
The rtracklayer package

Michael Lawrence

July 16, 2012

1 Introduction

The rtracklayer package is an interface (or layer) between R and genome
browsers. Its main purpose is the visualization of genomic annotation tracks,
whether generated through experimental data analysis performed in R or loaded
from an external data source. The features of rtracklayer may be divided
into two categories: 1) the import/export of track data and 2) the control and
querying of external genome browser sessions and views.

There are two basic track data structures in Bioconductor: GRanges, defined
by the GenomicRanges package, and RangedData, a more general data structure
from the IRanges package. For most purposes, GRanges is preferred in the
context of rtracklayer ; however, RangedData has some particular use cases.

rtracklayer supports the import and export of tracks from and to files in
various formats, see Section 2.1.4. All positions in a RangedData or GRanges
should be 1-based, as in R itself.

The rtracklayer package currently interfaces with the UCSC web-based
genome browser. Other packages may provide drivers for other genome browsers
through a plugin system. With rtracklayer, the user may start a genome
browser session, create and manipulate genomic views, and import/export tracks
and sequences to and from a browser. Please note that not all features are
necessarily supported by every browser interface.

The rest of this vignette will consist of a number of case studies. First, we
consider an experiment investigating microRNA regulation of gene expression,
where the microRNA target sites are the primary genomic features of interest.

2 Gene expression and microRNA target sites

This section will demonstrate the features of rtracklayer on a microarray
dataset from a larger experiment investigating the regulation of human stem
cell differentiation by microRNAs. The transcriptome of the cells was measured
before and after differentiation by HG-U133plus2 Affymetrix GeneChip arrays.
We begin our demonstration by constructing an annotation dataset from the
experimental data, and then illustrate the use of the genome browser interface
to display interesting genomic regions in the UCSC browser.

1

2.1 Creating a target site track

For the analysis of the stem cell microarray data, we are interested in the ge-
nomic regions corresponding to differentially expressed genes that are known to
be targeted by a microRNA. We will represent this information as an annotation
track, so that we may view it in the UCSC genome browser.

2.1.1 Constructing the GRanges

In preparation for creating the microRNA target track, we first used limma to
detect the differentially expressed genes in the microarray experiment. The
locations of the microRNA target sites were obtained from MiRBase. The
code below stores information about the target sites on differentially expressed
genes in the data.frame called targets, which can also be obtained by entering
data(targets) when rtracklayer is loaded.

> library("humanStemCell")

> data(fhesc)

> library("genefilter")

> filtFhesc <- nsFilter(fhesc)[[1]]

> library("limma")

> design <- model.matrix(~filtFhesc$Diff)

> hesclim <- lmFit(filtFhesc, design)

> hesceb <- eBayes(hesclim)

> tab <- topTable(hesceb, coef = 2, adjust.method = "BH", n = 7676)

> tab2 <- tab[(tab$logFC > 1) & (tab$adj.P.Val < 0.01),]

> affyIDs <- tab2$ID

> library("microRNA")

> data(hsTargets)

> library("hgu133plus2.db")

> entrezIDs <- mappedRkeys(hgu133plus2ENTREZID[affyIDs])

> library("org.Hs.eg.db")

> mappedEntrezIDs <- entrezIDs[entrezIDs %in% mappedkeys(org.Hs.egENSEMBLTRANS)]

> ensemblIDs <- mappedRkeys(org.Hs.egENSEMBLTRANS[mappedEntrezIDs])

> targetMatches <- match(ensemblIDs, hsTargets$target, 0)

> ## same as data(targets)

> targets <- hsTargets[targetMatches,]

> targets$chrom <- paste("chr", targets$chrom, sep = "")

The following code creates the track from the targets dataset:

> library(rtracklayer)

> library(GenomicRanges)

> ## call data(targets) if skipping first block

> head(targets)

name target chrom start end

32350 hsa-miR-139-3p ENST00000372874 chr20 42681711 42681732

2

534942 hsa-miR-135a ENST00000336199 chr1 241718191 241718211

534975 hsa-miR-148a ENST00000366540 chr1 241728912 241728933

534987 hsa-miR-505 ENST00000366539 chr1 241733864 241733885

534991 hsa-miR-505 ENST00000263826 chr1 241733864 241733885

699911 hsa-miR-196b ENST00000321955 chr11 89565074 89565096

strand

32350 -

534942 -

534975 -

534987 -

534991 -

699911 +

> targetRanges <- IRanges(targets$start, targets$end)

> targetTrack <- with(targets,

+ GRangesForUCSCGenome("hg18", chrom, targetRanges, strand,

+ name, target))

The GRangesForUCSCGenome function constructs a GRanges object for the named
genome. The stand information, the name of the microRNA and the Ensembl
ID of the targeted transcript are stored in the GRanges. The chromosome for
each site is passed as the chrom argument. The chromosome names and lengths
for the genome are taken from the UCSC database and stored in the GRanges
along with the genome identifier. We can retrieve them as follows:

> genome(targetTrack)

chr1 chr1_random chr2 chr2_random chr3

"hg18" "hg18" "hg18" "hg18" "hg18"

chr3_random chr4 chr4_random chr5 chr5_h2_hap1

"hg18" "hg18" "hg18" "hg18" "hg18"

chr5_random chr6 chr6_cox_hap1 chr6_qbl_hap2 chr6_random

"hg18" "hg18" "hg18" "hg18" "hg18"

chr7 chr7_random chr8 chr8_random chr9

"hg18" "hg18" "hg18" "hg18" "hg18"

chr9_random chr10 chr10_random chr11 chr11_random

"hg18" "hg18" "hg18" "hg18" "hg18"

chr12 chr13 chr13_random chr14 chr15

"hg18" "hg18" "hg18" "hg18" "hg18"

chr15_random chr16 chr16_random chr17 chr17_random

"hg18" "hg18" "hg18" "hg18" "hg18"

chr18 chr18_random chr19 chr19_random chr20

"hg18" "hg18" "hg18" "hg18" "hg18"

chr21 chr21_random chr22 chr22_h2_hap1 chr22_random

"hg18" "hg18" "hg18" "hg18" "hg18"

chrX chrX_random chrY chrM

"hg18" "hg18" "hg18" "hg18"

3

> head(seqlengths(targetTrack))

chr1 chr1_random chr2 chr2_random chr3

247249719 1663265 242951149 185571 199501827

chr3_random

749256

While this extra information is not strictly needed to upload data to UCSC,
calling GRangesForUCSCGenome is an easy way to formally associate interval data
to a UCSC genome build. This ensures, for example, that the data will always be
uploaded to the correct genome, regardless of browser state. It also immediately
validates whether the intervals fall within the bounds of the genome.

For cases where one is not interacting with the UCSC genome browser, and
in particular when network access is unavailable, the GRangesForBSGenome func-
tion behaves the same, except it finds an installed BSGenome package and loads
it to retrieve the chromosome information.

2.1.2 Accessing track information

The track information is now stored in the R session as a GRanges object. It
holds the chromosme, start, end and strand for each feature, along with any
number of data columns.

The primary feature attributes are the start, end, seqnames and strand.
There are accessors for each of these, named accordingly. For example, the
following code retrieves the chromosome names and then start positions for
each feature in the track.

> head(seqnames(targetTrack))

'factor' Rle of length 6 with 3 runs

Lengths: 1 4 1

Values : chr20 chr1 chr11

Levels(49): chr1 chr1_random chr2 ... chrX_random chrY chrM

> head(start(targetTrack))

[1] 42681711 241718191 241728912 241733864 241733864 89565074

Exercises

1. Get the strand of each feature in the track

2. Calculate the length of each feature

3. Reconstruct (partially) the targets data.frame

4

2.1.3 Subsetting a GRanges

It is often helpful to extract subsets from GRanges instances, especially when
uploading to a genome browser. The data can be subset though a matrix-style
syntax by feature and column. The conventional [method is employed for
subsetting, where the first parameter, i, indexes the features and j indexes the
data columns. Both i and j may contain numeric, logical and character indices,
which behave as expected.

> ## get the first 10 targets

> first10 <- targetTrack[1:10]

> ## get pos strand targets

> posTargets <- targetTrack[strand(targetTrack) == "+"]

> ## get the targets on chr1

> chr1Targets <- targetTrack[seqnames(targetTrack) == "chr1"]

Exercises

1. Subset the track for all features on the negative strand of chromosome 2.

2.1.4 Exporting and importing tracks

Import and export of GRanges and RangedData instances is supported in the
following formats: Browser Extended Display (BED), versions 1, 2 and 3 of
the General Feature Format (GFF), and Wiggle (WIG). Support for additional
formats may be provided by other packages through a plugin system.

To save the microRNA target track created above in a format understood by
other tools, we could export it as BED. This is done with the export function,
which accepts a filename or any R connection object as its target. If a target
is not given, the serialized string is returned. The desired format is derived,
by default, from the extension of the filename. Use the format parameter to
explicitly specify a format.

> export(targetTrack, "targets.bed")

To read the data back in a future session, we could use the import function.
The source of the data may be given as a connection, a filename or a character
vector containing the data. Like the export function, the format is determined
from the filename, by default.

> restoredTrack <- import("targets.bed")

The restoredTrack object is of class RangedData. To obtain a GRanges object
directly upon importing, pass asRangedData = FALSE to import:

> restoredTrack <- import("targets.bed", asRangedData = FALSE)

Eventually, import will return GRanges objects by default; the extra parameter
is necessary for backwards compatibility. Thus, if a RangedData is desired,
new code should specify asRangedData = TRUE in anticipation of the change in
default value.

5

Exercises

1. Output the track to a file in the “gff” format.

2. Read the track back into R.

3. Export the track as a character vector.

2.2 Viewing the targets in a genome browser

For the next step in our example, we will load the track into a genome browser
for visualization with other genomic annotations. The rtracklayer package is
capable of interfacing with any genome browser for which a driver exists. In this
case, we will interact with the web-based UCSC browser, but the same code
should work for any browser.

2.2.1 Starting a session

The first step towards interfacing with a browser is to start a browser session,
represented in R as a BrowserSession object. A BrowserSession is primarily a
container of tracks and genomic views. The following code creates a BrowserS-
ession for the UCSC browser:

> session <- browserSession("UCSC")

Note that the name of any other supported browser could have been given here
instead of “UCSC”. To see the names of supported browsers, enter:

> genomeBrowsers()

[1] "UCSC"

2.2.2 Laying the track

Before a track can be viewed on the genome, it must be loaded into the session
using the track<- function, as demonstrated below:

> track(session, "targets") <- targetTrack

The name argument should be a character vector that will help identify the
track within session. Note that the invocation of track<- above does not
specify an upload format. Thus, the default, “auto”, is used. Since the track
does not contain any data values, the track is uploaded as BED. To make this
explicit, we could pass “bed” as the format parameter.

Exercises

1. Lay a track with the first 100 features of targetTrack

Here we use the short-cut $ syntax for storing the track.

6

2.2.3 Viewing the track

For UCSC, a view roughly corresponds to one tab or window in the web
browser. The target sites are distributed throughout the genome, so we will
only be able to view a few features at a time. In this case, we will view only
the first feature in the track. A convenient way to focus a view on a particular
set of features is to subset the track and pass the range of the subtrack to the
constructor of the view. Below we take a track subset that contains only the
first feature.

> subTargetTrack <- targetTrack[1] # get first feature

Now we call the browserView function to construct the view and pass the
subtrack, zoomed out by a factor of 10, as the segment to view. By passing
the name of the targets track in the pack parameter, we instruct the browser
to use the “pack” mode for viewing the track. This results in the name of the
microRNA appearing next to the target site glyph.

> view <- browserView(session, subTargetTrack * -10, pack = "targets")

If multiple ranges are provided, multiple views are launched:

> view <- browserView(session, targetTrack[1:5] * -10, pack = "targets")

Exercises

1. Create a new view with the same region as view, except zoomed out 2X.

2. Create a view with the “targets” track displayed in “full” mode, instead of
“packed”.

2.2.4 A shortcut

There is also a shortcut to the above steps. The browseGenome function creates
a session for a specified browser, loads one or more tracks into the session and
creates a view of a given genome segment. In the following code, we create a
new UCSC session, load the track and view the first two features, all in one
call:

> browseGenome(targetTrack, range = subTargetTrack * -10)

It is even simpler to view the subtrack in UCSC by relying on parameter
defaults:

> browseGenome(subTargetTrack)

7

2.2.5 Downloading tracks

It is possible to query the browser to obtain the names of the loaded tracks and
to download the tracks into R. To list the tracks loaded in the browser, enter
the following:

> loaded_tracks <- trackNames(session)

One may download any of the tracks, such as the“targets” track that was loaded
previously in this example.

> subTargetTrack <- track(session, "targets")

The returned object is a RangedData, even if the data was originally uploaded
as a GRanges or other object. To get a GRanges instead, pass asRangedData =

FALSE. By default, the segment of the track downloaded is the current default
genome segment associated with the session. One may download track data for
any genome segment, such as those on a particular chromosome. Note that this
does not distinguish by strand; we are only indicating a position on the genome.

> chr1Targets <- track(session, "targets", chr1Targets)

Exercises

1. Get the SNP under the first target, displayed in view.

2. Get the UCSC gene for the same target.

2.2.6 Accessing view state

The view variable is an instance of BrowserView, which provides an interface for
getting and setting view attributes. Note that for the UCSC browser, changing
the view state opens a new view, as a new page must be opened in the web
browser.

To programmatically query the segment displayed by a view, use the range

method for a BrowserView.

> segment <- range(view)

Similarly, one may get and set the names of the visible tracks in the view.

> visible_tracks <- trackNames(view)

> trackNames(view) <- visible_tracks

The visibility mode (hide, dense, pack, squish, full) of the tracks may be re-
trieved with the ucscTrackModes method.

> modes <- ucscTrackModes(view)

The returned value, modes, is of class UCSCTrackModes. The modes may be
accessed using the [function. Here, we set the mode of our “targets” track to
“full” visibility.

8

> modes["targets"]

> modes["targets"] <- "full"

> ucscTrackModes(view) <- modes

Existing browser views for a session may be retrieved by calling the browserViews
method on the browserSession instance.

> views <- browserViews(session)

> length(views)

Exercises

1. Retrieve target currently visible in the view.

2. Limit the view to display only the SNP, UCSC gene and target track.

3. Hide the UCSC gene track.

3 CPNE1 expression and HapMap SNPs

Included with the rtracklayer package is a track object (created by the GGtools
package) with features from a subset of the SNPs on chromosome 20 from 60
HapMap founders in the CEU cohort. Each SNP has an associated data value
indicating its association with the expression of the CPNE1 gene according to
a Cochran-Armitage 1df test. The top 5000 scoring SNPs were selected for the
track.

We load the track presently.

> library(rtracklayer)

> data(cpneTrack)

3.1 Loading and manipulating the track

The data values for a track are stored in the columns on the RangedData in-
stance. Often, a track contains a single column of numeric values, conventionally
known as the score. The score function retrieves the column named or score
or, if one does not exist, the first column in the RangedData, as long as it is
numeric. Otherwise, NULL is returned.

> head(score(cpneTrack))

rs4814683 rs6076506 rs6139074 rs1418258 rs7274499 rs6116610

0.16261691 0.02170423 0.47098379 0.16261691 0.05944578 0.18101862

One use of extracting the data values is to plot the data.

> plot(start(cpneTrack), score(cpneTrack))

9

3.2 Browsing the SNPs

We now aim to view some of the SNPs in the UCSC browser. Unlike the
microRNA target site example above, this track has quantitative information,
which requires special consideration for visualization.

3.2.1 Laying a WIG track

To view the SNP locations as a track in a genome browser, we first need to
upload the track to a fresh session. In the code below, we use the [[<- alias of
track<-.

> session <- browserSession()

> session$cpne <- cpneTrack

Note that because cpneTrack contains data values and its features do not over-
lap, it is uploaded to the browser in the WIG format. One limitation of the
WIG format is that it is not possible to encode strand information. Thus, each
strand needs to have its own track, and rtracklayer does this automatically,
unless only one strand is represented in the track (as in this case). One could
pass “bed” to the format parameter of track<- to prevent the split, but tracks
uploaded as BED are much more limited compared to WIG tracks in terms of
visualization options.

10

To form the labels for the WIG subtracks, “ p” is concatenated onto the plus
track and “ m” onto the minus track. Features with missing track information
are placed in a track named with the “ na” postfix. It is important to note that
the subtracks must be identified individually when, for example, downloading
the track or changing track visibility.

3.2.2 Plotting the SNP track

To plot the data values for the SNP’s in a track, we need to create a browserView.
We will view the region spanning the first 5 SNPs in the track, which will be
displayed in the “full” mode.

> view <- browserView(session, range(cpneTrack[1:5,]), full = "cpne")

The UCSC browser will plot the data values as bars. There are several options
available for tweaking the plot, as described in the help for the GraphTrackLine
class. These need to be specified laying the track, so we will lay a new track
named “cpne2”. First, we will turn the autoScale option off, so that the bars
will be scaled globally, rather than locally to the current view. Then we could
turn on the yLineOnOff option to add horizontal line that could represent some
sort of cut-off. The position of the line is specified by yLineMark. We set it
arbitrarily to the 25% quantile.

> track(session, "cpne2", autoScale = FALSE, yLineOnOff = TRUE,

+ yLineMark = quantile(score(cpneTrack), .25)) <- cpneTrack

> view <- browserView(session, range(cpneTrack[1:5,]), full = "cpne2")

4 Binding sites for NRSF

Another common type of genomic feature is transcription factor binding sites.
Here we will use the Biostrings package to search for matches to the binding
motif for NRSF, convert the result to a track, and display a portion of it in the
UCSC browser.

4.1 Creating the binding site track

We will use the Biostrings package to search human chromosome 1 for NRSF
binding sites. The binding sequence motif is assumed to be TCAGCACCATG-
GACAG, though in reality it is more variable. To perform the search, we run
matchPattern on the positive strand of chromosome 1.

> library(BSgenome.Hsapiens.UCSC.hg19)

> nrsfHits <- matchPattern("TCAGCACCATGGACAG", Hsapiens[["chr1"]])

> length(nrsfHits) # number of hits

[1] 2

11

We then convert the hits, stored as a Views object (a particular type of
IRanges object), to a RangedData instance.

> nrsfTrack <- GenomicData(ranges(nrsfHits), strand="+", chrom="chr1",

+ genome = "hg19")

GenomicData is a convenience function that by default constructs a Ranged-
Data object. A GRanges may be obtained by passing asRangedData = FALSE;
however, a RangedData may be preferred in this case, as the nrsfHits object
is stored as a Views object in nrsfTrack without any loss of informatqion, in
particular the sequence of chr1.

4.2 Browsing the binding sites

Now that the NRSF binding sites are stored as a track, we can upload them
to the UCSC browser and view them. Below, load the track and we view the
region around the first hit in a single call to browseGenome.

> session <- browseGenome(nrsfTrack, range = range(nrsfTrack[1,]) * -10)

We observe significant conservation across mammal species in the region of the
motif.

5 Conclusion

These case studies have demonstrated a few of the most important features of
rtracklayer. Please see the package documentation for more details.

The following is the session info that generated this vignette:

> sessionInfo()

R version 2.15.1 (2012-06-22)

Platform: x86_64-unknown-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C

[3] LC_TIME=en_US.UTF-8 LC_COLLATE=C

[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=C LC_NAME=C

[9] LC_ADDRESS=C LC_TELEPHONE=C

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] stats graphics grDevices utils datasets methods

[7] base

other attached packages:

12

[1] BSgenome.Hsapiens.UCSC.hg19_1.3.17

[2] BSgenome_1.24.0

[3] Biostrings_2.24.1

[4] rtracklayer_1.16.3

[5] GenomicRanges_1.8.7

[6] IRanges_1.14.4

[7] microRNA_1.14.0

[8] limma_3.12.1

[9] genefilter_1.38.0

[10] humanStemCell_0.2.6

[11] hgu133plus2.db_2.7.1

[12] org.Hs.eg.db_2.7.1

[13] RSQLite_0.11.1

[14] DBI_0.2-5

[15] AnnotationDbi_1.18.1

[16] Biobase_2.16.0

[17] BiocGenerics_0.2.0

loaded via a namespace (and not attached):

[1] RCurl_1.91-1 Rsamtools_1.8.5 XML_3.9-4

[4] annotate_1.34.1 bitops_1.0-4.1 splines_2.15.1

[7] stats4_2.15.1 survival_2.36-14 tools_2.15.1

[10] xtable_1.7-0 zlibbioc_1.2.0

13

