons, 25, 26, 35

exons (transcripts), 30

exons,data.frame-method (transcripts), 30

exons, Transcript Db-method (transcripts),
30

exons__deprecated (regions), 25

exonsBy, 5

exonsBy (transcriptsBy), 32

exonsBy, TranscriptDb-method
(transcriptsBy), 32

exonsByOverlaps, 31

exonsByOverlaps (transcriptsByOverlaps),
34

exonsByOverlaps, TranscriptDb-method
(transcriptsByOverlaps), 34

export, 2

extract Transcripts
(extract TranscriptsFromGenome),
4

extract TranscriptsFromGenome, 4

FaFile, 9

FeatureDb, 8, 11, 12, 26-29

FeatureDb (FeatureDb-class), 7

FeatureDb-class, 7

features, 8, 8

features,FeatureDb-method (features), 8

findOverlaps, 35

fiveUTRsByTranscript (transcriptsBy), 32

fiveUTRsByTranscript, Transcript Db-method
(transcriptsBy), 32

getChromInfoFromBiomart, 24

getChromInfoFromBiomart
(makeTranscriptDbFromBiomart),
16

38

getChromInfoFromUCSC, 24

getChromInfoFromUCSC
(makeTranscript DbFromUCSC),
20

getPromoterSeq, 9

getPromoterSeq,GRanges-method
(getPromoterSeq), 9

getPromoterSeq,GRangesList-method
(getPromoterSeq), 9

getSeq, 9

GRanges, 2, 9, 35

GRangesList, 4, 5, 9, 33

GRangesList-class, 5

id2name, 10, 31, 33, 34, 36
IntegerList, 5
introns__deprecated (regions), 25
intronsByTranscript, 25, 26
intronsByTranscript (transcriptsBy), 32
intronsByTranscript, Transcript Db-method
(transcriptsBy), 32
isActiveSeq (TranscriptDb-class), 28
isActiveSeq, Transcript Db-method
(TranscriptDb-class), 28
isActiveSeq<- (TranscriptDb-class), 28
isActiveSeq<-,TranscriptDb-method
(TranscriptDb-class), 28

keys, Transcript Db-method
(select-methods), 27

keytypes, TranscriptDb-method
(select-methods), 27

listDatasets, 17

listMarts, 16, 17,23

loadDb, 8, 26, 29

loadFeatures (saveFeatures), 26

makeFDbPackageFromUCSC
(makeTxDbPackage), 22
makeFeatureDbFromUCSC, 7, 8, 11
makeTranscriptDb, 13, 17, 19, 21, 24
makeTranscriptDbFromBiomart, 3, 13, 15,
16, 19, 21, 24, 28, 29
makeTranscriptDbFromGFF, 15, 17, 18, 21,
28, 29
makeTranscriptDbFromUCSC, 3, 13, 15, 17,
19, 20, 24, 28, 29
makeTxDbPackage, 22, 24
makeTxDbPackageFromBiomart
(makeTxDbPackage), 22
makeTxDbPackageFromUCSC
(makeTxDbPackage), 22

INDEX

MaskedDNAString, 5

microRNAs (transcripts), 30

microRNAs, TranscriptDb-method
(transcripts), 30

promoters, 9

promoters (transcripts), 30

promoters,GenomicRanges-method
(transcripts), 30

promoters, Transcript Db-method
(transcripts), 30

RangedData, 26
regions, 25

saveDb, 8, 26, 27, 29

saveFeatures, 26

saveFeatures,FeatureDb-method
(saveFeatures), 26

saveFeatures, Transcript Db-method
(saveFeatures), 26

select, TranscriptDb-method
(select-methods), 27

select-methods, 27, 29, 31, 34, 35

Seqinfo, 28, 29

seqinfo, TranscriptDb-method
(TranscriptDb-class), 28

seqinfo<-, TranscriptDb-method
(TranscriptDb-class), 28

sortExonsByRank
(extract TranscriptsFromGenome),
4

supportedMiRBaseBuildValues, 17, 19, 21

supportedMiR BaseBuild Values
(makeTxDbPackage), 22

supportedUCSCFeatureDbTables
(makeFeatureDbFromUCSC), 11

supportedUCSCFeatureDbTracks
(makeFeatureDbFromUCSC), 11

supportedUCSCtables, 24

supportedUCSCtables
(makeTranscriptDbFromUCSC),
20

threeUTRsByTranscript (transcriptsBy), 32

threeUTRsByTranscript, Transcript Db-method

(transcriptsBy), 32
TranscriptDb, 2,4, 5,7, 8, 10, 11, 13, 15-22,
24-28, 30-36
TranscriptDb (TranscriptDb-class), 28
TranscriptDb-class, 5, 26, 28
transcriptLocs2refLocs
(extract TranscriptsFromGenome),
4

INDEX

transcripts, 11, 25, 26, 28, 29, 30, 34, 35

transcripts,data.frame-method
(transcripts), 30

transcripts, TranscriptDb-method
(transcripts), 30

transcripts _deprecated (regions), 25

transcriptsBy, 11, 28, 29, 31, 32, 35

transcriptsBy, TranscriptDb-method
(transcriptsBy), 32

transcriptsByOverlaps, 11, 28, 29, 31, 34, 34

transcriptsByOverlaps, TranscriptDb-method
(transcriptsByOverlaps), 34

transcript Widths
(extractTranscriptsFromGenome),
4

translate, 5

tRNAs (transcripts), 30

tRNAs, Transcript Db-method (transcripts),
30

UCSCFeatureDbTableSchema,
(makeFeatureDbFromUCSC), 11

ucscGenomes, 12, 21, 23, 24

useMart, 17

39

	as-format-methods
	DEFAULT_CIRC_SEQS
	extractTranscriptsFromGenome
	FeatureDb-class
	features
	getPromoterSeq
	id2name
	makeFeatureDbFromUCSC
	makeTranscriptDb
	makeTranscriptDbFromBiomart
	makeTranscriptDbFromGFF
	makeTranscriptDbFromUCSC
	makeTxDbPackage
	regions
	saveFeatures
	select-methods
	TranscriptDb-class
	transcripts
	transcriptsBy
	transcriptsByOverlaps
	Index

